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Preface

Competitive Physics grew out of a Physics Olympiad course taught by Wang

Jinhui at Hwa Chong Institution — intended to prepare students for the

annual Physics Olympiads and to imbue deeper knowledge in physics beyond

the typical high school syllabus. It quickly became a collaboration with his

former trainer in the Singapore Physics Olympiad national training team,

Bernard Ricardo.

Competitive Physics is meant to be a theory-cum-problem book. The

first half of each chapter explores physical theories with illustrations of how

they can be creatively applied to problems. The latter half of each chapter

revolves around puzzles that we hope will intrigue readers, as we believe that

problem-solving is a crucial process in grasping the subtleties of the contents.

Therefore, we have included a multitude of problems which are ranked by

increasing difficulty from one to four stars. Some problems are original; some

are taken from the various Physics Olympiads while the others are instructive

classics that have withstood the test of time.

This book is the second part of a two-volume series which will discuss

thermodynamics, electromagnetism and special relativity, building on the

fundamentals that we have developed in the first volume. A brief overview

of geometrical optics is also included.

We envision problem-solving to be a fun process — from the initial excite-

ment of approaching an unfamiliar problem, to the joy of pitting all of one’s

knowledge against it and finally, the satisfaction earned from solving it after

numerous failed attempts. In light of this, our goal is to spread the passion of

problem-solving — an infectious hobby. It is difficult to quantity the factors

that make a problem interesting or elegant but the following have been our

guiding principles in writing Competitive Physics:

1. Physical Significance. Quintessentially, physics is about modeling the

world around us. Therefore, it is gratifying to be able to analyze everyday

vii
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phenomena and to leverage on this knowledge to improve such processes.

For example, a problem in Chapter 4 deals with a model of global warm-

ing. Meanwhile, we learn how to construct an AC generator in Chapter 8

and a primitive digital-to-analog converter in Chapter 9.

2. Intuition. There are many overarching themes in physics — symmetry,

the equivalence of different observational frames of reference, construction

of mirror images and many more. Not only are these useful as sleights-

of-hand in problem-solving, they reveal crucial aspects of the common

structure of physical theories. Developing a strong hunch for them— a gut

feel that constantly bugs you to search for ways to exploit them — may

prove to be beneficial in one’s future physics journey.

3. Insight. Sometimes, a seemingly complex problem can be vastly simplified

by making an astute observation — whether mathematical or physical.

Perhaps, it is to express the solution in terms of vectors or perhaps it is

to observe that two different scenarios “feel” the same to a certain entity

and thus conclude that the entity will respond in the same manner in

both cases. Maybe it is to draw enlightening analogies between two prob-

lems that appear to be completely disparate on the surface. Ultimately,

such problems which require perceptive thought do not have cookie-cutter

approaches and require the reader to invent an appropriate technique on

the spot. They hence implore the reader to really think and are very

rewarding to solve.

4. Fundamentals. The objectives above would not be possible without first

mastering the fundamentals of a theory — the situations that it can be

validly applied to, its assumptions and its ramifications. As such, we have

also included many classic problems to reinforce understanding of the

basics. To this end, we are extremely grateful to Dr. David J. Morin for

allowing us to use some problems from his exemplary textbook: Introduc-

tion to Classical Mechanics.

In summary, our guiding principles are “PIIF”, as in the onomatopoeia

“pffft” when, having read this book, you scoff at a future problem after

swiftly spotting its trick. Jokes aside, it is paramount for the reader to first

attempt the problems before peeking at the solutions. Even when perusing

the solution to a problem, the reader should inspect it line by line until he

or she reaches an inspiration that sets him or her back on track in attempt-

ing the problem again. Only by experiencing the process of problem-solving

yourself can you internalize the clues in a problem that hint at a certain

approach, understand why certain approaches are incorrect or desirable and

ultimately, improve. There is no short-cut to developing an intuition for
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Preface ix

problem-solving besides, trudging through an arduous but fulfilling journey

of enigmas.

Despite out best efforts the probability of this book being error-free

is, unfortunately, akin to the odds of observing a car plate that reads

“PHY51C”. Therefore, if the reader does spot any mistakes or dubious points

in our discussions, we would appreciate if they are highlighted to us via the

email competitivephysicsguide@gmail.com.

mailto:competitivephysicsguide@gmail.com


 
 

 

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-fm page xi

Contents

Dedication v

Preface vii

1 Geometrical Optics 1

1.1 Light Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Law of Reflection . . . . . . . . . . . . . . . . . . . . . 4

1.3 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Total Internal Reflection . . . . . . . . . . . . . . . . . . . 15

1.5 Fermat’s Principle . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Optical Apparatus . . . . . . . . . . . . . . . . . . . . . . . 19

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Thermodynamics and Ideal Gases 77

2.1 The Zeroth Law . . . . . . . . . . . . . . . . . . . . . . . . 77

2.2 Common Quantities in Thermodynamics . . . . . . . . . . 78

2.3 The First Law of Thermodynamics . . . . . . . . . . . . . 80

2.4 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.6 Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.7 Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . 104

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xi



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-fm page xii

xii Competitive Physics: Thermodynamics, Electromagnetism and Relativity

3 The Second Law and Heat Engines 155

3.1 Kelvin-Planck’s and Clausius’ Statements . . . . . . . . . . 155

3.2 Heat Engines and Refrigerators . . . . . . . . . . . . . . . 158

3.3 Clausius’ Inequality and Entropy . . . . . . . . . . . . . . . 169

3.4 Fundamental Relation of Thermodynamics . . . . . . . . . 178

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4 Heat Transfer and Phase Transitions 197

4.1 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.2 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.4 Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . 218

4.5 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 220

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5 Electrostatics 261

5.1 Electric Charges . . . . . . . . . . . . . . . . . . . . . . . . 261

5.2 Coulomb’s Law . . . . . . . . . . . . . . . . . . . . . . . . . 262

5.3 Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . 264

5.4 Gauss’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.5 Line Integral of Electrostatic Field . . . . . . . . . . . . . . 280

5.6 Electric Potential Energy . . . . . . . . . . . . . . . . . . . 285

5.7 Electric Potential . . . . . . . . . . . . . . . . . . . . . . . 289

5.8 Potential Energy of a System . . . . . . . . . . . . . . . . . 292

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

6 Conductors and Dielectrics 337

6.1 Properties of Conductors . . . . . . . . . . . . . . . . . . . 337

6.2 The Uniqueness Theorems . . . . . . . . . . . . . . . . . . 340

6.3 Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

6.4 Electric Fields in Matter . . . . . . . . . . . . . . . . . . . 370

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-fm page xiii

Contents xiii

7 Magnetism 431

7.1 Lorentz Force Law and the Definition

of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . 431

7.2 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . 433

7.3 Ampere’s Law . . . . . . . . . . . . . . . . . . . . . . . . . 443

7.4 Motion in Magnetic Fields . . . . . . . . . . . . . . . . . . 451

7.5 Magnetic Fields in Matter . . . . . . . . . . . . . . . . . . 460

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

8 Currents and EMI 513

8.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

8.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

8.3 Electromotive Force . . . . . . . . . . . . . . . . . . . . . . 527

8.4 Motional EMF . . . . . . . . . . . . . . . . . . . . . . . . . 530

8.5 Induced EMF . . . . . . . . . . . . . . . . . . . . . . . . . 539

8.6 Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . . 544

8.7 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . 546

8.8 Ampere–Maxwell Law . . . . . . . . . . . . . . . . . . . . . 550

8.9 Perfect Conductors and Superconductors . . . . . . . . . . 553

8.10 Force on Inductors . . . . . . . . . . . . . . . . . . . . . . . 558

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

9 DC Circuits 615

9.1 Kirchhoff’s Laws . . . . . . . . . . . . . . . . . . . . . . . . 615

9.2 The Principle of Superposition . . . . . . . . . . . . . . . . 626

9.3 Equipotential Points . . . . . . . . . . . . . . . . . . . . . . 633

9.4 Thevenin’s Theorem . . . . . . . . . . . . . . . . . . . . . . 641

9.5 Y-Δ Transformations . . . . . . . . . . . . . . . . . . . . . 650

9.6 Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . 659

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

10 RLC and AC Circuits 695

10.1 Roles of Capacitors and Inductors . . . . . . . . . . . . . . 695

10.2 AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737



November 14, 2018 12:11 Competitive Physics 9.61in x 6.69in b3255-fm page xiv

xiv Competitive Physics: Thermodynamics, Electromagnetism and Relativity

11 Relativistic Kinematics 763

11.1 Frames of Reference . . . . . . . . . . . . . . . . . . . . . . 764

11.2 The Two Postulates . . . . . . . . . . . . . . . . . . . . . . 765

11.3 Consequences of the Postulates . . . . . . . . . . . . . . . . 770

11.4 Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

11.5 The Lorentz Transformations and Active Transformations . 790

11.6 Passive Transformations . . . . . . . . . . . . . . . . . . . . 796

11.7 The Invariant Interval . . . . . . . . . . . . . . . . . . . . . 802

11.8 The Relativistic Speed Limit . . . . . . . . . . . . . . . . . 806

11.9 Other Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

12 Relativistic Dynamics 851

12.1 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

12.2 Relativistic Energy . . . . . . . . . . . . . . . . . . . . . . 855

12.3 Force and Coordinate Acceleration . . . . . . . . . . . . . . 863

12.4 Four-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 868

12.5 Transformation of Electric and Magnetic Fields . . . . . . 889

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

Appendix: Michelson–Morley Experiment 937

Index 943



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch01 page 1

Chapter 1

Geometrical Optics

Geometrical optics can be applied to situations where the scale of observation

is much larger than the wavelength of light. For example, the wavelength of

visible light ranges from 400–700 nm, that is, violet to red while typical sce-

narios involve lengths of observation in centimeters and meters. The crucial

simplification in geometrical optics relies on light rays — a construct that

will soon be elaborated. In the entire chapter, we will only be considering

homogeneous and isotropic media. In other words, the media in which light

propagates are uniform in all space and in all directions.

1.1 Light Rays

The major simplification in geometrical optics stems from the construction

of light rays to approximate the formulation of light as an electromagnetic

wave. But first, it is well-established that light exists in quanta, or discrete

packages, known as photons. How can the model of an electromagnetic wave

be coherent with the inherently quantum nature of light? The answer to this

is that there are myriad photons in a normal light beam and the combined

system can thus be approximated as a continuous wave. This is similar to

how water ripples are formulated as continuous waves, though they comprise

individual molecules.

To further streamline the model, a light ray is defined to be a line that is

in the direction of energy flow. In a homogeneous and isotropic medium, a

light ray will be perpendicular to the wavefronts at each point of intersection.

As a result, a point source will “emit” light rays radially outwards. In the case

of a plane wave, this formulation leads to immense convenience as all light

rays are parallel to one another. Hence, a single light ray is representative

of the whole set of light rays.

1
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However, with this definition, we still do not know the shape of light rays

in a homogeneous medium. If they were random squiggles, this model would

be rendered useless. Well, it is intuitive that the wavefronts of light take

on the same general shapes as they propagate in a vacuum. For example, a

spherical wavefront becomes a larger spherical wavefront at a later instant.

A plane wavefront still remains planar. Hence, a light ray in vacuum is

naturally a straight line. However, the fact that a light ray maintains the

form of a straight line when propagating in a homogeneous medium that is

not a vacuum, is not so obvious.

A multitude of photons impinge on the molecules in a homogeneous

medium. However, these molecules cannot be raised into an excited state

as their energy gaps do not correspond to photon frequencies in the visible

region. Hence, photons are absorbed and simultaneously re-emitted in arbi-

trary directions. Due to the gargantuan number of incident photons, each

molecule effectively re-emits a spherical secondary wave that has a certain

phase difference relative to the primary wave instantaneously. This phase

difference is constant for all the molecules and arises because the molecules

respond as driven dipole oscillators which oscillate at a certain phase dif-

ference, relative to the driving force caused by the electric field of the inci-

dent EM wave. Due to the constant phase difference relative to the primary

wave, the secondary waves constructively interfere in the direction of the

primary wave propagation because the secondary waves are emitted as the

primary wave “hits” the molecules along its propagation. Furthermore, since

the molecules in the medium are densely packed and the wavelength of vis-

ible light is much larger than the intermolecular spacings, destructive inter-

ference occurs in all other directions, and there is minimal lateral scattering.

As the transmitted wave is the superposition of the primary and sec-

ondary waves, the result is that the transmitted wave also follows the same

general shape as the primary wave along the same direction of propagation,

and a light ray in a homogeneous medium is still a straight line.

Another important phenomenon pertains to the transmitted wave accu-

mulating a progressively larger phase difference relative to the primary wave

as more secondary waves are gathered. This manifests itself as a change in

the phase velocity of the wave. The primary and secondary light waves both

propagate at a phase velocity c, but their superposition produces a transmit-

ted wave of phase velocity c
n where n is the refractive index of the medium.

The phase velocity of an electromagnetic wave in a medium is given by

v =
1√
με
,
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where μ and ε are the magnetic permeability and electric permittivity of the

medium, respectively. The speed of light in a vacuum is given by

c =
1√
μ0ε0

.

Since μ does not deviate much from μ0 for most materials, the refractive

index is given by

n =
c

v
=

√
ε

ε0
=

√
κ

v =
c

n
, (1.1)

where κ is the dielectric constant, ε = κε0. Stemming from the laws of elec-

tromagnetism and the properties of a dipole oscillator, κ in fact depends on

the wavelength of the light ray. Hence, the refractive index n(λ) is generally

a function of the wavelength λ of the light ray it carries. Qualitatively, n

decreases as λ increases.1

The last theorem that confirms the utility of light rays is a theorem by

Malus and Dublin. A pivotal corollary of the theorem is that light rays remain

perpendicular to the wavefronts after an arbitrary number of reflections and

refractions from various surfaces. Hence, we do not have to worry about light

rays varying haphazardly when transiting across different media. Another

consequence of this is that we can deduce the orientations of wavefronts by

first drawing light rays, which are much more convenient and simpler to

visualize.

However, there are a few drawbacks to this model of light rays. Firstly,

they do not represent the phase velocity of light waves in a medium, nor

do they depict their amplitudes. Furthermore, they cannot incorporate the

superposition of light waves, which involves a vector sum of displacements,

nor the phenomenon of diffraction which, dominates in the regime where

apertures are of sizes comparable to the wavelength of light. Despite these

limitations, light rays are still an important construct in geometrical optics,

which rarely deals with the above phenomena.

1Cauchy’s equation, which is rather accurate for visible light, states that the refractive
index n = A+ B

λ2 , where A and B are constants that depend on the material of the medium
(usually determined by graph fitting). This dependence of n on λ is in fact what causes
white light to split into a spectrum of colours after transmitting in media such as glass
prisms, as waves of different wavelengths are refracted to different extents when transiting
across an interface.
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1.2 The Law of Reflection

Part of a light wave is scattered back when it impinges on the interface of

another medium with a different index of refraction. This phenomenon is

known as reflection. If the difference in the refractive indices is large and the

transition is sudden, a large proportion of the light wave is reflected.

Figure 1.1: Reflection off a surface

The normal is an imaginary line perpendicular to the instantaneous gra-

dient of a surface. It is usually drawn as a dotted line, as shown in Fig. 1.1.

The angle of incidence is the angle between the incident ray and the nor-

mal of the point that the incident ray impinges upon. Similarly, the angle of

reflection is the angle between the reflected ray and the normal.

The law of reflection states that the angle of incidence and the angle of

reflection are equal:

θi = θr. (1.2)

Furthermore, the incident ray, normal and the reflected ray must all lie on

the same plane, known as the plane of incidence. Hence, problems involving

reflections can be reduced to effectively two-dimensional problems.

Depending on the smoothness of the surface, the orientation of the

reflected rays of a bundle of incident rays will vary. In the case of a smooth

flat surface, where all irregularities are small in comparison with the wave-

length of light, the reflected rays remain parallel. This is known as specular

reflection. However, in the case of a rough surface whose bumps and pits are

comparable in size to the wavelength of light, different parallel incident rays

will emerge in various directions due to the unevenness of the surface. This

is known as diffuse reflection.

Problem: If the brightness of an image depends on the number of light rays

entering one’s eyes, and the beams from a projector can be assumed to be

plane waves, why are projector screens not made of polished mirrors? This is

potentially more energy efficient, as a lower intensity of the projected beam

would be required to produce an image of the same brightness.
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Well, the main limitation is that a purely specular reflection will result

in a very limited region of angles where the beams can reach one’s eyes.

Hence, most reflecting surfaces engender a combination of specular and

diffuse reflections.

Plane Mirrors

An ubiquitous application of the law of reflection would be plane mirrors.

Based on the law of reflection, these mirrors form sharp images.

Figure 1.2: Thin plane mirror

Consider the thin plane mirror in Fig. 1.2; we wish to determine how

the image of an object will appear. Note that when determining an image in

general, every point on the object acts as a point source of (reflected) light.

The location of the image of a particular point is where all final light rays,

which are originally emitted from the point, appear to emanate from after a

reflection with the mirror. If most of the final light rays appear to converge

at a certain point, the image at that point will be sharp or focused. If not,

the image will be blurred.

To determine the location of the image of a point, multiple rays in dif-

ferent directions that emanate from the point are drawn and their point of

intersection is determined. Note that although all rays do not necessarily

coincide at a single point, this should usually be the case in the apparatus

that we will consider in this chapter, to a certain degree of accuracy, at least.

Consider point A, the tip of the vertical object. Consider a line AB

perpendicular to the plane of the mirror that passes through A. Then, an

incident light ray along line AB must also be reflected along line BA. Now,

consider another light ray, AD, impinging on the mirror at an arbitrary

angle of incidence θ at point D. The angle of reflection is also θ by the law
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of reflection. Then, let E be the point of intersection of the reflected ray and

a line in the plane of incidence that passes through A and is perpendicular

to the normal. A, D and E lie in the plane of incidence. Note that the plane

of incidence may not necessarily be the plane comprising this page, though

it is drawn that way in the figure. Now, let C be the point of intersection of

AE with the normal from D.

Evidently, the two reflected rays BA and DE are diverging from the mir-

ror. Their extensions coincide at point A′ which is behind the mirror (these

are denoted by dotted lines as they are not real rays). Now, triangle ACD is

congruent to triangle ECD as they have two equal angles and share the same

side CD. Then, C is the midpoint of EA. Furthermore, since the line CD is

parallel to AA′ as they are both normal to the mirror, D is the midpoint of

EA′. Hence, by the midpoint theorem, AA′ = 2CD = 2AB. Hence, the image

distance, BA′, which is the perpendicular distance between the image and

the mirror is equal to the object distance, AB, which is the perpendicular

distance between the object and the mirror:

AB = BA′.

The vertical position of A′ corresponds to the vertical position of A. Lastly,

since the angle θ was arbitrary and the location of A′ does not depend on θ,

all rays from point A will appear to coincide at A′. Hence, A′ is the location
of the image of A.

Then, every point on the vertical object can be correspondingly mapped

to a point on the image to obtain the widely-spaced, dashed line in Fig. 1.2

above. The vertical height of the image is the same as that of the object. The

image is also described to be upright as its vertical orientation is the same

as that of the object (see white arrows). Furthermore, the image is known

as a virtual image as light rays do not actually converge behind the mirror.

They only appear to do so. If a screen were to be placed at the horizontal

position of A′, no image will be formed on the screen.

A final quotidian phenomenon that may puzzle some is the apparent

left-right reversal of the image in a mirror. If you raise your left hand, your

image in the mirror appears to raise its right hand. If your shirt has a letter

“S”, the image will show a number “2”. Does the mirror somehow cause the

image to be reversed? Well, the answer is no. The object had already been

“reversed” before it was mapped to an image. This can be best illustrated

by writing a “S” on a transparent sheet of plastic and holding it in front

of yourself, towards a mirror. As expected, the mirror shows an image “2”.

But if you now look at the sheet of plastic from your perspective, you see
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that the object also appears as “2”! Hence, what is left or right is only

a matter of perspective. A person standing behind the object will see that

the left-right orientation of the image is the same as that of the object. This

is because, each point on the object is directly mapped via a line normal to

the mirror and passing through that particular point to the other side of the

mirror.

Problem: As a person moves away from a plane mirror, how does the ver-

tical height of his or her image change (if any)?

The vertical height of the image does not change with the object distance

as it is always identical to the height of the object. Images in plane mirrors

appear to diminish as we move further away from them in real life as they

now cover a smaller angular distance. The same phenomenon occurs when

someone moves away from you; he or she appears smaller, though his or her

actual height definitely does not shrink. In other words, the images in the

mirror appear to shrink visually along with the mirror, while maintaining the

relative proportions, but the height of the image definitely does not change.

Mirror Images

A neat trick in determining whether a light ray will impinge on an object

after a reflection on a plane mirror is to extend the incident ray beyond the

mirror and check if it hits the mirror image of the object.

Figure 1.3: Mirror image

The point of intersection of the extended incident light ray and the mirror

image corresponds to the point of intersection of the reflected ray and the

original object (after a reflection about the mirror). Considering Fig. 1.3, B

is the point at which the incident light ray hits the mirror. AB is the normal

to the mirror surface. C is the point of intersection of the reflected ray and

the object. C′ is the point of intersection of the extended incident light ray.

A′ is obtained from extending the normal AB. It can be seen that

�ABC ∼= �A′BC ′
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as

∠ABC = ∠A′BC ′

∠CAB = ∠C ′A′B = 90◦

AB = A′B′.

Therefore, if a reflected ray hits an object, the extension of the incident ray

also hits the mirror image while preserving all relevant distances.

This method of extending the incident light ray becomes extremely handy

when there are multiple mirrors. If an extended incident light ray impinges on

the image of a primary image, the light ray will hit the primary image by the

above analysis. Consequently, it will also hit the original object. Similarly,

if an extended incident ray hits the image of the image of a primary image,

it will still hit the original object and so on. The last essential property is

that the distance traversed by the light ray in hitting the object is equal to

the distance obtained by extending the incident ray to the mirror image as

the distances are preserved.

Problem: Consider a cylindrical receiver sandwiched between two plane

mirrors separated by a distance 2l. A point source P lies a distance d away

from the cylindrical axis O. Consider the plane depicted in Fig. 1.4. What

is the minimum radius of the cylinder R, such that all light rays emitted to

the right of P in this plane hits the receiver? (Adapted from Chinese Physics

Olympiad)

Figure 1.4: Point source P and receiver

Well, the trick here is to consider the mirror images of the receiver.

We will only consider the light rays traveling upwards, as the situation is

symmetrical.

The mirror images in this plane form an array of infinite circles whose

adjacent centers are separated by a distance 2l. To ensure that all rays

traveling upwards and rightwards reach the receiver, we just have to ensure

that all incident rays impinge on an image when extended.
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Figure 1.5: Primary image

Referring to Fig. 1.5, notice that if R is not large enough, some light

rays can slip through the gap between the object M and primary image M′.
Hence, the radius R must be increased until the boundary case, where an

extended light ray from P to the point on the top mirror that is at the

same horizontal position as O, namely point A, is tangential to both cir-

cles. The existence of such a boundary case is evident from the fact that

the perpendicular distances from the centers of M and M′ to this light ray

are always identical. If such a condition is satisfied, all lights rays emit-

ted at an angle 0 ≤ θ ≤ ∠APO, will hit either M or M′, where θ is the

angle that the light ray subtends with line PO. The minimum R in this

case can be determined by observing that triangles �PBO and �POA are

similar,

�PBO ∼ �POA (AA).

Hence,

R

d
=

l√
l2 + d2

R =
ld√
l2 + d2

.

We are left with showing that once this condition is satisfied, all incident

rays emitted an angle θ0 < θ < 90◦ will eventually hit an image (remember

that there are still infinite arrays of images above M ′ and below M). This is

intuitive as it is impossible for a steeper line to pass through the gap between

two adjacent circles when a line with a gentler slope, that emanates from

the same point, cannot.2

2The reader should try to prove this mathematically.
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1.3 Refraction

Refraction occurs when an incident light ray impinges on an interface

between two media with different indices of refraction. The transmitted light

ray is bent relative to the incident ray. This phenomenon is known as refrac-

tion and occurs because the phase velocity of light is different in different

media.

Figure 1.6: Refraction at an interface

To visualize why a light ray bends, we can return to the more vivid

model of waveforms in Fig. 1.6. Consider one incident wavefront out of the

myriad described by the incident light ray with an angle of incidence θi.

Note that the figure above shows a slideshow of the various positions of a

single wavefront as it progresses. It is initially at O1 with its end impinging

on the interface at A. Then, it progresses to O2, O3, O4 and O5 over time.

When part of the wave hits the interface, another transmitted wave is re-

emitted due to the scattering of the incident waves by the atoms in the

second medium.3 The transmitted wavefront travels and increases in length

from I1 to I5 as more of the incident wavefront is transmitted, until the entire

initial wavefront has been transmitted at I5. Note that the transmitted light

ray must be perpendicular to the transmitted wavefronts. Assuming that

this entire process of transmission took a length of time Δt,

CB =
c

ni
Δt,

AD =
c

nf
Δt,

where ni and nf are the refractive indices of the initial and final

media. As triangles �ABC and �ABD share the same side AB and

3To be precise, this transmitted wavefront is of a constant phase difference relative to
the incident wavefront.
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∠ACB = ∠ADB = 90◦, the sine rule can be applied to obtain

AB =
c
ni
Δt

sin θi
=

c
nf

Δt

sin θf

ni sin θi = nf sin θf , (1.3)

or

nfi =
nf
ni

=
sin θi
sin θf

, (1.4)

where nfi is denoted as the relative refractive index of the final medium to

the initial medium. This relationship is known as Snell’s law which states

additionally that the incident ray, the normal and the transmitted ray all lie

in the same plane.

As implied by Snell’s law, a light ray entering a medium with a larger

refractive index will bend towards the normal. Conversely, a light ray enter-

ing a medium with a smaller index of refraction will bend away from the

normal.

Apparent Depth

Refraction manifests itself in the perception of depth in a fluid. When one

is at the pool, the bodies of the people submerged in the swimming pool

appear to have shrunk in height. This can be explained by the ray diagram

in Fig. 1.7.

Figure 1.7: Perceived image

Let a point object be at O. Consider a light ray emanating from the

object that perpendicularly cuts the interface at point A. Now, consider

a second ray that hits the interface at B at an angle of incidence θi. The

refracted ray will be directed with an angle of refraction θf . Now, the virtual

image formed by these two rays is at O′, which is obtained by extending the
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refracted ray until it intersects with the extension of the first transmitted

ray, as one would perceive light rays to travel in a straight line.4 Now, the

ratio of the apparent depth AO′ to the actual depth AO can be computed:

AO′ = cot θfAB,

AO = cot θiAB,

AO′

AO
=

cos θf sin θi
cos θi sin θf

.

From Snell’s law,

sin θi
sin θf

=
nf
ni
,

AO′

AO
=

cos θfnf
cos θini

.

At small angles of incidence (i.e. the observer stays near the normal),

cos θi ≈ 1 and cos θf ≈ 1, hence

AO′

AO
=
nf
ni
.

Since this result is independent of θi for small angles of θi, all light rays with

small θi converge at O′ — implying that an image is formed there. Hence,

the ratio of the apparent depth to the actual depth is

Depthapp
Depthact

=
AO′

AO
=
nf
ni
. (1.5)

If the final medium is air and the initial medium is water, nf = 1 and ni ≈ 4
3

and

AO′

AO
=

3

4
.

Hence, the perceived height of the bodies of people who are submerged in

the pool is 3
4 of their actual height.

Medium with a Varying Index of Refraction

In certain problems, such as the case of air with a temperature gradient, the

refractive index varies with position. In such problems, it is more illuminating

4Note that even though the transmitted rays are diverging, they are usually captured
and focused by the lenses in our eyes.
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to express Snell’s law as

ni sin θi = nf sin θf .

Then, for any general n and θ, which are functions of position,

n sin θ = c (1.6)

for a single light ray, where c is a constant. Consider the following variations

of such problems.

Problem: Consider a light ray that emanates from the origin at a certain

angle θ0 with respect to the y-axis. If the index of refraction of the medium

of propagation obeys

n(y) =
√

1 + ky,

determine the trajectory of the light ray, y(x).

Let the angle that the instantaneous slope of the light ray at coordi-

nates (x, y) makes with the y-axis be θ(x, y). Then, consider an interface at

coordinates y + dy in Fig. 1.8.

Figure 1.8: Infinitesimally thin slab

By Snell’s law,

n(y) sin θ(x, y) = n(y + dy) sin θ(x+ dx, y + dy).

In other words,

n sin θ = c

for some constant c. The value of c is determined by the initial condition

n(0) = 1 and sin θ = sin θ0 at the origin. Hence, c = sin θ0.

n sin θ = sin θ0.
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Furthermore, sin θ = dx√
(dy)2+(dx)2

= dx√
( dy
dx

)2+1dx
= 1√

( dy
dx

)2+1
. Hence,

√
1 + ky · 1√(

dy
dx

)2
+ 1

= sin θ0

dy

dx
=

√
ky

sin2 θ0
− cot2 θ0

ˆ y

0

1√
ky

sin2 θ0
− cot2 θ0

dy =

ˆ x

0
dx

2 sin2 θ0
k

(√
ky

sin2 θ0
− cot2 θ0 − cot2 θ0

)
= x.

Simplifying this equation,

y =
k

4 sin2 θ0

(
x+

2cos2 θ0
k

)2

+
cos2 θ0
k

.

Therefore, the trajectory of the light ray is a parabola.

Another type of question pertains to the determination of the refrac-

tive index of a medium as a function of position, when provided with the

trajectory of a light ray. Consider the reverse of the problem above.

Problem: Given that the trajectory of a light ray, beginning at the origin,

is y = kx2 in the region x ≥ 0 where k > 0, determine the refractive index

as a function of the y-coordinate n(y). It is known that the refractive index

is strictly a function of y only.

Well, we can use the fact that

n(y) sin θ(x, y) = c,

where c is a constant and θ(x, y) is the instantaneous angle that the slope

of the trajectory makes with the y-axis at coordinates (x, y). Furthermore,

since k > 0, sin θ > 0 as the ray obviously travels in the positive x- and

y-directions.

sin θ =
dx√

(dy)2 + (dx)2
=

1√(
dy
dx

)2
+ 1

=
1√

4k2x2 + 1
=

1√
4ky + 1

.

Thus,

n =
c

sin θ
= c
√

1 + 4ky
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where c is a constant. The physical meaning of c is n(0), which refers to the

refractive index of the medium at y = 0 as sin θ = 1 at the origin.

1.4 Total Internal Reflection

Observe that when a light ray, traveling in an optically denser medium,

impinges on the interface with an optically less dense medium, Snell’s law

would require the sine of the refracted angle to be larger than 1 if the angle

of incidence is above a certain critical angle, θc. Specifically,

sin θc =
nf
ni
.

Note that the right-hand side has a value smaller than one, as the light ray

attempts to travel from a denser to less dense medium. If the light impinges

on the interface at the critical angle, the refracted angle is π2 (i.e. the refracted

ray is parallel to the interface). If the angle of incidence θi is larger than θc,

the light ray will undergo a phenomenon known as total internal reflection

and be entirely reflected in the original medium with an angle of reflection

equal to the angle of incidence, so that

θi = θr.

1.5 Fermat’s Principle

Fermat’s principle unifies the various laws above. The original principle

states that given endpoints A and B, the actual path taken by the light ray

to travel from A to B is one that results in the minimum time elapsed. The

modern principle now states that the actual path between A and B is such

that the time taken by the light to travel takes on a stationary value with

respect to all possible small variations. More precisely, any possible variation

of the actual path, with fixed end points, will not lead to first order changes

in the time elapsed. Referring to Fig. 1.9, given fixed endpoints A and B,

we “wiggle” a line connecting A and B until a stationary value for the time

traveled by the ray is reached.5

Most of the time, the optical path length (OPL) is considered instead

of the time taken by the light ray to travel. As light travels at a speed c
n

in a medium with an index of refraction n, the time taken for the light to

5This is similar to extremizing the action (which is analogous to OPL) in Lagrangian
mechanics. In fact, one can exploit the fact that the “Hamiltonian” is conserved in the
context of OPL to derive the previous laws. See Problem 15 of this chapter.
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Figure 1.9: “Wiggling” a path between fixed endpoints A and B

travel a distance s in this medium is n times that required for it to travel the

same distance in vacuum. Hence, if we define the infinitesimal OPL to be the

refractive index multiplied by an infinitesimal length along the path taken

by the ray and the OPL to be the integral of these infinitesimal segments

from A to B,

d(OPL) = nds

OPL =

ˆ B

A
nds, (1.7)

and the path which adopts a stationary value for the OPL corresponds to a

path of stationary time elapsed. Note that the refractive index, in general,

may be a function of position in the above expression.

Next, Fermat’s principle underscores the reversibility of light rays. If a

light ray takes path P from A to B, it will travel along the same path, except

in the opposite direction, when originating at B and ending at A.

Now, we can show that Fermat’s principle implies all the laws that we

have discussed so far. Firstly, it is evident from applying the triangle inequal-

ity that the path taken by a light ray from A to B in a homogeneous medium

is a straight line connecting A to B, as it is the path with minimum OPL.

Next, Fermat’s principle engenders the law of reflection. Considering a

horizontal plane mirror in a medium with a uniform refractive index n, we

wish to analyze the path taken by a light ray that emanates from A, impinges

the mirror and returns to B in Fig. 1.10. Let O be the point of intersection

of the incident light ray and the mirror. Its location is variable and our

objective is to determine the point O such that the OPL traversed by the

light ray between A and B is extremized.

Since we have shown that the paths of light rays are straight lines in

homogeneous media, the segments AO and OB must be straight. The total

optical path length is correspondingly

OPL = n(AO +OB).

We wish to determine an appropriate point O such that this expression takes

on a stationary value. Consider the geometrical point B′ corresponding to
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Figure 1.10: Reflecting off a mirror

the reflection of B about the mirror. Then,

OB′ = OB

=⇒ OPL = n(AO +OB′).

It is evident from the triangle inequality (applied to �AOB′) that if A, O

and B′ are collinear, the OPL will be a minimum. Hence, the actual path

taken by the light ray is such that AOB′ is a straight line — implying that

θi = θr.

Furthermore, the condition for collinearity requires A, the normal N and B

to lie in the same plane. Hence, the law of reflection is a direct corollary of

Fermat’s principle.

Lastly, we shall show that Snell’s law is also consistent with Fermat’s

principle.

Figure 1.11: Refraction at an interface between different media

Referring to Fig. 1.11, consider two endpoints A and B in two different

media with uniform refractive indices ni and nf , respectively. Let the point

of intersection between the incident light ray and the horizontal interface

be O. Consider the plane containing points A, B and O. Let A and B be
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separated by horizontal and vertical distances l and h, respectively. Let the

horizontal and vertical distances between A and O be x and y, respectively.

We wish to find an appropriate point O that produces a stationary OPL —

note that y is fixed but x can vary. The OPL is

OPL = ni
√
x2 + y2 + nf

√
(l − x)2 + (h− y)2.

The derivative of the OPL with respect to x must be zero:

d(OPL)

dx
=

nix√
x2 + y2

− nf (l − x)√
(l − x)2 + (h− y)2

= 0.

Notice that this can be rewritten in terms of the angles θi and θf as

ni sin θi = nf sin θf ,

which is Snell’s law. When θi is larger than the critical angle θc, no value

of θf can result in a stationary OPL. Therefore, light does not cross the

interface and is instead reflected. All-in-all, we have established that Fermat’s

principle implies the law of reflection and Snell’s law.

Now, if there are multiple paths with the same endpoints A and B that

have the same stationary OPL, all of such paths are valid paths that are

physically taken by a light ray. Conversely, if we require a light ray to take

multiple paths from endpointsA to B, all of these paths must have stationary

values of OPL. In practice, these OPL’s are usually taken to be identical.

This has important consequences in focusing apparatus which redirects var-

ious light rays to a single point.

Figure 1.12: An elliptical room

An instructive example would be the elliptical room whose walls are

perfectly reflective, depicted in Fig. 1.12. By the property of an ellipse, all

paths that originate from a focus, travel to the wall and finally back to the

other focus have the same length. Therefore, by Fermat’s principle, all light

rays that emanate from one focus will converge at the other focus. If one still

has doubts about the applicability of Fermat’s principle, one can attempt to

verify the following geometrical property of an ellipse: if a line is connected

from a focus to a point on the surface and back to the other focus, the
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angle of incidence is equal to the angle of reflection (i.e. the law of reflection

holds). Proving this would show the validity of Fermat’s principle in this

set-up. Conversely, if you accept the equivalence of the law of reflection and

Fermat’s principle, the above application of Fermat’s principle means that if

you strike a billiard ball at a focus of an elliptical table, the ball will always

fall into a hole at the other focus (assuming that its collisions are elastic)!

1.6 Optical Apparatus

1.6.1 Focusing Mirrors

Suppose that we wish to focus a beam of parallel light rays in a plane such

that they coincide at a certain point, by utilising a mirror. What should the

shape of the mirror be?

Before we proceed, let us introduce a few definitions. The optical or

principal axis is the axis of symmetry of a mirror or lens. In the case of

Fig. 1.13, it is the x-axis. The point of intersection of the optical axis and the

optical apparatus is known as the vertex, which is point O in this case. The

focal point is defined as the point on the optical axis where incident light

rays, parallel to the principal axis, coincide. The focal length is defined

as the distance between the vertex and the focal point. If we construct our

mirror wisely, rays parallel to the principal axis should converge at the focal

point of the mirror.

Figure 1.13: A concave focusing mirror
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Consider front A which joins the tips of a bundle of incident light rays,

parallel to the principal axis, at this juncture. Now, track the light ray that

is along the optical axis. It reflects from O and travels to the focal point F .

Since the parallel rays can be assumed to be emitted from a point source

infinitely far away, the optical path length traversed by all rays from front

A, to the mirror and back to the focal point, must be equal in order for

all of the parallel rays to converge at F by Fermat’s principle (the rays all

emanate from a single point at infinity and are focused at F ). From this fact,

the shape of the mirror can be determined.

If the rays were not reflected, they would travel to front B, which is

described by the equation x = f where f is the focal length OF . Consider a

ray incident at y-coordinate y. Let the point P at which it impinges on the

mirror have coordinates (x, y), with O as the origin. Now, if the ray were

not reflected, it would have traveled to point Q, of coordinates (f, y). For

the OPL of all rays to be equal, FP = PQ for all possible P ’s. For those

familiar with conic sections, you might recognize that this is the definition

of a parabola — F is the focus and front B is the directrix. We can easily

prove this.

FP = PQ√
(x+ f)2 + y2 = f − x

x2 + 2fx+ f2 + y2 = x2 − 2fx+ f2

y2 = −4fx. (1.8)

Hence, the shape of the mirror is a parabola described by the equation above.

Given an arbitrary parabola of the form x = ay2 + by + c, its equation can

be rewritten as (
y +

b

2a

)2

=
1

a

(
x− c+

b2

4a

)
.

The focal length can be expressed in terms of the equation of the parabola

by comparing the coefficients in front of x, and we obtain

|f | =
∣∣∣∣ 14a
∣∣∣∣.

The focal length of a concave mirror is defined to be positive as parallel rays

converge in front of the mirror.

fcave =

∣∣∣∣ 14a
∣∣∣∣. (1.9)

This is the reason behind the paraboloid shape of satellite dishes!
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The example previously depicted a concave mirror whose focal point is in

front of itself. However, let us consider the situation where light rays come

from the right of the previous mirror (so that the mirror is now convex with

respect to the light rays).

Figure 1.14: A convex focusing mirror

Referring to Fig. 1.14, if we extend any of the incident rays and corre-

sponding reflected rays to the region behind the mirror, we will find that the

extensions again intersect at the focal point in the previous section, F . This

is due to the extended portions of the rays obeying the law of reflection, as

the angles are preserved. Hence, the result from the previous example can

be applied directly. It can then be seen that a convex mirror “fictitiously

focuses” parallel rays to the focal point behind the mirror (though it causes

the rays to diverge in reality). The relationship between the focal length of

a convex mirror to its parabolic equation is identical to the previous case of

a concave mirror. However, the focal length of a convex mirror is defined to

be negative and

fvex = −
∣∣∣∣ 14a

∣∣∣∣. (1.10)

A Spherical Approximation

In reality, a spherical mirror is much easier to manufacture with precision

as one simply has to repeatedly grind two objects together. Hence, we shall

generally be analyzing spherical apparatus in this chapter. Consider an arc

of the circle described by the equation

(x+R)2 + y2 = R2.
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Figure 1.15 shows the overlay of this circle on a parabola that suitably

approximates it near the origin O.

Figure 1.15: A circle superposed onto a parabola

Note that if we zoom into the region near O, the parabola and circle

look roughly identical. Hence, parallel rays in the immediate vicinity of the

principal axis, which is known as the paraxial region, will still converge

at the same focal point after being reflected by the spherical surface. The

paraxial region corresponds to points of small y-coordinates and hence, small

x-coordinates in this case. Expanding the equation of the circle,

x2 + 2xR+R2 + y2 = R2.

The negligible x2 term is discarded as x is already small, thus

y2 = −2Rx

which is the equation that describes the approximating parabola.

Comparing this with Eq. (1.8), it is evident that

|f | = R

2

for a spherical mirror. The sign of f , again, depends on whether the mirror

is convex or concave.

The Mirror Formula

Now that we have determined the focal points of a parabolic and spherical

mirror in terms of their geometrical properties, the location of an image of

an object with non-negligible height shall be determined. Note that only rays
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in the paraxial region will be considered — implying that the height of the

object should be small relative to the curvature of the mirror. The reason

behind this, as we shall soon discover, is that only the rays in the paraxial

region converge to form an image.

In Fig. 1.16, let the object be BC. To identify the location of the image

via ray tracing, we first draw Ray 1 which emanates from the top of the

object B, travels parallel to the principal axis and is reflected towards the

focal point. Ray 2 connects the tip of the object to the focal point and is

reflected by the mirror in a direction parallel to the principal axis.6 The

former is due to the property of the focal point and the latter is due to the

reversibility of light rays. Let the object and image distances be

u = OC,

v = OD,

respectively. Both u and v are positive when the object and image are in

front of the mirror. Let the object and image heights be

h1 = BC,

h2 = DE.

Figure 1.16: Image due to a mirror

Observe that

�BFC ∼ �GFH

=⇒ h1
h2

=
u− f

f −OH
.

6As an alternative, one can also draw a ray from B to the vertex O as the law of reflection
is easily applicable.
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OH is negligible as compared to f in the paraxial region, therefore

h1
h2

=
u− f

f
.

Similarly,

�AFH ∼ �EFD
h1
h2

=
HF

FD
=

f

v − f

u− f

f
=

f

v − f

(u− f)(v − f) = f2.

This is the Newtonian form of the mirror equation which can be expressed as

xoxi = f2, (1.11)

where xo and xi are the distances of the object and image from the focal

point. However, the more common form of the mirror equation is obtained

from the fact that

uv = (u+ v)f

1

u
+

1

v
=

1

f
. (1.12)

Note that u and v are positive if the object and image are located in front

of the mirror respectively. u is always positive for real objects by definition

(however, the above equations are also valid for u < 0 where the incoming

light rays seemingly converge at a point behind the mirror7). Next, note that

a positive v implies a real image in the case of a mirror while the converse

implies a virtual image as it is formed behind the mirror (where light rays

do not physically converge). f is positive for a concave mirror and negative

for a convex mirror. The magnification m, which is the ratio of the height of

the image to that of the object, is given by

m = −h2
h1

= − 1
u−f
f

= − 1

u
(
1
u + 1

v

)− 1

m = −v
u
, (1.13)

7This can be proven by abusing the reversibility of light rays and considering the case
where the rays emanate from the back of the mirror at object distance v, that is obtained
from substituting the negative value of u into the mirror equation (take note that a convex
mirror then becomes concave and vice versa).
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where a negative sign has been added to indicate the orientation of the

image (upright or inverted). If the magnification is negative, the image will

be inverted and vice-versa. The expression for magnification also implies

that a ray8 emitted from B to O will converge at E too as the ratio of sides

implies that �BOC ∼ �EOD.

The next technicality pertains to why an object in the form of a straight

line is “mapped” to another straight line DE. Notice that we could have cho-

sen any point on the object as point B and the above derivation still follows.

The x-coordinate of the imaged point is independent on the y-coordinate of

the original point on the object. It then follows from the fact that the object

is a continuous line that the image must also be a continuous line with a

certain x-coordinate, namely line DE.

Lastly, to be completely rigorous, we can prove that all rays, emitted from

B that hits a parabolic mirror with equation y2 = 4fx at a y-coordinate such

that third order and above terms in y are negligible, will converge at E (we

have only shown so far that 3 out of myriad rays do so — namely, rays 1, 2

and the ray emitted from B to O). In the following proof, we assume that h1
u

and h2
v are small as the object must be in the paraxial region and that terms

in x2 are negligible as they are of order four in y. If we wish to show that all

light rays from B in the paraxial region converge at E, we just have to show

that the optical path length traversed by a light ray from B to any point on

the mirror and back to E is the same, at least to second order in y. Consider

a light ray that hits O. The OPLO in this case is

OPLO =
√
h21 + u2 +

√
h22 + v2

= u

√
1 +

(
h1
u

)2

+ v

√
1 +

(
h2
v

)2

≈ u+
h21
2u

+ v +
h22
2v
.

Suppose that a light ray from B hits the mirror at (x, y) and is reflected

towards E. The optical path length OPL in this case is

OPL =
√

(h1 − y)2 + (u− x)2 +
√
(h2 + y)2 + (v − x)2.

Expanding,

OPL = u

√
h21 − 2h1y + y2 + u2 − 2ux+ x2

u2

+ v

√
h22 + 2h2y + y2 + v2 − 2vx+ x2

v2
.

8See Footnote 6.
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Discarding the x2

u2
and x2

v2
terms and using the binomial expansion (1+n)

1
2 ≈

1 + 1
2n,

OPL ≈ u+
h21 − 2h1y + y2 − 2ux

2u
+ v +

h22 + 2h2y + y2 − 2vx

2v
.

Now, consider the difference between OPL and OPLO.

OPL−OPLO = −
(
h1
u

− h2
v

)
y +

y2

2

(
1

u
+

1

v

)
− 2x.

The expression in the first bracket is zero as h2
h1

= v
u . The second term

in brackets is 1
f . Lastly, the shape of the mirror provides the relationship

y2 = 4fx. Therefore,

OPL−OPLO =
4fx

2
· 1
f
− 2x = 0.

We have hence proven that all light rays that originate from B and impinge

on a parabolic mirror in the vicinity of the optical axis will converge at E.

Problem: By using Eqs. (1.12) and (1.13), what can be deduced about

the type (real or virtual), orientation (upright or inverted) and relative size

(magnified or diminished) of the image of a real object produced by a convex

mirror?

A convex mirror has a negative value of f . Since u > 0 for real objects and

1

v
=

1

f
− 1

u

=⇒ |v| < |u|,
and v < 0. Then,

0 < −v
u
= m < 1.

The image is virtual (v < 0), upright (m > 0) and diminished (|m| < 1).

1.6.2 Lenses

A Spherical Refracting Surface

Referring to Fig. 1.17, light rays travel from a point P on the optical axis from

medium 1 of refractive index n1 to medium 2 of refractive index n2 across

a convex spherical interface of radius R. C is the center of the sphere. We

claim that all light rays emanating from P and impinging at small angles
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of incidence on the interface (paraxial region) will be focused to another

point P ′ on the optical axis in medium 2.

Figure 1.17: Convex spherical refracting surface

Consider a light ray that emanates from P , impinges on the interface

with an angle of incidence i and is transmitted with a refracted angle r.

As the exterior angle of a triangle is equal to the sum of the two opposite

interior angles,

i = α+ γ,

r = γ − β.

By Snell’s law,

n1 sin i = n2 sin r.

As i and r are small,

n1i = n2r,

n1(α+ γ) = n2(γ − β).

Using the small angle approximation tan x ≈ x when x is small,

n1

(
QR

PR
+
QR

RC

)
= n2

(
QR

RC
− QR

RP ′

)
.

In the paraxial region, OR is negligible as compared to the other lengths.

Dividing the above by QR,

n1
u

+
n2
v

=
n2 − n1
R

.

u is the object distance, u = PO ≈ PR, and is positive if the object lies

in front of the interface while v = OP ′ ≈ RP ′ is the image distance and is

positive if the image lies behind the interface. Recall that R is the radius of

curvature and is by definition, R = OC ≈ RC.
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It can be seen that the point on the optical axis that a light ray emitted

from P in the paraxial region crosses (determined by v) is independent of the

angle of incidence. Hence, paraxial light rays from P are focused at P ′. By
letting the object distance tend to infinity, the light rays from P become a

parallel bundle. Then, the value of v in this case, by definition, is the second

or image focal length, fi. The reason behind this distinction between focal

lengths will be elaborated in a moment.

n2
fi

=
n2 − n1
R

fi =
n2

n2 − n1
R.

By letting the image distance v tend to infinity, the value of u becomes the

first or object focal length, fo (i.e. parallel rays emerging from the right

will converge to a point in medium 1, at distance fo away from the vertex O).

n1
fo

=
n2 − n1
R

fo =
n1

n2 − n1
R.

The focal lengths of a convex spherical refractive surface have hence been

determined. For a concave spherical interface, we can leverage the reversibil-

ity of light rays and swap all the corresponding quantities (index 1 with 2

and u with v) to obtain

n1
u

+
n2
v

=
n1 − n2
R

.

The corresponding object and image focal lengths are

fi =
n2

n1 − n2
R,

fo =
n1

n1 − n2
R.

The above relationships for convex and concave surfaces can be combined

into general equations

n1
u

+
n2
v

=
n2 − n1
R

, (1.14)

fi =
n2

n2 − n1
R, (1.15)

fo =
n1

n2 − n1
R, (1.16)
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where R is positive for a convex interface and negative otherwise. Lastly,

although not explicitly shown, one can prove that Eq. (1.14) holds for

“virtual objects” (light rays in medium 1 that appear to converge at a

point in medium 2 before refraction) with negative values of u by exploit-

ing the reversibility of light rays and considering rays that emanate from

an object distance v — obtained from substituting the negative value of u

into Eq. (1.14) — on the other side of the interface (note that you have to

account for the fact that a convex interface becomes concave and vice-versa,

and the fact that the refractive indices are swapped).

Spherical Lenses

A simple spherical lens consists of two refracting surfaces enclosing a medium

with a refractive index nl that is usually larger than that of the media that

it is immersed in, nm and nf . Let us first consider a thin converging lens,

which is also known as a bi-convex lens, in Fig. 1.18.

Figure 1.18: Converging lens

Purely for the sake of illustration, we assume that the image P ′ of P
due to the first surface S1 is virtual (i.e. in front of the surface). This occurs

when the object distance PO1 = u is smaller than fo of S1. However, the

following arguments still hold if the image were real, as Eq. (1.14) holds for

negative object distances as well. With respect to the first convex interface

S1,

nm
u

+
nl
v′

=
nl − nm
R1

,

where v′ = O1P ′ is the image distance with respect to the first spherical

surface S1. With respect to the second concave interface S2, the light rays

effectively emanate from P ′ from a medium of refractive index nl (note that

even though P ′ is in medium with a refractive index nm, the light rays

physically travel in the lens) to a medium with refractive index nf . The
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object distance of P ′ with respect to S2 is −v′ +O1O2. The second term is

negligible in the case of a thin lens. Furthermore, since S2 is concave with

respect to the light rays, the radius of curvature R2 is a negative value. Let

v be the distance between the image P ′′ of P ′ and the vertex O2. Then,

nl
−v′ +

nf
v

=
nf − nl
R2

.

Adding the two previous equations,

nm
u

+
nf
v

=
nl − nm
R1

+
nf − nl
R2

. (1.17)

Usually, nf = nm. Then,

nm
u

+
nm
v

= (nl − nm)

(
1

R1
− 1

R2

)
.

Dividing both sides by nm and letting n = nl
nm

be the relative refractive

index of the lens to the medium it is immersed in,

1

u
+

1

v
= (n− 1)

(
1

R1
− 1

R2

)
. (1.18)

This is known as the Lensmaker’s formula. In the situation above, R1 > 0

and R2 < 0. By letting u and v tend to infinity individually, we discover that

the object and image focal lengths are identical. Hence, we drop the prefixes

altogether and define the focal length of a spherical lens to be

1

f
= (n− 1)

(
1

R1
− 1

R2

)
. (1.19)

Then,

1

u
+

1

v
=

1

f
,

which is the Gaussian Lens formula which also has the following Newto-

nian form.

xoxi = f2

where xo = u− f and xi = v− f . Contrary to the mirror equation, v is now

positive if the image lies behind the lens. Note that in the case where a lens

is bi-concave (i.e. diverging lens), R1 < 0 and R2 > 0 which causes f < 0

(n is always assumed to be greater than 1). For lenses which have a planar

surface, their focal lengths can be determined by letting the appropriate

radius of curvature tend to infinity (the sign does not matter).
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Non-Point Objects

In the previous section, the Gaussian Lens formula was derived for a point

source. If the object was not a point source, the above derivation still holds

if the object is not large, as we can zoom out of the entire set-up such

that it appears as a point source since the above derivation was only valid

in the paraxial region in the first place. In this section, the method of ray

tracing, used in determining the location of an image, will be illustrated.

By convention, a converging lens is depicted by a line with two arrowheads

pointing away from the line while a diverging lens is represented by a line

with two arrowheads pointing towards the line.

Figure 1.19: Ray diagrams for converging and diverging lenses

Referring to Fig. 1.19, to locate the image of a point produced by a lens,

any two of the following three rays from the particular point can be drawn:

• Ray 1: Draw a ray emanating from the point and parallel to the opti-

cal axis. After it passes through the lens, either the refracted ray or its

extension will pass through the image focal point.

• Ray 2: Draw a ray through the optical center of the lens, O. The ray will

pass through the lens without any change in direction.

• Ray 3: Draw a ray emanating from the point such that it or its extension

passes through the object focal point. After refracting from the lens, it

will travel in a direction parallel to the optical axis.

Note that in the case of a diverging lens, the image and object focal points

are in front and behind the lens respectively as it has a negative focal length.

Perhaps the only point here that requires further justification is why ray 2

passes through the lens undisturbed. In the vicinity of O, the lens appears like

a rectangular block with parallel faces. It is well-known that the transmitted

light ray across a rectangular block is parallel to the incident ray, except
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with a lateral displacement proportional to the thickness of the block (see

later section). Since the lens is thin in this case, there will be no deviation

of ray 2.

Lastly, the Gaussian Lens formula and the formula for magnification can

be easily proven using similar triangles to be

1

u
+

1

v
=

1

f
, (1.20)

where u is the image distance PO, v is the object distance OP ′ and f is the

focal length of the lens. Note that v is positive if the image is behind the

lens and that f is positive and negative for converging and diverging lenses

respectively. The image is real if it lies behind the lens (v > 0) and is virtual

otherwise (v < 0). Its equivalent Newtonian form is

xoxi = f2, (1.21)

with xo = u− f and xi = v − f . Finally, the magnification of the image is

m = −v
u
. (1.22)

If the magnification is positive, the image is upright and vice-versa. Hence,

a real image is inverted while a virtual image is upright.

Problem: Incident rays that are parallel to the principal axis meet at the

image focal point of a lens. Where do incident parallel rays that subtend an

angle with the principal axis intersect?

The focal plane is defined as the vertical plane that passes through the

focal point. The parallel rays must intersect at one point along the image

focal plane as they can be taken to be rays emitted from a point on an object

at infinity (the image must be located at the focal plane by the Gaussian

Lens formula). To determine the exact point of intersection, simply draw

one ray that passes through the optical center of the lens, undeviated — the

point of concern is its intersection with the focal plane.

Combination of Lenses

When there are multiple lenses in a system, Eq. (1.20) can be consecutively

applied. The image due to a preceding lens will become the object of the fol-

lowing one. Furthermore, the total magnification of the system is the product

of the individual magnifications due to each lens. For a two-lenses system

with focal lengths f1 and f2, let u be the distance between the object and

the first lens, v′ be the image distance of the first lens and v be the image

distance of the second lens. We will first analyze a special case where the
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two thin lenses are placed together such that the distance between them is

negligible. Then, the object distance from the first image to the second lens

is −v′. Applying Eq. (1.20),

1

u
+

1

v′
=

1

f1

1

−v′ +
1

v
=

1

f2
.

Adding the two equations together,

1

u
+

1

v
=

1

f1
+

1

f2
.

It can be seen that this set-up is equivalent to a thin lens with an effective

focal length f given by

1

f
=

1

f1
+

1

f2

at the same position. If there are n lenses placed together, the formula above

can be repeatedly applied to obtain

1

f
=

n∑
i=1

1

fi
. (1.23)

The magnification can then be easily determined by dividing v by u. In the

case where the two thin lenses are separated by an appreciable distance d,

consider a two-lenses system with focal lengths f1 and f2 and let u1 be the

distance between the object and the first lens and v1 be the image distance of

the first lens — corresponding definitions hold for the second lens (u2 and v2).

Then,

1

u1
+

1

v1
=

1

f1
(1.24)

v1 =
u1f1
u1 − f1

. (1.25)

Since u2 = d− v1, we can apply the Gaussian Lens formula again to obtain

1

d− v1
+

1

v2
=

1

f2
(1.26)

v2 =
(d− v1)f2
d− v1 − f2

=
f2d(u1 − f1)− f1f2u1

(d− f2)(u1 − f1)− u1f1
. (1.27)
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The magnification is

M = − v1
u1

· − v2
u2

=
f1

u1 − f1
· f2
d− v1 − f2

=
f1f2

(u1 − f1)(d − f2)− u1f1
.

Even though the above equations completely describe the behavior of a two-

lenses system, they are rather cumbersome. Therefore, let us try to adopt a

new perspective. Firstly, similar definitions for the object (first) and image

(second) focal points hold here for the combined system. The image focal

point is the point of intersection between the principal axis and a ray parallel

to the principal axis that is incident on the first lens. Conversely, the object

focal point is the point of intersection between the principal axis and a

ray parallel to the principal axis that is incident on the second lens, in the

reverse direction. The latter can be determined as the value of u1 after setting

v2 → ∞, which causes u2 → f2 and v1 → d − f2. From Eq. (1.24), the first

object distance under these conditions is

u1 = FFL =
f1(d− f2)

d− (f1 + f2)
, (1.28)

which is known as the front-focal length (FFL). It describes the distance

between the object focal point and the first lens. In a similar vein, the cognate

back-focal length (BFL) is defined as the distance between the image focal

point and the second lens and can be determined as the value of v2 after

setting u1 → ∞ and v1 → f1 in Eq. (1.26). The BFL, which is the second

image distance in this case, is

v2 = BFL =
f2(d− f1)

d− (f1 + f2)
. (1.29)

Now, let us move on to a new formulation. Our goal is to determine an

equivalent thin lens system that encapsulates all properties of the image (size

and location) produced by this two-lenses system (the intermediate process

is not of concern). Let the effective focal length of such a lens be f — this

can be determined by imposing the condition that the magnification should

be coherent between the set-ups. Defining the object and image distances

with respect to this equivalent lens as u and v, the magnification is

M = −v
u
=
v1v2
u1u2

.

Now as u1 tends to infinity, u→ u1 as well — enabling us to cancel them in

the denominators before they explode. Furthermore, v1 → f1, u2 → d − f1
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and v2 → BFL. The image distance of the equivalent lens is then

v = −v1v2
u2

= −f1 · f2(d− f1)

d− f1 − f2
· 1

d− f1
=

f1f2
f1 + f2 − d

,

which must be the image focal length of the equivalent lens. Similarly, one can

show that the object focal length also takes the form of the above expression

by considering v2 → ∞, v → v2, u2 → f2, v1 → d − f2 and u1 → FFL.

Therefore, the common focal length of the equivalent lens is

f =
f1f2

f1 + f2 − d
. (1.30)

By choosing this particular value of f , we ensure that the magnifications

are consistent. We just have to tweak the position of the equivalent lens

to locate the image at the correct position. In doing so, we discover that

a simple model involving an effective thin lens does not work! The point a

distance f away from the object focal point does not correspond to the point

a distance f away from the image focal point (i.e. FFL+d+BFL �= 2f) —

this should be the case if the system can really be represented by a single

thin lens.

To amend this loophole, observe that the intersection of a ray parallel

to the principal axis and incident on the first lens and a ray emanating

from the second lens in a direction parallel to the principal axis determines

the location of the image. We simply have to guarantee that the ends of

these rays are correct, while maintaining the magnification. In light of this,

instead of having a thin lens where an incident ray on one side immediately

emerges from the other side, we can stretch the lens out such that an incident

ray on one side is transported to the same vertical position on the other

side before proceeding with the same deflection as the case of a thin lens

with focal length f . That is, because a system comprising an equivalent

lens is lacking some horizontal distance, we artificially supplement it (this

does not affect the magnification as it is a mere translation). Referring to

Fig. 1.20, the planes forming these two “teleporters” are known as the front

and rear principal planes and must be separated by the “missing” distance

FFL+ d+BFL− 2f (if this is negative, the rear principal plane is actually

located in front of the front principal plane). The front principal plane is

a distance f on the right of the object focal point while the rear principal

plane is a distance f on the left of the image focal point so as to properly

concentrate parallel rays at the corresponding focal points and to correctly

construct the image from these rays (see first point of this paragraph).
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Figure 1.20: Conversion of lenses into principal planes

Since we have effectively only extended the region inside an equiva-

lent lens of focal length f , the Gaussian Lens formula is valid, as long as

u is taken to be the distance between the object and the front principal

plane while v denotes the distance between the image and the rear principal

plane.

1

u
+

1

v
=

1

f
. (1.31)

The Newtonian form holds as well:

xoxi = f2 (1.32)

where xo and xi are still the distances between the object and the object focal

point F1 and between the image and the image focal point F2. Evidently,

the Newtonian form is more useful in this case as it makes no mention of

the two principal planes. We can determine the focal points via the BFL

and FFL and then apply the above equation to determine the location of

the image! Finally, the magnification can be determined through

M = −v
u
= − f

xo
= −xi

f
. (1.33)

To locate the image with the aid of the principal planes in a ray diagram,

there are three useful rays to be drawn, as depicted in Fig. 1.21. A ray paral-

lel to the principal axis and incident on the front principal plane will emerge

from the rear principal plane and travel towards the image focal point. Simi-

larly, an incident ray passing through the object focal point will emerge from

the rear principal plane as a ray parallel to the principal axis. Finally, the

two points of intersection between the principal planes and the principal axis

are termed as the nodal points, labeled as N1 and N2 in Fig. 12.1. A ray

crossing the first nodal point will emerge as a parallel ray from the second



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch01 page 37

Geometrical Optics 37

nodal point (they are effectively the extended version of the optical center).

Figure 1.21: Ray tracing with principal planes

1.6.3 Applications of Lenses

Human Eye

The human eye consists of a crystalline lens which focuses light rays at a

certain distance to a region at the back of the eye, known as the retina, where

light-sensitive cells (rod and cones) are located. Since there can only be a

single object distance for which rays are focused at the retina for a single

focal length, the eye accommodates to different object distances by varying

the focal length of the pliable lens. In the relaxed state, the lens is pretty flat

and thus has a large focal length. The eye is then accommodated to objects

at infinity — this is why you are advised to gaze at distant trees after

staring at the computer for too long. To acclimatize to shorter distances,

the ciliary muscles which tug onto the ends of the lens compress the lens

and increase the radii of curvature such that the focal length decreases. This

process of accommodation can only occur up to a minimum focal length.

The object location at which emitted rays can be focused at this juncture is

known as the near point whose typical distance is 25cm from the lens for a

normal eye.

There are several vision-related conditions which afflict many. The first

defect is myopia or near-sightedness. Distant light rays are focused in front

of the retina and thus cast a blurred image on the retina. Myopia is usually

caused by the radii of curvature of the lens being too large (possibly because

it cannot return to its original state) and the eyeball being too long. To

occlude the premature convergence of distant rays, a diverging lens can be

introduced in front of the eye to correctly focus distant light rays through

the spectacle-lens system. Another prevalent defect is hyperopia or long-

sightedness. The radii of curvature of the lens are too small, possibly due to

the deterioration of the ciliary muscles, or the eyeball is too short such that
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nearby rays are focused behind the retina. A converging lens can then be

introduced to alleviate this symptom.

Refracting Telescope

A telescope is used for astronomical observations — its main purposes are

to focus distant rays and to magnify images. A refracting telescope consists

of a converging objective lens and an eyepiece which may be converging

or diverging. A Keplerian telescope adopts a converging eyepiece while a

Galilean telescope uses a diverging eyepiece.

Figure 1.22: Keplerian telescope

In Fig. 1.22, rays which emanate from a distant object (effectively at

infinity) are first focused to a point on the image focal plane of the objec-

tive lens. The image of the objective then functions as the object of the

eyepiece. To minimize eye strain, the distance between the objective and

the eyepiece is adjusted such that the final image is at infinity (as the

relaxed eye is accommodated to infinity). If the focal lengths of the objective

and eyepiece are fo and fe respectively, the separation L between the two

lenses is

L = fo + fe (1.34)

so that the image of the objective falls at the object focal length of the

eyepiece. Now, a more enlightening measure of image amplification in the

case of telescopes, which form images at infinity, is the angular magnification

which is defined as the ratio between the angle θf that rays from the final

image due to an optical apparatus subtend at eye and the angle θi that rays

from the object, unperturbed by any apparatus, subtend at the unaided eye.

Since the object is at infinity, θi can be taken to be the angle of parallel

rays impinging on the objective instead of those incident on the eye, as the
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distance between the eye and the objective is relatively negligible. For small

angles,9

θi ≈ tan θi =
h

fo
,

θf ≈ tan θf =
h

fe
,

where h is the height of the image of the objective along the focal plane.

Thus, the angular magnification M is

M = −θf
θi

= −fo
fe
, (1.35)

where a negative sign has been added to account for the orientation of the

final image, which is located in front of the eyepiece. It can be deduced from

the above that the focal length of the objective is usually chosen to be much

larger than that of the eyepiece to amplify the angular width of the image.

Problem: What are the possible advantages of the eyepiece being a diverg-

ing lens instead of a converging lens?

Firstly, the image is upright which facilitates observations. However, this

factor is less significant when observing astronomical objects such as stars

which appear as little dots in the sky. Secondly, since fe < 0, the length L

of the telescope is reduced such that it is less bulky.

Problem: The objective and eyepiece of a telescope are each bi-convex, with

both surfaces having identical radii of curvature (the radii of curvature of

the objective and eyepiece may differ though). Suppose that the separation

between them is L0 under normal conditions. If the interior of the telescope

is now filled with water, determine the new separation L that the telescope

needs to be adjusted to. The refractive indices of the lenses and water are 3
2

and 4
3 respectively.

The original focal lengths of the objective and eyepiece are fo = Ro and

fe = Re respectively by substituting n = 3
2 in Eq. (1.19), where Ro and Re

are the respective radii of curvature. Substituting nm = 1, nl =
3
2 , nf = 4

3 ,

R1 = −R2 = Ro in Eq. (1.17) and letting u tend to infinity, the image focal

9This is a reasonable assumption as you usually align your eye with the optical center
of the eyepiece and do not want to roll your eyes around much.
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length of the objective in water is

f ′o = 2Ro.

Similarly, substituting nm = 4
3 , nl =

3
2 , nf = 1, R1 = −R2 = Re in Eq. (1.17)

and letting v tend to infinity, the object focal length of the eyepiece in water is

f ′e = 2Re.

Thus, the new separation is

L = f ′o + f ′e = 2(Ro +Re) = 2L0.

1.6.4 Other Refracting Apparatus

Rectangular Slab

When an incident light ray travels through a rectangular slab of refractive

index np immersed in surrounding homogeneous medium of refractive index

nm, the transmitted ray is parallel to the incident light ray with a slight

shift, as shown in Fig. 1.23.

Figure 1.23: Shift due to a rectangular slab

Point R is the intersection of the second interface with the extension of

the incident ray. The parallel shift is

QR = |d(tan θi − tan θr)|,
where θi and θr are related by Snell’s law. Now, for rays emanating from

a single point and impinging with small angles of incidence, the effect of a

rectangular block is to form an image of the point at the same coordinates

along the surface of the block but at a different perpendicular distance from

the slab. Suppose that the object distance, which is the length of a normal

line originating from the first surface and crossing the object, is initially u.
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Due to the parallel deviation QR, the extension of the transmitted ray inter-

sects the same normal line at a perpendicular distance u − QR cot θi from

the first surface. The deviation in distance for small angles is

δ = QR cot θi = d

(
1− tan θr

tan θi

)
= d

(
1− nm

np

)
(1.36)

by Snell’s law, as tan θ ≈ sin θ for small θ. This expression is independent

of θi for small angles — implying that an image is formed there. Therefore,

a rectangular slab effectively reduces the object distance by δ = d(1 − nm
np

),

while maintaining the orientation, for rays incident at small angles.

Triangular Prism

Consider a cross section of a triangular prism with an apex angle α. In

general, a ray can undergo both refraction and total internal reflection due

to a prism. However, let us consider the case of the former only as it is more

interesting.

Figure 1.24: Triangular prism

Referring to Fig. 1.24, given an incident ray with an angle of incidence

i, we wish to determine the deviation δ which is the angle subtended by the

incident and the transmitted ray. We assume that no total internal reflection

occurs. δ is simply the sum of the deviations at each interface, i.e.

δ = i− β + r − γ.

Since α = β + γ,

δ = i+ r − α. (1.37)

We are left with determining r in terms of i. Assuming that the surrounding

medium is air and that the refractive index of the prism is n,

sin r = n sin γ = n sin (α− β) = n(sinα cos β − cosα sin β).
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Since n sinβ = sin i and cos β =
√

1− sin2 i
n2 ,

sin r = n

(
sinα

√
1− sin2 i

n2
− cosα

1

n
sin i

)
= sinα

√
n2 − sin2 i− cosα sin i

r = sin−1
(
sinα

√
n2 − sin2 i− cosα sin i

)
,

δ = i+ sin−1
(
sinα

√
n2 − sin2 i− cosα sin i

)
− α. (1.38)

Equation (1.38) doesn’t look very neat, but an interesting problem is to

determine the condition on i for the minimal deviation. At this particular

value of i, dδdi = 0. Hence, by implicitly differentiating Eq. (1.37),

dr

di
= −1.

By implicitly differentiating the expression obtained from Snell’s law at each

interface,

cos idi = n cosβdβ,

cos rdr = n cos γdγ.

Dividing the latter by the former and applying dr
di = −1,

−cos r

cos i
=

cos γ

cosβ

dγ

dβ
.

Differentiating α = β + γ with respect to β,

dγ

dβ
= −1

=⇒ cos r

cos i
=

cos γ

cos β
,

cos2 i

cos2 β
=

cos2 r

cos2 γ
.

Applying Snell’s law once again (n sin β = sin i and n sin γ = sin r),

n2 − n2 sin2 i

n2 − sin2 i
=
n2 − n2 sin2 r

n2 − sin2 r
.
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Dividing both sides by n2 and cross multiplying,

n2 − sin2 r − n2 sin2 i+ sin2 i sin2 r = n2 − sin2 i− n2 sin2 r + sin2 i sin2 r

(n2 − 1) sin2 i = (n2 − 1) sin2 r

=⇒ i = r.

From Snell’s law and β + γ = α, this also implies that

β = γ =
α

2
.

This makes sense in the limiting case of a prism that takes the form of

an isosceles triangle, as it implies that the path that this light ray takes is

symmetrical — it travels parallel to the base of the prism inside the prism.

Moving on, applying Snell’s law,

sin i = n sin β = n sin
α

2

i = sin−1
(
n sin

α

2

)
. (1.39)

The minimum deviation is

δmin = i+ r − α = 2i− α

δmin = 2 sin−1
(
n sin

α

2

)
− α. (1.40)

Conversely, the refractive index of the prism n can be expressed as

n =
sin δmin+α

2

sin α
2

. (1.41)

This equation is used in practice to determine n of an arbitrary material.

The material is first shaped into a prism, after which δmin and α are exper-

imentally measured. Then, n can be determined.
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Problems

Reflection, Refraction and Total Internal Reflection

1. Optical Fiber*

We model an optical fiber as a cylinder with refractive index nf surrounded

by a cladding of refractive index nc < nf . The two circular ends of the

optical fiber are not covered with cladding. Let θ be the angle of incidence

of a light ray impinging at one of the ends of the fibre. Assuming that the

surrounding medium has refractive index 1, determine the range of θ for

which the light ray is trapped in the optical fiber (i.e. cannot be transmitted

to the cladding).

2. Field of View*

You are at an aquarium with a porthole of radius R, negligible thickness and

refractive index n = 3
2 embedded in an opaque ground. To observe aquatic

lifeforms swimming at the bottom of the aquarium (in water with refractive

index 4
3) which is a distance h below the ground, you peek through the

porthole. What is the maximum area of the bottom that you can see?

3. Skewed Mirrors*

Consider two semi-infinite plane mirrors with their finite ends placed

together. The angle subtended by the two mirrors is α. An emitter is placed

at point P in this two-dimensional plane. Furthermore, a receiver in the form

of a circular arc of radius r is sandwiched between the two mirrors. Find the

largest angle θ at which a light ray is emitted from P will eventually reach

the receiver. How many reflections does this take?
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4. Rebound*

Consider two semi-infinite plane mirrors with their finite ends placed

together. The angle subtended by the two mirrors is 2α < π
2 . An emitter

is placed at point P in this two-dimensional plane. If the perpendicular to

the mirror from P is of length a, determine the angle θ at which a ray can

be emitted such that it returns to P after a reflection from the top mirror,

followed by a reflection by the bottom mirror. What is the distance travelled

by the light ray between its emission from and return to point P?

5. 8 Reflections*

Consider two semi-infinite plane mirrors with their finite ends placed

together. The angle subtended by the two mirrors is α. A ray, that is parallel

to mirror 2, is incident on mirror 1 and after 8 reflections, it emerges parallel

to mirror 1 (after a final reflection from mirror 2). Determine α.

6. Glass Ball*

Half of the surface of a glass sphere with refractive index n is coated with

silver. Determine the angle of deflection of a ray that impinges on the non-

coated surface of the equator, at an angle of incidence i, after it exits the

sphere. Under what conditions can a bundle of parallel light rays — incident

on the non-coated half of the equator at small angles of incidence — emerge

from the ball, still in a parallel bundle?

7. Curving Ray**

A medium with a refractive index n(y) fills the region y > 0. A light ray

traveling along the x-direction in air strikes the medium at a right incidence

angle at the origin and begins to propagate within the medium. Determine
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n(y) if (a) the ray moves in a circular arc of radius R and (b) the ray moves in

a complete sinusoidal curve of amplitude 1m and “wavelength” λ. Given that

the largest refractive index is that of diamond with n = 2.5 approximately,

determine the maximum angular size of the circular arc and the minimum

“wavelength” of the sinusoidal curve.

8. Ray in Circle**

A light ray starts from the interior of the circumference of a solid cir-

cle of radius R at π
4 radians with respect to the radial direction, radially

inwards. Set the origin to be at the center of the circle. If the refractive

index of the circle varies according to the relationship n(r) =
√

R2

r2
+ 1,

determine the magnitude of the angular displacement of the light ray when

it reaches the center of the circle.

9. Mirage Effect**

On a sweltering afternoon, a man walks along a road. The refractive index

of air above the road obeys n(y) = n0(1 + αy) where α is a constant and y

is the height above the road. Firstly, explain qualitatively the reason behind

this variation in refractive index and whether α is positive or negative. As a

result of this refractive index gradient, the man cannot see the road beyond a

certain distance L. If his eyes are a height h above the ground, determine L.

Finding the trajectory of a light ray emanating from the road would be a

bonus.

10. Trapping Light**

An isotropic point source is placed at the center of a cube of edge length l

and refractive index n > 1. If the medium surrounding the cube is vacuum

and sin−1 1
n ≤ π

4 radians, determine the minimum surface area on the cube

that needs to be covered with opaque paint so that no light escapes the cube.

Next, for all n > 1, determine the minimum painted area if the paint is now

perfectly reflective.

11. Emitter in Triangular Room***

A room takes the shape of a right-angled isosceles triangle with base

length 8a. The walls of the room are covered with mirrors and a square

receiver of side length a is placed at the right-angled corner of the room.

A light ray is emitted at an infinitesimal distance away from the mid-point
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of the hypotenuse, at an angle θ with respect to the horizontal, such that

cot θ = 8. Determine the distance covered by the light ray before it impinges

on the receiver.

Fermat’s Principle

12. Optimal Path*

Suppose that you wish to cross from one side of a lake (point P) to the other

side (point Q). The lake takes the form of a rectangular strip of width d and

the vertical distance y between P and Q is much smaller than the horizontal

distance L between them. If you move at speed v1 on shore and v2 < v1 in

water, draw the path that takes the least time from points P to Q. You do

not need to calculate the time taken along this path.

13. Lensmaker’s Formula**

Derive the Lensmaker’s formula (Eq. (1.19)) for a thin lens with refractive

index n and comprising radii of curvature R1 and R2 by considering two

rays and applying Fermat’s principle. This approach is more direct than

that presented in this chapter.

14. Light in the Atmosphere**

The atmosphere of the Earth can be modeled as an ideal gas with a uniform

temperature T and average mass M , wrapped around a uniform spheri-

cal Earth of radius r0. The gravitational field strength in the region of the

atmosphere can be taken to be that at the surface of the Earth, g. If the

refractive index of a point in the atmosphere is proportional to the density
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at that point, n = αρ, determine the height h above the surface of the Earth

at which a light ray travels in a circle around the Earth. Hint: The ideal gas

law is pV = nRT where p, V , n and T are the pressure, volume, moles and

temperature of the gas respectively while R is the ideal gas constant.

15. Lagrangian Derivation**

A more rigorous derivation of the laws of reflection and refraction from

Fermat’s principle uses the Lagrangian formulation. The OPL between two

points y(x1) and y(x2) visited by a light ray is given by

OPL =

ˆ x2

x1

n(x, y)
√

1 + y′2dx

where n(x, y) is the refractive index of the medium and y(x) is the trajec-

tory of the ray between the two fixed endpoints. Use your knowledge of the

Lagrangian method to prove the following. Firstly, the path taken by a ray in

a homogeneous medium is a straight line. Next, prove the laws of reflection

and refraction (hint: under a suitable choice of coordinates, the Hamiltonian

is conserved).

Optical Apparatus

16. Minimum Distance*

Determine the minimum distance between a real object and its image

produced by a thin converging lens in terms of its focal length f . Ignore

the unrealistic case where the object distance is 0.

17. Blurring*

A wire with negligible thickness is placed a distance u in front of a converging

lens of unknown focal length and diameter D. When a screen is placed at

a distance L behind the lens, a smudge with an appreciable thickness d is

formed. Determine the possible focal lengths of the lens.

18. Congealing Lenses*

The flat surfaces of two thin plano-convex lenses of common radius R but

different refractive indices n1 and n2 are glued together to form a thin

converging lens. Determine the focal length of this lens.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch01 page 49

Geometrical Optics 49

19. Mirror with Liquid*

A small ball is placed along the axis of a concave mirror of focal length f

at an object distance u. The concave surface of the mirror is filled with a

thin layer of liquid of refractive index n. If the image of the ball is formed

by the rays impinging on the mirror near its vertex, determine the location

of the image.

20. Quarter Prism**

A glass prism in the shape of a quarter-cylinder rests on a horizontal table. A

uniform, horizontal bundle of light impinges perpendicularly on its vertical

plane surface as shown in the figure below. Note that all rays are above the

surface of the table (though some are infinitesimally close to it). If the radius

of the cylinder is R = 5cm and the refractive index of glass is n = 1.5, where

on the table beyond the cylinder, will a patch of light be found? A range

should be given.

21. Unique Configuration**

Two converging lenses of focal lengths f1 and f2 are situated between an

object and a screen, with the lens with focal length f1 closer to the object. If

we require an image to be produced on a screen which is at a distance l away

from the object with l < 2f1 + 4f2, show that for a given object distance to

the first lens, u > f1, there is only one possible position for the second lens.

22. Moving Image**

An ant lies along the principal axis of a concave mirror of focal length f .

If the ant begins moving, under what conditions will the velocities of the

ant and its image be identical? Supposing that the ant travels such that

the object distance u increases at the rate du
dt = α

v−f where v is the object

distance and α is a constant, starting from an initial object distance u0,

determine v(t).
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23. Prism**

A right-angled isosceles prism of side length 9cm and refractive index 1.5 is

placed 6cm away from a converging lens of focal length f1 = 20cm, followed

by a diverging lens of focal length f2 = −10cm a distance 7cm behind it.

A 1cm stick is located 8cm above the prism, with one end aligned with the

mid-point of the hypotenuse as shown in the figure below. Describe the final

image of the stick and its magnification.
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Solutions

1. Optical Fiber*

Let α be the refracted angle at the air-fiber interface. Let β be the angle

of incidence of the light ray propagating in the fiber and impinging on the

fiber-cladding interface. Then, for the light ray to not escape the fiber,

sin β >
nc
nf

for total internal reflection to occur. Since β = π
2 − α,

=⇒ cosα >
nc
nf
.

By Snell’s law, sinα = sin θ
nf

. Then,√
1− sin2 θ

n2f
>
nc
nf

| sin θ| <
√
n2f − n2c

− sin−1
√
n2f − n2c < θ < sin−1

√
n2f − n2c .

2. Field of View*

Consider a ray emanating from the bottom of the aquarium that impinges

the porthole at an angle of incidence i. The ray is refracted as it enters the

porthole. In order to leave the porthole and enter your eyes, the angle of

refraction r must be less than the critical angle. That is,

sin r ≤ 1

n
=

2

3
.

By Snell’s law,

4

3
sin i =

3

2
sin r

sin i =
9

8
sin r ≤ 3

4
.

Therefore, the additional radius on the bottom of the aquarium, beyond R,

that the observer can see is

ΔR = h tan imax = h
3
4√

1− 9
16

=
3√
7
h.
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Therefore, the field of view is

A = π(R +ΔR)2 = π

(
R+

3√
7
h

)2

.

3. Skewed Mirrors*

Combining all the mirror images of the receiver, we obtain a full circle, as

depicted in Fig. 1.25.

Figure 1.25: Mirror image

The light ray with the largest θ is tangent to the circle. Hence,

θ = sin−1 r

l
.

Let the x-axis be along the symmetrical axis, pointing towards the right.

Let the origin be at O. If the ray did not undergo any reflection, the angular

region on the circle that a ray can reach is [α2 ,−α
2 ]. After 1 reflection with

either mirror, the region becomes [3α2 ,−3α
2 ]. Extending this logic to n reflec-

tions, the region increases to [ (2n+1)α
2 ,− (2n+1)α

2 ]. We wish to determine the

smallest n for which (
n+

1

2

)
α ≥ ∠POQ = cos−1 r

l

nmin =

⌈
cos−1 r

l

α
− 1

2

⌉
.

4. Rebound*

In Fig. 1.26, let P ′ be the mirror image of P after a reflection from the bottom

mirror and P ′′ be the mirror image of P ′ after a subsequent reflection from

the top mirror.
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Figure 1.26: Mirror images

Then, the angle θ we wish to find is ∠OPP ′′. Notice that

OP = OP ′ = OP ′′ =
a

sinα
.

Hence, �OPP ′′ is isosceles and

θ =
π − 4α

2
=
π

2
− 2α.

The distance traversed is PP ′′ which can be computed via cosine rule:

PP ′′2 =
2a2

sin2 α
(1− cos 4α) =

4a2 sin2 2α

sin2 α
= 16a2 cos2 α

=⇒ PP ′′ = 4a cos θ.

5. 8 Reflections*

Due to the symmetrical nature of the set-up and the reversibility of light

rays, the path of the light ray between the 4th reflection (with mirror 2) and

the 5th reflection (with mirror 1) must be symmetrical about the symmetry

axis of the two mirrors as well. That is, the path must be perpendicular to

the symmetry axis. Then, the angle subtended by the ray after emerging

from the 4th reflection (with mirror 2) and mirror 2 must be π
2 − α

2 (we are

referring to the angle closer to the point of connection of the mirrors).

To visualize this angle at the 4th reflection, consider the mirror images

in Fig. 1.27.

Image 2′ is produced by reflecting mirror 2 about mirror 1; image 1′ is
produced by reflecting mirror 1 about image 2′ while image 2′′ is produced

by reflecting image 2′ about image 1′. The angle after emerging from the
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Figure 1.27: Images of mirrors

4th reflection is labeled above. We have

4α +
(π
2
+
α

2

)
= π =⇒ α =

π

9
.

6. Glass Ball*

The path of a light ray inside the ball is shown in Fig. 1.28.

Figure 1.28: Light ray in ball

The angle of deflection is the sum of the individual deviations at each

interface.

δ = i− r + (π − 2r) + i− r = π + 2i− 4r.

For small angles of incidence and thus refraction, Snell’s law yields

r =
i

n
.

The angle of deflection is then

δ = π +

(
2− 4

n

)
i.
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In order for the rays emerging from the ball to remain parallel, δ must be

independent of i. This requires

n = 2.

Incidentally, the angle of deflection in this case is π radians — implying that

the reflected bundle is anti-parallel to the incident one (with some losses due

to imperfect reflection).

7. Curving Ray**

Referring to Fig. 1.8, define θ(x, y) as the angle of incidence that the ray

makes with the horizontal interface at y-coordinate y. By Snell’s law,

n(y) sin θ = n(0) sin θ0.

Since the medium at the origin is air with refractive index n = 1 and the

angle of incidence θ0 there is π
2 ,

n(y) sin θ = 1

n(y) = csc θ.

We have

sin θ =
1√(

dy
dx

)2
+ 1

=⇒ csc θ =

√(
dy

dx

)2

+ 1.

If the path of the ray is a circular arc of radiusR, its trajectory is described by

x2 + (y −R)2 = R2

2x+ 2(y −R)
dy

dx
= 0

(
dy

dx

)2

=
x2

(y −R)2
=
R2 − (y −R)2

(y −R)2

n(y) =

√(
dy

dx

)2

+ 1 =

√
R2

(y −R)2

n(y) =
R

R− y
.

Note that we only consider y < R as the ray cannot pass by y = R at which

the refractive index must tend to infinity. For the sinusoidal arc,

y = 1− cos(kx)
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where k = 2π
λ . Note that we do not consider other sinusoidal functions, such

as y = sin(kx), because y′ at y = 0 must be zero. From this trajectory,

dy

dx
= k sin(kx) =

2π

λ

√
1− (1− y)2

n(y) =

√(
dy

dx

)2

+ 1 =

√
1 +

4π2

λ2
(2y − y2).

Given that nmax = 2.5, since n(y) for a circular arc is increasing with y ≥ 0,

2.5 =
R

R− ymax

ymax = R

(
1− 1

2.5

)
= 0.6R.

The maximum angular size of the circular arc is thus

θmax = cos−1

(
R− ymax

R

)
= cos−1 0.4 = 66.4◦ (3sf).

Finally, for the sinusoidal trajectory, the maximum refractive index corre-

sponds to y = 1 (because 2y − y2 = 1 − (1 − y)2 ≥ 1 where the equality

occurs when y = 1). Equating this with nmax = 2.5,

2.5 =

√
1 +

4π2

λ2min

λmin =
2π√
5.25

= 2.74m (3sf).

8. Ray In Circle**

In Fig. 1.29, let the origin O be located at the center of the circle and define

the coordinates of the light ray as (r, θ). Since the refractive index is strictly

a function of r, the interfaces are concentric circles. Let φ be the angle of

incidence of the light ray as it propagates through this circle.

Figure 1.29: Ray traveling radially inwards from r to r + dr
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Consider the propagation of the light ray from radial coordinate r to

r + dr where dr < 0. Evidently, the angular change dθ is given by

rdθ = −dr tan φ.

By Snell’s law, n sinφ is constant.

n sinφ = n(R) sin
π

4
=

√
2 · 1√

2
= 1

sinφ =
1

n

tan φ =
1
n√

1− 1
n2

=
1√

n2 − 1

for 0 ≤ φ < π
2 . Substituting the expression for n(r),

tanφ =
r

R
.

Substituting this into the first equation,

ˆ θ0+Δθ

θ0

dθ = −
ˆ 0

R

tanφ

r
dr = −

ˆ 0

R

1

R
dr

|Δθ| = 1 radian.

9. Mirage Effect**

The road absorbs heat from the Sun and transfers heat to its surroundings —

establishing a temperature gradient that decreases with height. Since the

density of air is inversely proportional to temperature (pressure is approxi-

mately fixed), the density of air increases with height, causing the refractive

index to increase with height (α > 0) as more air molecules are packed into

a unit volume such that they scatter light to a greater extent. To analyze

this set-up, define the origin at a point on the road and orient the positive

x-axis towards the observer. Let the trajectory of a light ray emanating from

the origin with an initial angle of incidence θ0 be y(x). Define θ(x, y) as the

angle of incidence at coordinates (x, y). Referring to Fig. 1.8, Snell’s law

states that

n0(1 + αy) sin θ = n0 sin θ0.
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Since sin θ = 1√
( dy
dx

)2−1
,

1 + αy√(
dy
dx

)2
− 1

= sin θ0

=⇒ dy

dx
=

√
(1 + αy)2

sin2 θ0
− 1.

Separating variables,

ˆ y

0

1√
(1 + αy)2 − sin2 θ0

dy =

ˆ x

0

1

sin θ0
dx.

Let us have an intermission at this point. Usually, the integral on the left

hand side is solved by introducing a hyperbolic cosine substitution. However,

as one may not yet be familiar with this approach, we will introduce another

method that circumvents this need after this — the drawback is that though

we will be able to find L, we will be unable to determine y(x). Proceeding

with the first method, let 1 + αy = sin θ0 coshφ for a new variable φ such

that αdy = sin θ0 sinhφdφ.

ˆ cosh−1 1+αy
sin θ0

cosh−1 1
sin θ0

1√
sin2 θ0

(
cosh2 φ− 1

) · sin θ0α
sinhφdφ =

x

sin θ0
.

Applying the identity cosh2 φ− 1 = sinh2 φ,

ˆ cosh−1 1+αy
sin θ0

cosh−1 1
sin θ0

1

α
dφ =

x

sin θ0

cosh−1 1 + αy

sin θ0
− cosh−1 1

sin θ0
=

αx

sin θ0
.

Following from this, the trajectory is

y =
sin θ0
α

cosh

(
αx

sin θ0
+ cosh−1 1

sin θ0

)
− 1

α
.

When y = h, the value of x is

x =
sin θ0
α

(
cosh−1 1 + αh

sin θ0
− cosh−1 1

sin θ0

)
.
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The maximum value of x, which corresponds to L, occurs when sin θ0 = 1.

L =
1

α
cosh−1(1 + αh) =

1

α
ln
(
1 + αh+

√
(1 + αh)2 − 1

)
in terms of ln. To preclude the need for the cosh substitution, we begin from

(1 + αy) sin θ = sin θ0.

Taking the total derivative of the above with respect to x,

α sin θy′ + (1 + αy) cos θθ′ = 0

cot θθ′ = − α

1 + αy
y′.

Since cot θ = y′,

θ′ = − α

1 + αy
.

As 1 + αy = sin θ0
sin θ from Snell’s law,

ˆ θh

θ0

− csc θdθ =

ˆ x

0

α

sin θ0
dx

where θh is the angle of incidence at y = h that can be obtained from Snell’s

law, as θh = sin−1 sin θ0
1+αh . Then, the x-coordinate of the ray at height h is

x =
sin θ0
α

ln
csc θh + cot θh
csc θ0 + cot θ0

.

The maximum x, which corresponds to L, occurs when sin θ0 = 1. Substi-

tuting the expression for θh,

L =
1

α
ln (csc θh + cot θh)

=
1

α
ln
(
1 + αh+

√
(1 + αh)2 − 1

)
.

10. Trapping Light**

a) Opaque Paint

By symmetrical arguments, the six faces of the cubes should be painted

with the exact same pattern. The next astute observation is the incident

angle that a light ray makes with a particular face, is always preserved after

arbitrary reflections from all faces. To show this, define the x, y and z axes

to be perpendicular to the faces of the cube. Then, the direction vector of
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a ray can be expressed as (vx, vy, vz) such that v2x + v2y + v2z = c2

n2 where c
n

is the phase velocity of light in the cube. Now, label the faces in the xy, yz

and xz-planes z, x and y respectively. The angle of incidence that this ray

makes with the plane k, θk, is related by

cos θk =

⎛
⎝vxvy
vz

⎞
⎠ · nk = |vk|,

where nk is a three-dimensional vector with one or negative one as the kth

component (same sign as vk) and zero as the other components. A reflec-

tion can only negate one component of the velocity which does not change

the angles of incidence with all planes. Hence, the angle of incidence a light

ray makes with a plane remains constant (unless it is absorbed). For a light

ray to escape from a face, the angle of incidence must be smaller than the

critical angle.

sin θk <
1

n

=⇒ cos θk >

√
n2 − 1

n

|vk| >
√
n2 − 1

n
.

Here comes the crucial observation. We claim that if a light ray is able to

escape the cube at all, it is able to escape from the first face it impinges on.

This is because, if the light ray is able to escape the cube, |vk| >
√
n2−1
n

for some k. Furthermore, the first face it impinges on corresponds to the

component of the direction vector with the greatest magnitude. Thus, it

must be able to escape from the first face it impinges on. Moreover, the

contrapositive of this statement implies that if a light ray cannot escape

from the first face it impinges on (i.e. it undergoes total internal reflection),

it cannot escape from the cube at all. Following from this, we conclude that

we simply need to paint an area on each face to absorb the incoming rays

which can directly escape. Since sin−1 1
n ≤ π

4 radians, this corresponds to a

circle of radius

r =
l

2
tan θc =

l

2
√
n2 − 1

where θc = sin−1 1
n is the critical angle. Hence, the total area that needs to

be painted is 6πr2 = 3l
2(n2−1)

.
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b) Reflective Paint

For all light to be trapped inside the cube, its surfaces must be equivalent

to mirrors. Then, we can consider the mirror images of the cube which form

an infinite array of cubes. Consider the faces perpendicular to the x-axis

(perpendicular to an arbitrary surface) as shown in Fig. 1.30.

Figure 1.30: Mirror images of faces perpendicular to x-axis

The argument in the previous case implies that if a ray can escape from

one face, it can always escape from that face or the face opposite it after an

arbitrary number of reflections. Now consider a light cone with half-angle

θ−c as shown in the figure above. As light in this cone can always escape

from the two faces perpendicular to the x-axis, the intersection of this light

cone and these two surfaces and their mirror images must be coated with

paint to prevent light from escaping. As the light cone propagates, its base

area (a circle) expands and eventually covers the entire face. Therefore, these

two faces and thus all faces by symmetry must be completely covered with

paint — implying that the answer is 6l2.

11. Emitter in Triangular Room***

Drawing the complete mirror images of the receiver would generate the

tessellation in Fig. 1.31, where we have defined the origin at O.

We see that the nearest possible horizontal array of images that the light

ray can impinge on are those with centers at y = 0. Thus, let us see if it will

indeed hit the target. The regions spanned by these receivers are

(x ∈ [11a + 16ak, 13a + 16ak], y ∈ [−a, a] | k ∈ Z).

The horizontal distance required for the ray to reach height a is (4a − a)

cot θ = 24a. So the receiver corresponding to k = 1 is a likely candidate. At



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch01 page 62

62 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Figure 1.31: Mirror images

x = 27a, the y-coordinate of the light ray is

y = 4a− 27a

cot θ
=

5

8
a.

Since −a ≤ 5
8a ≤ a, we see that the light ray hits this receiver. The total

length traveled by the ray is then

27a

cos θ
= 27a ·

√
tan2 θ + 1 =

27
√
65

8
a.

12. Optimal Path*

The optimal path between P and Q (of least time) is that of light by Fermat’s

principle. Effectively, the relative “refractive index” between the lake and the

shore is v1
v2
. Therefore, a light ray would be refracted at both edges of the lake

and be deflected by a vertical distance d(tan i − tan r) downwards where i

and r are the angles of incidence and refraction respectively. This is because,

the lake is effectively a “glass block” of relative refractive index v1
v2
. For the

light ray to reach Q from P,

L tan i− d(tan i− tan r) = y.

Since y  L, i and r must be small too. Then, we can approximate tan i ≈ i

and tan r ≈ r. From Snell’s law, we also have

r =
v2
v1
i.
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Solving for i,

i =
y

L−
(
1− v2

v1

)
d
,

r =
v2y

v1L− (v1 − v2)d
.

The optimal path is depicted in Fig. 1.32.

Figure 1.32: Optimal path

13. Lensmaker’s Formula**

Figure 1.33 illustrates a close-up of the lens (R2 is negative for the right

surface). Assume that the tip has a vertical height h. h R1 and h −R2

for a thin lens.

Figure 1.33: Close-up of lens

Define the optical center O of the lens to be the point of intersection of

a vertical line cutting between the two surfaces of the lens and the principal

axis. Then, consider an object at point P along the principal axis. We define

the object distance u to be that between the object and O (we will take

the limit of this to infinity later). This definition differs from the one in the

section on lenses afore but we will adopt this for the sake of convenience here.

Suppose that the image of this object is formed at point P′ along the principal
axis (the image distance v is similarly that between the image and O).
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Now, consider an axial ray from P to P’ (i.e. straight line joining them)

and a ray from P passing by the tip of the lens before reaching P′. In order for

both light rays to reach P′ from P, their optical path length must be identical

by Fermat’s principle. To compute this, we first determine AO and OB. The

equation of a circle of radius R centered at x = R is

(x−R)2 + y2 = R2.

Therefore, at a particular y-coordinate, x satisfies

|R− x| =
√
R2 − y2.

For the tip of the first convex surface, R1 > x.

R1 − x = R1

√
1− h2

R2
1

≈ R1 − h2

2R1
.

Therefore,

AO = x ≈ h2

2R1
.

Similarly,

OB = − h2

2R2

as R2 is defined to be negative. Therefore, for the optical path lengths of the

two rays to be equal,√
u2 + h2 +

√
v2 + h2 = u+ v + (n− 1)

(
AO +OB

)
= u+ v +

h2(n− 1)

2

(
1

R1
− 1

R2

)
.

As u→ ∞, v tends to the image focal length f . Furthermore, we can perform

a Maclaurin expansion of the surds on the left-hand side to obtain

u+ f +
h2

2f
= u+ f +

h2(n− 1)

2

(
1

R1
− 1

R2

)
,

as u� h and f � h. Canceling the similar terms yields

1

f
= (n− 1)

(
1

R1
− 1

R2

)
.
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Finally, taking the limit v → ∞ and determining the value of u would show

that the object and image focal lengths are both f .

14. Light in the Atmosphere**

Define the origin to be at the center of the Earth. Consider the forces on an

infinitesimal gas element in spherical coordinates between radial coordinates

r and r+dr. It experiences pressure p(r) radially outwards, p(r+dr) = p+dp

radially inwards and its own weight radially inwards. For it to remain in

equilibrium,

−ρgdV = (p+ dp)dA− pdA

where dV and dA are the volume and area normal to the radial direction of

the infinitesimal element respectively. Hence,

dp = −ρgdr.
By the ideal gas law,

pV = nRT

p =
ρ

M
RT.

Since T is constant,

dp =
dρ

M
RT.

Substituting this into the other expression for dp,

−ρgdr = dρ

M
RT

ˆ ρ

ρ0

1

ρ
dρ =

ˆ r0+h

r0

−Mg

RT
dr

ρ = ρ0e
−Mg

RT
h

where ρ0 is the density at the surface of the Earth and h is the altitude above

the surface of the Earth. The OPL of a circle at this altitude is

OPL = n · 2π(r0 + h) = αρ0e
−Mg

RT
h · 2π(r0 + h),

d(OPL)

dh
= −Mgαρ0

RT
· 2π(r0 + h)e−

Mg
RT

h + 2παρ0e
−Mg

RT
h.
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This path must have a stationary OPL in order for the light ray to actually

travel along it. Then,

d(OPL)

dh
= 0 =⇒ RT

Mg
= r0 + h

h =
RT

Mg
− r0.

15. Lagrangian Derivation**

Recall that the action of a one-dimensional system (described by its

x-coordinate) between times t1 and t2 is defined as

S =

ˆ t2

t1

L(x, ẋ, t)dt

where L is the Lagrangian. To extremize S, we require

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

,

which is the Euler-Lagrange equation. In this case, S corresponds to the

OPL while the Lagrangian is

L(y, y′, x) = n(x, y)
√

1 + y′2,

where y and x have assumed the roles of x and t respectively. To extremize

the OPL between two endpoints, we require

d

dx

(
∂L
∂y′

)
=
∂L
∂y

.

For a homogeneous medium, n is constant such that

∂L
∂y

= 0

=⇒ ∂L
∂y′

= c

for some constant c. Since ∂L
∂y′ =

ny′√
1+y′2

, this implies that

y′ = C

for some constant C. The trajectory of the light ray is thus a straight line.

To prove the laws of reflection and refraction, we can orient our coordinate

system such that the refractive index is a function of y solely. In this process,
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we may have to bring the endpoints closer and closer together, but it does

not affect our analysis as we can deduce the long-term path of a ray from

its immediate response at each juncture. The Lagrangian then becomes

L = n(y)
√

1 + y′2.

For a Lagrangian that is independent of x, the Hamiltonian H is conserved.

H =
∂L
∂y′

y′ − L

ny′√
1 + y′2

· y′ − n
√
1 + y′2 = H

n√
1 + y′2

= −H.

To prove the law of reflection, suppose that the light ray now meets an

impermeable and perfectly non-absorptive interface. Since it cannot pene-

trate the interface, it must lie on the same side of the interface before and

after it impinges on the interface. Set our endpoints of concern at the loca-

tions of the ray directly before and after it impinges on the interface. Since

the refractive index is uniform in the thin layer above the interface (i.e. n at

these locations are identical), the above result implies that

|y′after| = |y′before|
=⇒ y′after = −y′before

where we reject the option y′after = y′before, as the ray cannot pass through

the interface and its path cannot be discontinuous — hence proving the law

of reflection. To prove the law of refraction, set our endpoints of concern

at the locations of the light ray immediately before and after it crosses the

relevant interface (which is perpendicular to the y-direction since n(y) is

solely a function of y). Observe that if we define θ as the angle subtended

by the ray and the normal to the interface,

1√
1 + y′2

=
1√

1 + cot2 θ
= sin θ,

so we have

n(y) sin θ = −H
for some constant H. This is simply Snell’s law!
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16. Minimum Distance*

1

u
+

1

v
=

1

f

v =
fu

u− f
.

The distance D we wish to minimize is

D = u+ v = u+ f +
f2

u− f

dD

du
= 1− f2

(u− f)2
= 0

=⇒ u = 2f.

To show that this is a minimum point,

d2D

du2
=

f2

2(u− f)3

d2D

du2

∣∣∣
u=2f

=
2

f
> 0.

Substituting u = 2f into D,

Dmin = 4f.

17. Blurring*

Let v be the image distance from the lens. There are two possible positions

of the screen that lead to a smudge of thickness d, as shown in Fig. 1.34.

Figure 1.34: Possible smudges indicated by dotted lines

In either case,

d

D
=

∣∣∣∣Lv − 1

∣∣∣∣
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by similar triangles, where v is the image distance. When L ≥ v,

1

v
=

d

DL
+

1

L
.

Otherwise if L < v,

1

v
=

1

L
− d

DL
.

Note that d
D < 1 if L < v so this is an entirely valid regime (in ensuring

that v is positive so that a real image can be formed). In both cases, one can

apply the Gaussian Lens formula to determine the focal length.

1

f
=

1

u
+

1

v
.

The two possible focal lengths are

f =
1

1
u + d

DL + 1
L

,

f =
1

1
u − d

DL + 1
L

.

18. Congealing Lenses*

The individual focal lengths of the two plano-convex lenses are given by the

Lensmaker’s formula as R
n1−1 and R

n2−1 respectively (one radius of curvature

is infinite). Since these two lenses are thin and are juxtaposed, the effective

focal length f obeys

1

f
=
n1 − 1

R
+
n2 − 1

R

by Eq. (1.23).

f =
R

n1 + n2 − 2
.

19. Mirror with Liquid*

The most direct method is to observe that the mirror with a liquid film

effectively has a focal length f
n . This can be seen by considering an incident

bundle of rays parallel and close to the mirror axis. They initially pass by

the liquid film undeviated but undergo refraction at the surface of the film

after being reflected by the mirror — causing them to converge at a distance
f
n from the vertex as the angle that they make with the mirror axis after
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reflection is increased by a factor of n as compared to the case where the

film was absent. Applying the mirror equation with f
n as the effective focal

length, the image distance is

v =
fu

nu− f
.

A more indirect way is to consider a ray impinging the surface of the liquid

film at a small angle of incidence i. The angle of refraction r is then given by

r =
i

n
.

This deflected ray intersects with the axis at distance nu from the vertex.

All of such rays with small i converge there. Therefore, the effective object

distance is nu. Applying the mirror equation,

1

nu
+

1

v′
=

1

f
.

Solving for v′,

v′ =
nfu

nu− f
.

Now, we have not accounted for the secondary refraction at the liquid film

of a ray after it reflects from the mirror. In this case, the angle is amplified

as the ray leaves the liquid into air. Therefore, the effective image distance

is decreased by a factor of 1
n . The real image is located at a distance

v =
v′

n
=

fu

nu− f

above the vertex.

20. Quarter Prism**

Referring to Fig. 1.35, a ray that impinges the curved surface of the prism

at an angular coordinate θ is deflected and hits the table at a distance x(θ)

from the vertical edge of the prism.

Figure 1.35: Path of a ray
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The angle of refraction r can be computed via Snell’s law as

r = sin−1(n sin θ),

assuming that θ is smaller than the critical angle θc. x can thus be computed

via simple geometry as

x(θ) = R sin θ cot(sin−1(n sin θ)− θ) +R cos θ.

To investigate the behavior of x(θ) with varying θ, firstly observe that cot x

and cos x are both strictly decreasing functions of x for 0 < x ≤ π
2 . Therefore,

if we can prove that sin−1(n sin θ) − θ is a strictly increasing function of θ

(for 0 < θ ≤ θc), we would have shown that x(θ) is a strictly decreasing

function of θ. To this end, consider the derivative of sin−1(n sin θ)− θ with

respect to θ.

d(sin−1(n sin θ)− θ)

dθ
=

1√
1− n2 sin2 θ

· n cos θ − 1 > 0

as
√

1− n2 sin2 θ <
√
n2 − n2 sin2 θ = n cos θ. Therefore, x(θ) is a strictly

decreasing function of θ. The minimum value of x occurs at the largest

possible of θ in the relevant regime, θc. This is because, rays that impinge the

curved surface at an angle of incidence above θc will undergo total internal

reflection and hit the table at a point within the prism (cases that are not

of interest).

xmin = R sin θc cot(sin
−1(n sin θc)− θc) +R cos θc.

Substituting θc = sin−1 1
n = sin−1 1

1.5 and R = 5cm,

x = 6.71cm (3sf).

The largest value of x occurs when θ → 0, and

xmax = lim
θ→0

R sin θ cot(sin−1(n sin θ)− θ) + lim
θ→0

R cos θ

= lim
θ→0

Rθ cot [(n− 1)θ] +R

= Rθ · 1

(n− 1)θ
+R

=
R

n− 1
+R

= 15cm.

This value is expected as the curved surface of the prism acts on the ray

that corresponds to θ = 0 like a plano-convex lens (since we are dealing
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with regions close to the right tip of the prism). Applying the Lensmaker’s

formula, the focal length of this lens obeys

1

f
=
n− 1

R
=⇒ f = 10cm.

Therefore, the ray which impinges the curved surface at θ = 0 is focused

by the right tip of the prism to the focal point that lies 10cm away from

the right tip (since the incident ray is parallel to the “principal axis”). This

amounts to a total distance of 10 + R = 15cm from the vertical edge of

the prism.

21. Unique Configuration**

Let the image distance to the first lens be v. Then,

1

f1
=

1

u
+

1

v

v =
f1u

u− f1
.

Let the object distance to the second lens be u′. Then, the image distance

to the second lens must be l − u − v − u′ = l − u − f1u
u−f1 − u′ for the final

image to be formed at the reference point. For the sake of convenience, define

k = l − u− f1u
u−f1 . Then,

1

f2
=

1

u′
+

1

k − u′

u′2 − ku′ + f2k = 0

u′ =
k ±

√
k2 − 4kf2
2

.

For there to be two unique solutions,

k2 − 4kf2 > 0

which implies that k > 4f2 or k < 0. However, notice that since the image

distance of the second lens must be positive for the image to be real,

k − u′ > 0

for both u′’s.

=⇒ k ∓
√
k2 − 4kf2
2

> 0
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which cannot be satisfied if k < 0. Hence k must be greater than 4f2 to

enable the possibility of two u′’s.

l − u− f1u

u− f1
> 4f2.

Multiplying the above by u− f1 and simplifying would yield

u2 + (4f2 − l)u+ f1l − 4f1f2 < 0.

The inequality above is satisfied when

α < u < β,

where α and β are the roots of the left-hand side (we assume that the

discriminant is positive. If this is not the case, we could have concluded that

no such u exists already). Furthermore, as a given condition in the question,

u must satisfy u > f1. This implies that β > f1 and

β =
l − 4f2 +

√
16f22 − 8f2l + l2 − 4f1l + 16f1f2

2
> f1√

16f22 − 8f2l + l2 − 4f1l + 16f1f2 > 2f1 + 4f2 − l.

Since 2f1 + 4f2 > l, squaring and simplifying would yield

4f21 < 0

which leads to a contradiction. Hence, there cannot be two values of u′ that
satisfy the above conditions.

22. Moving Image**

It is more convenient to consider the Newtonian form of the lens equation

which states that

xoxi = f2

where xo = u− f and xi = v − f . Then,

xo =
f2

xi
.

Differentiating the above with respect to time,

dxo
dt

= −f
2

x2i
· dxi
dt
.
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Since dxo
dt = du

dt and dxi
dt = dv

dt ,

du

dt
= −f

2

x2i
· dv
dt
.

When the velocities of the ant and its image are identical, du
dt = −dv

dt . Note

that the positive direction of v is opposite to that of u. At this juncture,

f2 = x2i

which implies that

xi = ±f,
xo = ±f.

That is, the velocities are equal only when u = v = 2f or u = v = 0.

Substituting du
dt =

α
v−f = α

xi
into the previous differential equation,

α

xi
= −f

2

x2i
· dv
dt

= −f
2

x2i
· dxi
dt

ˆ xi

x0i

1

xi
dxi = −

ˆ t

0

α

f2
dt

ln

∣∣∣∣ xix0i
∣∣∣∣ = − α

f2
t,

where x0i is the initial value of xi. Now, observe that xi and x
0
i must always

have the same sign as dxidt is proportional to −xi and thus causes xi to increase

(for negative xi) or decrease (for positive xi) until it attains the equilibrium

value 0. Thus, we can remove the absolute value brackets and conclude that

xi = x0i e
− α

f2
t
.

Substituting x0i =
f2

x00
= f2

u0−f and xi = v − f ,

v =
f2

u0 − f
e
− α

f2
t
+ f.

23. Prism**

Notice that some of the rays impinge on the hypotenuse at a greater angle

than the critical angle (e.g. a vertical ray). Therefore, the hypotenuse of the

prism acts as a mirror and we can consider the mirror image of the object

which is entirely located at 12.5cm left of the mid-point of the hypotenuse.
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Now, we have neglected the effect of refraction at the other sides of the

prism. To account for this, simply map the mirror images of those edges as

well and bend the rays of the mirror image of the object when they cross

these virtual edges. The object is then effectively located 8cm on the left of a

slab with refractive index 1.5 and thickness 9cm. Since passing through a slab

forms another image which is tantamount to reducing the object distance by

t
(
1− 1

n

)
where t is the thickness of the slab, the effective object distance to

the first lens is

8 + 9− 9

(
1− 1

3
2

)
+ 6 = 20cm

which coincides with the front focal point of the first lens. Therefore, the

image of the first lens is at infinity. The final image is then formed at

v = −10cm

from the second lens. The image is virtual and has a magnification

M = −−10

20
=

1

2
,

where the infinite image distance of the first lens and the infinite object

distance of the second lens nullify each other. This positive value implies

that the final image is aligned with the first object (obtained after refracting

the mirror image of the initial object through the glass slab). Therefore, the

final image points downwards. Note that we do not consider rays that are

not reflected by the prism (e.g. direct rays from the original object) as they

are not paraxial and thus do not converge.
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Chapter 2

Thermodynamics and Ideal Gases

In this chapter, we will be looking at thermodynamics — the kinetic theory

of heat — from both macroscopic and microscopic perspectives. The zeroth

and first law of thermodynamics will be introduced and applied to the specific

system of an ideal gas.

2.1 The Zeroth Law

It is common knowledge that if we put a hot object in thermal contact

with a cool object, the hot object becomes cooler while the cool object

becomes hotter to a certain extent. This is a quotidian phenomenon that

occurs until the transfer of “hotness” or “coolness” between the two objects

ceases. At this juncture, the two objects have attained thermal equilibrium.

Specifically, two objects are said to be in thermal equilibrium if they are in

thermal contact and there is no net exchange of heat between them. We will

hold off the definition of heat for now and just understand it as a form of

energy transfer. Finally, when thermal equilibrium is attained between two

objects, they should be similar in a certain respect — if two systems are in

thermal equilibrium, they are said to possess the same temperature.

The zeroth law of thermodynamics states that if objects A and B are

each at thermal equilibrium with a common object C, objects A and B

are at thermal equilibrium with each other. This intuitive concept has vast

consequences. Firstly, it standardizes the notion of temperature as the defi-

nition of temperature now implies that all objects of the same temperature

are in thermal equilibrium. Next, the zeroth law allows us to use object C to

determine whether objects A and B will be in thermal equilibrium without

physically putting them in thermal contact. This, combined with the fact

that object C may experience certain measurable and observable changes

77
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when placed in contact with objects A and B, such as a rise in the mer-

cury level due to expansion in a mercury thermometer or the change in the

pressure of a gas, allows us to quantify the temperature of an object. For

example, we can have two reference points, setting 0◦C for ice and 100◦C for

steam, and divide the interval into 100 equal segments to create the Celsius

temperature scale.

2.2 Common Quantities in Thermodynamics

2.2.1 State Variables

In thermodynamics, it is important to distinguish between state variables

and non-state variables. As its nomenclature implies, state variables — such

as pressure, volume and temperature — are functions of the configuration

of a system which can be specified by the positions and velocities of all

constituents in a system.

Non-state variables are not functions of the configuration of the system

and can thus have multiple values at a single state. Consider a car driving

from the origin in the xy-plane, stocked with a certain initial amount of

fuel. If we define the state of the car to be its position in the xy-plane, the

amount of fuel left in the car at a given state is not a state function as the

car can traverse different paths to reach the same final state — these paths

may consume different amounts of fuel. Most starkly, if the car drives back

to the origin, the amount of fuel left is not the same as before! Therefore, the

amount of fuel left in the car is definitely not a state variable as we cannot

determine its value solely by looking at the car’s position.

2.2.2 Internal Energy

The internal energy of a system is defined to be the sum of all microscopic

forms of energy — energy on the atomic and molecular scale. It is the sum

of all microscopic kinetic energy and microscopic potential energy. Crucially,

internal energy is uniquely defined for each state of a system and is a state

variable.

U =
∑

K.Emic +
∑

P.Emic. (2.1)

Microscopic kinetic energy results from the possible random motions of indi-

vidual constituents. For example, molecules may translate, rotate and even

vibrate about a common center. The latter two situations only occur in the

case of polyatomic molecules. It is important to differentiate microscopic and

macroscopic kinetic energies. The former is highly disordered and thus less
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useful than the latter, to a certain extent. A moving block has a macroscopic

kinetic energy associated with the motion of the entire object as a whole but

if we zoom into the scale of individual molecules, we may find them jiggling

about in random directions and thus can associate a microscopic kinetic

energy with that motion.

Microscopic potential energy results from the interactions between the

constituents of a system and between the constituents of a system and

external factors, on a molecular scale. Chemical bonds between atoms and

strong interactions in the nuclei are typical examples of internal interac-

tions. The creation of electric dipoles in atoms due to an external electric

field is an example of an interaction with an external entity. A special form

of internal interactions, associated with the phase of a system, results in

a form of energy known as latent energy. This will be explored in a later

chapter.

2.2.3 Heat and Work

Heat and work are both energies in transit and are not forms of energy. In the

case of closed systems where mass exchange cannot occur, heat and work are

the only possible forms of energy transfer. Similar to how the work performed

on a particle increases its macroscopic kinetic energy in mechanics, heat and

work are just methods of delivering or extracting energy. However, heat can

be differentiated from work by observing that its flow requires a temperature

gradient. Work, on the other hand, can be performed by a system on another

system of the same temperature. For example, two gases, that are separated

by a movable wall, may have attained the same temperature but not the

same pressure. Then, there is work performed by pushing the wall.

Heat and work done are not state variables as they are just methods

of delivering energy to or extracting energy from a system. For the same

change in the internal energy of a system which is a state variable, heat and

work done can make different contributions to this change, as long as their

sum is consistent. Moreover, their final products — namely the change in

internal energy of the relevant system — are indistinguishable, so there is

no way to deduce their individual contributions by observing the final state

of the system alone. This is analogous to how it is impossible to know what

your sneaky friend has spent your credit card on by simply analyzing the

total amount of money left in your bank account — you have to inspect the

bill at the end of the month which details every single purchase (the process

of purchasing). Therefore, heat and work done are, most importantly, both

process-dependent.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch02 page 80

80 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

2.3 The First Law of Thermodynamics

The first law of thermodynamics is quintessentially the conservation of

energy. Supposing that there is a decrease in the internal energy and macro-

scopic kinetic energy of a system, this decrease in energy should manifest

itself as the physical work done by the system and the heat flowing from the

system. Conversely, we can conclude that the increase in the internal energy

plus macroscopic kinetic energy of a system is the sum of the heat supplied

to and the work done on the system. This is the first law of thermodynamics

which can be expressed mathematically as

ΔU +ΔK.Emac =Won +Q, (2.2)

where Won is the net work done on the system by external agents and Q is

the net heat supplied to the system. The conservative work on the right-hand

side can be shifted to the left-hand side such that the left-hand side becomes

the change in the system’s total energy E (internal energy plus macroscopic

kinetic and potential energies).

ΔE =Won +Q, (2.3)

where Won now only includes the work done by non-conservative forces on

the system. Usually, the macroscopic energies are constant such that the

above becomes

ΔU =Won +Q. (2.4)

In most cases, the heat transferred between systems is prohibitively difficult

to determine directly. However, the first law enables us to calculate heat

indirectly from measurable quantities such as internal energy and work done.

Sometimes, the first law is expressed in terms of the work done by the

system, which is negative of the work done on the system, Wby = −Won.

Then,

Q =Wby +ΔU. (2.5)

In a certain sense, the heat supplied to the system manifests in terms of the

work performed by the system and the increase in internal energy as it stores

part of the heat.

2.4 Ideal Gases

Now, we are interested in analyzing the specific system of gases. Microscop-

ically, we can model a gas as a system of molecules that are hard spheres
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undergoing constant random motion. These particles are assumed to collide

elastically, have no interactions with one another (besides collisions) and

are small relative to the volume of their container. A gas that exhibits such

behavior is known as an ideal gas and is of course, not realistic. When gas

particles collide with the walls of the container, they exert a force on the walls

of the container. Macroscopically, these collisions manifest as a pressure on

the container walls.

A system is in thermodynamic equilibrium when the macroscopic state

of every part of the system is not evolving over time. A pressure and tem-

perature can be defined for every part of a gas at equilibrium. However, if

the gas were to undergo a sudden change, such as a contraction, it will be in

a non-equilibrium state, at least for a short instance. Then, a pressure and

temperature are not well-defined at this juncture.

We can define the equilibrium state of an ideal gas using three state

variables — temperature, pressure and volume. For a system in general,

there will be an equation that relates the different state variables. In the

particular case of an ideal gas, its equation of state is known as the ideal gas

law. Concretely,

pV = nRT (2.6)

where p, V and T are the pressure, volume and the temperature of the

gas respectively. n is the number of moles of gaseous molecules while R is

the ideal gas constant, R = 8.314 J mol−1K−1. Note that T is measured

in Kelvins, which can easily be calculated from a temperature expressed in

degree Celsius with the following conversion formula:

T (K) = T (◦C) + 273.15.

The ideal gas law makes intuitive sense from a microscopic standpoint, it

basically states that

p ∝ nT

V
.

When the number of moles of molecules increases, more molecules collide

with the walls per unit time — increasing the pressure of the gas. When

temperature increases, the gaseous molecules become more “excited” and

possess a larger average kinetic energy. Thus, they exert a greater force on

the container walls per collision and collide with the walls more frequently.

Lastly, if the volume of the container is increased, gaseous molecules have

to travel a longer distance to collide with the walls, leading to a decrease in

the frequency of collision and hence pressure. Another slight technicality is
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that n strictly refers to the number of moles of gaseous molecules and not

the total moles of gaseous particles or atoms. Even if the container encloses

k moles of diatomic gaseous molecules, n is still equal to k and not 2k.

The number of elementary entities in a mole is the Avogadro’s Constant,

NA = 6.02 × 1023. Thus, we can rewrite the ideal gas equation in terms of

the number of gaseous molecules.

pV = NkT (2.7)

where N is the total number of molecules and k = R
NA

= 1.38 × 10−23JK−1

is the Boltzmann constant.

Ultimately, the ideal gas law encapsulates the following three gas laws

which are its predecessors. Firstly, Boyle’s law states that the pressure and

volume of a gas of fixed mass are inversely proportional when its temperature

is held constant. Secondly, Charles’ law states that the absolute temperature

(Kelvin scale) and volume of a gas of fixed mass are directly proportional

when its pressure is held constant. Finally, Gay–Lussac’s law asserts that

the pressure and absolute temperature of a gas of fixed mass are directly

proportional when its volume is held constant.

Problem: A thermally insulated piston of negligible dimensions separates a

rectangular container into two regions. The two regions are both filled with

ideal gases at an initial temperature of 27◦C. The initial configuration of

the system is shown in Fig. 2.1, with the piston being initially stationary.

The temperature of the gas in region A is now increased to 227◦C while the

temperature of the gas in the other region is maintained at 27◦C. Find x,

the distance of the piston from the left end of the container, after the system

has equilibrated.

Figure 2.1: Ideal gases

Let the cross sectional area of the container be A. For the system to be at

equilibrium, the pressures due to both gases should be equal. Let the initial

and final common pressures be p1 and p2 respectively. Since the number of
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moles of each gas is constant, by the ideal gas equation,

p ∝ T

V
.

Applying this relation to gases A and B,

p1
p2

=
T1AV2A
T2AV1A

=
(27 + 273)x

(227 + 273) · 0.4
p1
p2

=
T1BV2B
T2BV1B

=
1− x

0.6
.

Solving,

x =
10

19
m.

2.4.1 Internal Energy

Due to the proposed lack of interactions between ideal gas molecules, the

internal energy of an ideal gas stems solely from the microscopic kinetic

energy of the moving molecules. By the equipartition theorem in statisti-

cal mechanics, energy is shared equally at thermal equilibrium among the

modes1 of a molecule — which arise for each independent contribution to

the total energy that is quadratic in a certain variable — such as transla-

tional and rotational kinetic energy. Each mode of a molecule contributes

an additional 1
2kT amount of average energy to a molecule. Due to the lack

of internal interactions between molecules, the average energy of a molecule

must also be the average kinetic energy. Consequently, the average kinetic

energy of a gas molecule is

〈K.E〉 = f

2
kT, (2.8)

where f is the number of degrees of freedom of a particle which is the number

of independent forms of motion exhibited by a molecule and is also the

number of coordinates required to specify the state of a molecule. Then, the

internal energy of an ideal gas is

U = N〈K.E〉 = f

2
NkT =

f

2
nRT =

f

2
pV. (2.9)

As expected, the internal energy is a state function as it is only depen-

dent on the temperature of the gas. Ideal gases are usually assumed to be

1Vibrational degrees of freedom are not included here as the energies associated with
them are not quadratic in a certain variable. They are in fact quantized.
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monoatomic. Thus, molecules have three degrees of freedom due to possible

translations in the x, y and z-directions. This monoatomic property is usu-

ally assumed by default unless stated otherwise. For a diatomic gas molecule,

there are usually 5 degrees of freedom due to there being three translational

and two rotational directions. There are only two rotational degrees of free-

dom for a diatomic molecule as it is not possible for the diatomic molecule

to rotate about the axis joining the two atoms as the atoms are assumed

to be small (thus contributing negligible energy due to rotations along this

axis). In the general case of polyatomic molecules, vibrational modes may

arise, especially at high temperatures. However, we will only be dealing with

molecules with no vibrational freedom.

Following from the above discussion, the average translational kinetic

energy per molecule of an ideal gas (regardless of the number of atoms per

molecule) is

〈K.Etrans〉 = 3

2
kT.

Then, we can actually relate temperature to the mean square speed2 of the

molecules. Assuming that there are N gaseous molecules which each have

mass m,

〈K.Etrans〉 = 1

N

N∑
i=1

1

2
mv2i =

1

2
m

∑N
i=1 v

2
i

N
.

The mean square speed 〈v2〉 and the root-mean-square speed of the molecules

vrms are defined as

〈v2〉 =
∑N

i=1 v
2
i

N

vrms =
√
〈v2〉 =

√∑N
i=1 v

2
i

N
.

We can rewrite the expression for the average kinetic energy per molecule as

〈K.Etrans〉 = 1

2
m〈v2〉 = 1

2
mv2rms,

to conclude that

〈v2〉 = v2rms =
3kT

m
. (2.10)

2The speed in the context of polyatomic molecules would usually refer to the speed of
the center of mass.
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This implies that temperature can be used as a direct measure of how fast

gas molecules are moving and gives a kinetic interpretation of temperature.

Lastly, note that the above expressions for the mean square speed and the

root-mean-square speed are consistent with the kinetic theory of gases (as we

shall show) — a microscopic model of ideal gases that will be introduced

later.

2.4.2 General and Reversible Work

Recall that the infinitesimal work done by a force F in moving an object

(such as a wall) is

δW = F · dr
where dr is the infinitesimal displacement of the object. The differential in

front of W is a small δ which represents an inexact differential, as W is

not an actual function and thus does not have a derivative. This is because

W is generally not a state function and is dependent on the path that a

process takes. Moreover, remember that in the case of a fluid, the force that

it exerts can only be perpendicular to its surface as it cannot withstand any

shear forces. Then, the work done by an infinitesimal portion of gas near

the boundary of our gaseous system on its surroundings across a massless

interface of surface area dA can be rewritten as pexdAdx, where dx is the

signed displacement of the massless interface in the direction of its area

vector (defined to be positive outwards with respect to the gas) such that

dAdx is the area swept by the infinitesimal interface. Integrating over the

entire boundary surface of the gas, the total work done by the gas on its

surroundings after an infinitesimal change is

δWby = pexdV

where dV is the change in volume of the gas. It is pivotal to understand

that pex refers to the external pressure imposed on the interface by the

surroundings and is not the pressure of our gaseous system. It is assumed

that the external pressure is well-defined, such as in the case of a force evenly

distributed on a massless piston, else the above expression cannot be used

either. This dependence on the external pressure can be easily verified in the

case where pex = 0 such that even if the gas had a well-defined pressure, it

should not perform any work on its surroundings as it will just expand freely.

The deeper reason behind is that generally, when the gas pressure initially

differs from pex, the gas pressure will be ill-defined at the next instance as the

gas will become inhomogeneous. Since the gas sections immediately adjacent
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to the interface must balance the force enforced by the external pressure,

their volumes are changed slightly such that their pressure (assuming that

we consider small enough sections which are approximately homogeneous)

are accustomed to the external pressure. However, this information is not

instantaneously transmitted to other parts of the gas such that the gas is

no longer in equilibrium as a whole. All-in-all, the work done by the gas on

its surroundings is that due to the sections surrounding the interface which

have pressure pex.

Observe that δWby is generally an unedifying description of the evolu-

tion of our gaseous system as we are unable to relate it to the gas pressure.

However, in the case where the initial gas pressure differs from the exter-

nal pressure by an infinitesimal value, the infinitesimal work done can be

written as

δWby = pdV (2.11)

where p is the pressure of the gas, that is also the external pressure. In

order for Eq. (2.11) to be valid, the external pressure can only be varied by

infinitesimal amounts (e.g. by carefully placing grains of sand on a piston),

such that the system evolves over a series of purely equilibrium states from an

initial to final state. Such a slowly-occuring process is known as a quasistatic

process and is an idealization. Actually, the condition for the applicability of

Eq. (2.11) is much stricter — it requires the process that the gas undergoes

to be reversible,3 under which being quasistatic is a mere prerequisite. For

example, when a gas in a container is undergoing quasistatic compression

performed by adding grains of sand on top of a gas piston, the gas pressure

will generally differ from the external pressure if friction between the piston

and the container walls is present. This friction is in fact a form of irre-

versiblity which renders Eq. (2.11) obsolete. Therefore, we must scrutinize

the circumstances in the problems we face to check if we can apply Eq. (2.11)

which is only valid for reversible processes.

The total work done during a reversible process is obtained by integrating

the infinitesimal work done over the path that a system takes.

Wby =

ˆ
pdV, (2.12)

where the integral indicates that we should track all infinitesimal volume

changes as the gas evolves from an initial to final state. When a gas expands,

the work done by the gas is positive as the displacement of the interface is

3This concept of reversibility will be explored in the next chapter.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch02 page 87

Thermodynamics and Ideal Gases 87

in the same direction as the force due to gaseous pressure while the work

done on the gas is negative. In a similar vein, when a gas contracts, the work

done by the gas is negative and the work done on the gas is positive.

Problem: n moles of helium are isolated in a gas piston with initial temper-

ature T0. If a constant force F is abruptly exerted on the piston for a short

period of time such that it contracts the gas by a distance x, determine the

final temperature of the gas T1.

In this scenario, the gas does not undergo a reversible process as the

change is sudden — implying that we must use the external pressure F
A

where A is the cross sectional area of the piston in computing work done

by or on the gas. Since the work done on the gas by the external force is
F
A ·Adx after it contracts by an infinitesimal distance dx, the total work done

on the gas is Fx. Moreover, as the compression is swift, there is negligible

heat transfer between the gas and its surroundings such that Q = 0. The

first law of thermodynamics then implies that

ΔU =
3

2
nRΔT =Won = Fx,

T1 = T0 +ΔT = T0 +
2Fx

3nR
.

Microscopic View

Let us adopt a microscopic perspective to better understand the sign of work

done by considering a gas in a gas piston again. If the piston is compressing

the gas, gas molecules collide with the incoming piston and rebound with

a speed larger than that before the collision. Since the mean-square speed

of the molecules increases, the internal energy of the gas increases, which

means that positive work has been done on the gas. Conversely, if the gas is

expanding, gas molecules hit a retreating piston and rebound with a speed

smaller than that before the collision. Thus, the internal energy of the gas

decreases. This agrees with the macroscopic interpretation that negative

work is done on the system when the gas expands.

Work Done

We observe that work done depends on how p varies with V . Hence, there

can be different work done by and on the gas for the same final and initial

states of the system as there are different paths a process can take. Thus, it

is useful to draw Pressure-Volume or PV diagrams to visualize this.
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Figure 2.2: PV diagram

An equilibrium state of an ideal gas can be defined by three macroscopic

quantities — namely P , V and T . Due to the ideal equation, these properties

are not independent and we can define an equilibrium state of an ideal gas

based on two quantities alone if we know the number of moles of gaseous

molecules. We usually choose them as P and V so that we can visualize

work. Referring to Fig. 2.2, each point on a PV diagram represents a possible

equilibrium state consisting of 3 quantities, though it may only be a two-

dimensional diagram. The system may undergo a process from one state to

another and this is delineated by a line from the initial to final state. The

intermediate points on this line correspond to the intermediate equilibrium

states of the system as it evolves. Different processes from the same initial

state to the same final state will result in different lines. Note that non-

quasistatic processes cannot be depicted by a line on a PV diagram as there

is no well-defined pressure for the intermediate states.

Figure 2.3: A cyclic process

For example, the PV diagram in Fig. 2.3 shows how the system evolves

over four different processes as we consider four specific states of the system.

Processes 1 → 2 and 3 → 4 are isobaric processes as the pressure of the

system remains constant while processes 2 → 3 and 4 → 1 are isochoric

processes as the volume of the system remains constant. The magnitude of
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work done during a process is simply the area under the curve illustrating

the process in the PV graph (remember that work done by the gas is pos-

itive if the gas expands and negative otherwise). Thus, the work done by

the gas in process 1 → 2 is the sum of the shaded area and filled area,

0 during processes 2 → 3 and 4 → 1 and negative of the filled area dur-

ing process 3 → 4. Thus, the total work done by the gas during the cycle

1 → 2 → 3 → 4 → 1 is the shaded area and is positive. Note that in

general, the magnitude of the work done during a cyclic process, such as

above, is the area enclosed by the PV curve. The sign of work done by

the gas will depend on the direction of the process. For example, if the

process above were to evolve from 1 → 4 → 3 → 2 → 1, the work done

by the gas will be negative of the shaded area and hence, positive work is

done on the gas. Lastly, the change in internal energy in a cyclic process

is zero as the internal energy is a state function and the initial and final

states are identical. Then, the area enclosed by a cyclic process in a PV

diagram is also directly related to the heat supplied to or extracted from

the system.

We are now ready to analyze the work done by a gas during different

reversible processes.

Reversible Isochoric Process

Figure 2.4: Isochoric process

Referring to Fig. 2.4, an isochoric or isovolumetric process is one in which

the volume of the system does not change (i.e. dV = 0). Then,

Wby =

ˆ V1

V1

pdV = 0.

By the first law of thermodynamics,

ΔU = Q.
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Reversible Isobaric Process

Figure 2.5: Isobaric process

Referring to Fig. 2.5, an isobaric process is a process in which the pressure

of the system remains constant.

Wby =

ˆ V2

V1

pdV = pΔV

ΔU = Q− pΔV.

Reversible Isothermal Process

Figure 2.6: Isothermal process

Referring to Fig. 2.6, an isothermal process is one in which the temper-

ature of the system remains constant.

Wby =

ˆ V2

V1

pdV =

ˆ V2

V1

nRT

V
dV = nRT ln

V2
V1
.

An example of an isothermal process is the expansion of a cylinder of gas

with a thin wall performed by pulling the piston extremely slowly, allowing

sufficient time for the gas to gain heat through the container walls to con-

stantly maintain thermal equilibrium with its surroundings. Furthermore,
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since ΔU = f
2nRΔT , ΔU = 0 during an isothermal process. The first law of

thermodynamics then implies that

Q =Wby = nRT ln
V2
V1
. (2.13)

Adiabatic Process

Figure 2.7: Adiabatic process

Referring to Fig. 2.7, an adiabatic process is a reversible (and thus necessarily

quasistatic) process in which there is no net heat transfer between a system

and its external surroundings (i.e. Q = 0).

Adiabatic processes usually involve well-insulated containers. An example

would be the gradual increase in external pressure on a thermally insulated

gas piston such that the pressure of the gas is always equal to the exter-

nal pressure as it contracts. An example of a process that involves Q = 0

but is not adiabatic would be a sudden compression of a cylinder of gas

performed by pushing the piston rapidly such that there is negligible time

for heat to escape the system — this is not an adiabatic process as it is

non-quasistatic and irreversible. To calculate the work done by the gas in an

adiabatic process, we will use the following paramount adiabatic condition.

In an adiabatic process,

pV γ = c (2.14)

where c is an arbitrary constant determined by initial conditions. γ is the

adiabatic index and is given by

γ =
f + 2

f
(2.15)

where f is the degrees of freedom of a gas molecule. As a corollary of this

condition, adiabats drawn on a PV diagram are steeper than isotherms as

p ∝ 1
V γ for an adiabat with γ > 1, as compared to p ∝ 1

V for an isotherm.
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Proof: The differential form of the first law of thermodynamics implies that

dU = δQ+ δWon.

Since δQ = 0 for an adiabatic process and δWon = −pdV for a reversible

process,

dU + pdV = 0.

We know that

U =
f

2
nRT =

f

2
pV.

Taking the total derivative of the above,

dU =
f

2
dpV +

f

2
pdV

f

2
dpV +

f

2
pdV + pdV = 0.

Dividing the whole equation by f
2pV yields

1

p
dp+

f + 2

f
· 1

V
dV = 0.

Integrating the above and taking the exponential of both sides,

pV
f+2
f = c

for some constant c. Observe that we have proven the adiabatic condition

from the first law of thermodynamics and the ideal gas law. Therefore, if we

are interested in analyzing a reversible adiabatic process involving a gas, we

can simply use the adiabatic condition, instead of the first law of thermo-

dynamics, in combination with the ideal gas law. The resultant equations

are often simpler this way. Now, to determine the work done by the gas in a

reversible adiabatic process, we write

Wby =

ˆ V2

V1

pdV =

ˆ V2

V1

c

V γ
dV

=

[
cV 1−γ

1− γ

]V2
V1
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=
1

1− γ
(cV 1−γ

2 − cV 1−γ
1 )

=
1

1− γ
(p2V2 − p1V1).

Substituting γ = f+2
f ,

Wby =
f

2
(p1V1 − p2V2).

Alternatively, we could have derived Wby from ΔU via the first law of ther-

modynamics. Since Q = 0,

Wby = −ΔU.

We know that U is given by

U =
f

2
pV

=⇒ ΔU =
f

2
(p2V2 − p1V1)

Wby = −ΔU =
f

2
(p1V1 − p2V2).

Problem: Burning a piece of wood releases smoke consisting of carbon

monoxide (molar mass μs) at temperature Ts near the surface of the Earth.

If the smoke then rises adiabatically (assume that there is no heat transfer

between the atmosphere and the smoke), determine the maximum altitude

h that the smoke can attain. The atmosphere can be presumed to have

a uniform temperature Ta and molar mass μa. Furthermore, gh � RTa
μa

,

where g is the gravitational field strength near the surface of the Earth such

that the density of atmospheric air can be assumed to be a constant up till

altitude h.

The atmospheric pressure as a function of altitude h is approximately

p(h) = p0 − ρagh

where p0 is the pressure at the surface and ρa = p0μa
RTa

is the uniform mass

density of the atmosphere. For the smoke to undergo an adiabatic process, its

pressure at all instances must be equal to p(h). By the adiabatic condition,
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the temperature of the smoke T (h) as a function of altitude obeys

p1−γT γ = p1−γ0 T γs .

Since γ = 7
5 for a diatomic gas (carbon monoxide),

T (h) = Ts

(
p

p0

)2
7

.

The smoke stops rising when its density is equal to that of the atmosphere

ρa as the upthrust just balances its weight. This occurs when

pμs
RT

= ρa

=⇒ pμs

RTs

(
p
p0

) 2
7

=
p0μa
RTa

.

Substituting the expression for p(h),

(
1− μagh

RTa

) 5
7

=
μaTs
μsTa

.

Since gh� RTa
μa

, we can perform a binomial expansion to obtain

1− 5μagh

7RTa
=
μaTs
μsTa

h =
7RTa
5μag

− 7RTs
5μsg

.

2.5 Heat Capacity

If a block of copper and a block of aluminium, that are initially at the

same temperature and are of equal masses, are placed into identical beakers

of water, the final temperatures of water in the two beakers, at thermal

equilibrium, are different. Thus, we conclude that the two blocks must have

stored different quantities of heat as internal energy even though they were

initially at the same temperature. Therefore, it is natural to define a property

that refers to the additional amount of heat required to raise the temperature

of a substance by unit temperature as temperature on its own is not a good

gauge of the internal energy of a substance. This quantity is known as the
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heat capacity C of the substance. Concretely,

C =
δQ

dT
(2.16)

where Q and T are the heat supplied to the system and the temperature of

the system. Applying the first law of thermodynamics,

dU = CdT + δWon (2.17)

We see that if δWon = 0 throughout the thermodynamic process, dU = CdT

such that C is a good measure of the internal energy stored by the substance.

Most notably, we have

dU = CvdT (2.18)

where Cv is the heat capacity of an isochoric process. Since the changes in

volume of solids and liquids are often negligible throughout all types of pro-

cesses (i.e.they are all approximately isochoric), we can simply define a heat

capacity C for them that is process-independent (since dU = CdT for all

processes and U is a state function). However, the value of C of a gaseous

system, on the other hand, depends on the process as Won changes accord-

ingly in Eq. (2.17). Thus, we need to define different values of C for different

processes in a gaseous system. Furthermore, C is no longer a measure of

the stored internal energy of a gas as part of the heat supplied could have

been used as work done by the gas. Before we determine these for isochoric

and isobaric processes, it is intuitive that a larger amount of a substance

requires a greater quantity of heat for the same change in temperature as

a larger system is basically a smaller system duplicated by several parts.

It is then natural to define a property for the additional amount of heat

required to increase the temperature of a substance by unit temperature,

per amount of substance — this is known as the specific heat capacity of

the substance. The amount of substance usually refers to the mass of sub-

stance m for solids and liquids and the number of moles of gas molecules n

for gases. In the case of the latter, the specific heat capacity of gases with

respect to the number of moles is known as the molar specific heat capacity.

Quantitatively,

c =
δQ

mdT
, (Solids/Liquids)

c =
δQ

ndT
, (Gases)
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where c is the specific heat capacity. If c is independent of T ,

Q = mcΔT, (Solids/Liquids)

Q = ncΔT. (Gases)

Once again, we emphasize that the molar specific heat capacity of a gas

varies across different processes. Therefore, it is convenient to calculate the

molar specific heat capacities for specific processes — namely isochoric and

isobaric processes. We will derive them for gases with a general number of

degrees of freedom.

For an isochoric process, by Eq. (2.18),

ncvdT = dU =
f

2
nRdT

=⇒ cv =
f

2
R (2.19)

In the case of a reversible isobaric process, δWon = −pdV and δQ = ncpdT

by definition so

dU =
f

2
nRdT = ncpdT − pdV

since pdV = nRdT by the ideal gas law under isobaric conditions,

cp =
f + 2

2
R (2.20)

where we have also shown that cv and cp are independent of temperature for

an ideal gas.

We see that the molar specific heat capacity of a gas under constant

pressure is larger than that under constant volume as work must be done by

the gas (to expand when temperature increases). Quantitatively, cp = cv+R.

Considering these expressions for cv and cp, the more general definition of

the adiabatic index is in fact

γ =
cp
cv
. (2.21)

Problem:When a constant power P is transferred to a solid, its temperature

T increases according to

T = T0(1 + αt)
1
4
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where t is the time elapsed and T0 is the initial temperature. Determine the

heat capacity of the solid C(T ) as a function of its temperature.

dT

dt
=

αT0

4(1 + αt)
3
4

,

C =
δQ

dT
=
δQ

dt
· dt
dT

= P · 4(1 + αt)
3
4

αT0
=

4PT 3

αT 4
0

.

Enthalpy

It may be noteworthy that a state function known as the enthalpy H of a

substance is defined as

H = U + pV, (2.22)

where U , p and V are its internal energy, pressure and volume respectively.

For our purposes, it is merely another state function, derived from other state

functions, but chemists prefer to use it for the following reason. Observe that

for a substance undergoing a reversible isobaric process,

dH = dU + pdV = CpdT (2.23)

where Cp is the heat capacity at constant pressure. Therefore,

dH = δQ

where δQ is the heat absorbed by the substance during the reversible isobaric

process. Since experiments on Earth are usually performed under constant

pressure (atmospheric pressure), H is a more convenient pathway in specify-

ing the heat absorbed by a substance. Finally, it can be seen that a stronger

form of Eq. (2.23) holds for an ideal gas. Since U = ncvT and pV = nRT

for an ideal gas, its enthalpy is

H = n(cv +R)T = ncpT. (2.24)

This implies that the relationship

dH

dT
= ncp (2.25)

is valid for any general process on an ideal gas of fixed moles, just as
dU
dT = ncv.
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2.6 Gas Flows

In this section, we will explore how the first law of thermodynamics can

be applied to situations where a gas enters or leaves a container. The

interpretation of work done in such processes is often more subtle and is

dependent of our definition of a system, as the following example shall illus-

trate.

Problem: In Fig. 2.8, an evacuated chamber is placed on the surface of the

Earth where the pressure and temperature of atmospheric air — which can

be presumed to be diatomic — are p0 and T0. If the cap sealing the chamber

is opened, determine the temperature of the gas inside the chamber at the

instance where there is no longer any net influx of air molecules into the

chamber. The tank is insulated such that there is negligible heat transfer

between the inside of the tank and the atmosphere. Assume that no air

leaks out of the chamber once it has entered it.

Figure 2.8: Evacuated chamber

Firstly, note that the relevant final temperature of the gas in the chamber

is not necessarily T0, as the gas may not have attained thermal equilibrium

with the atmosphere when a mechanical equilibrium is established (i.e. the

final pressure of the gas is p0). Now, we reach a junction where we have to

choose a system to apply the first law of thermodynamics to.

Method 1: Control Mass Just like what we have done in the previous

sections, we can pick a set of gas molecules as our system and track them.

This method is known as the control mass approach as we fix the constituents

of our system. In the context of this problem, we can choose our system as

the group of gas particles that will enter the chamber. The change in the

macroscopic energies of this system is negligible and there is no heat transfer

between the atmosphere and this system. The first law of thermodynamics

then states that

ΔU =Won.
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Now, the origin of Won is rather subtle. Suppose the total volume of our

system in the atmosphere is V0. As our control mass enters the chamber,

its posterior experiences a pressure p0 which is analogous to a piston with

pressure p0. Therefore, we can readily state

Won = p0V0 = nRT0

where n is the total number of moles of gas that enters the chamber and T0 is

the atmospheric temperature as the piston pushes volume V0 of gas into the

chamber. Note that the possible work done on the incoming back sections

by the front sections which are already in the chamber is excluded precisely

because we have defined all gas molecules that will eventually enter the

chamber as our system, such that this component of work is not performed

by an external agent. In other words, though the work done on the arriving

section by the gas already in the chamber increases the internal energy of

the arriving section, there is a corresponding decrease in the internal energy

of the gas in the chamber and thus no net change in the internal energy

of our system due to this factor. With this clarification, we proceed with

substituting ΔU = 5
2nRΔT for a diatomic gas. Hence,

5

2
nRΔT = nRT0

ΔT =
2

5
T0.

The final temperature Tf is

Tf = T0 +ΔT =
7

5
T0.

Method 2: Control Volume Instead of choosing a predetermined group

of particles as our system, we can demarcate a region known as a control

volume and analyze the energies entering and leaving this region. In this

case, we can define the control volume as the chamber. Let n now denote the

instantaneous number of moles stored in the chamber. In a short time interval

dt, the only change in energy inside the control volume stems from the dn

moles of atmospheric molecules, which occupy volume dV in the atmosphere,

entering the chamber. Since their macroscopic energies are negligible, the

total energy carried by these molecules is their final internal energy which

is their initial internal energy (internal energy in the atmosphere 5
2dnRT0)

plus the gain in internal energy due to the work done on them by the gas

section immediately behind them as they are pushed in.
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For purposes of illustration, suppose that the arriving gas section has

a cross sectional area dA and a length dx. The force by the gas section at

the back of this section on this section is p0dA and must have acted over

a distance dx to push it into the chamber. Consequently, the work done on

the arriving section by its posterior neighbour, which is known as flow work,

is p0dV = dnRT0. Note that the meaning of this work is slightly different

from Won afore. The p0V0 term in the previous method arose from the work

done on all molecules that will enter the chamber by other atmospheric

molecules. However, the p0dV term here indicates the work done on incoming

gas molecules due to the gas molecules immediately behind them, which

may or may not eventually enter the chamber. In a certain sense, we may

be including the “internal forces” in our analysis. At this point, you may

wonder why we did not consider the work done on the infinitesimal section

dV entering the chamber due to the gas already inside the chamber. This is

because, the incoming gas section becomes part of the system once it enters

the control volume (chamber) — meaning that this does not represent a flow

of energy outside of the control volume.

Moving on, the rate of increase of energy, which is manifested solely as

internal energy U , inside our control volume is therefore

U̇ =
5

2
RT0ṅ+RT0ṅ =

7

2
RT0ṅ.

Integrating and substituting the initial values of U and n as zero,

Uf =
7

2
nfRT0

where Uf and nf are the final internal energy and the number of moles of

gas inside the chamber respectively. Since Uf = 5
2nfRTf where Tf is the

final temperature,

Tf =
7

5
T0.

Steady Flows

The control volume approach introduced afore presents a neat method of

analyzing steady gas flows in which the properties of each point in a sys-

tem do not vary with time. Recall that a streamline delineates the tra-

jectory of a fluid molecule when the flow is steady. Now, consider the

steady flow of a gas along a streamtube which consists of a bundle of

adjacent streamlines. Suppose that we wish to relate the flow speeds (v),

temperatures (T ) and heights h at two points along a streamtube as shown

in Fig. 2.9.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch02 page 101

Thermodynamics and Ideal Gases 101

Figure 2.9: Streamtube

Let the rate of moles of gas molecules flowing through a cross section be

ṅ. This must be uniform through the entire streamtube at steady state and

is equivalent to the mass continuity equation. Let the cross sectional areas

of the right and left ends next to the demarcated region in the stream tube

be A1 and A2 respectively. Then, the mass continuity equation is

η1A1v1 = η2A2v2 = ṅ, (2.26)

where η represents the number density in a region, which can be computed as

η = p
RT by the ideal gas law. Thus, the mass continuity equation is equivalent

to stating that

pAv

T
= constant. (2.27)

Moving on, we also can exploit the fact that the energy of the region between

these two points should be constant with respect to time at steady state.

That is, we can balance the energy influx into and outflow from the demar-

cated region. In time dt, other than work done and heat transfer into the

demarcated region by entities external to the streamtube, there is a change

in energy within the region due to dn moles of molecules (with molar mass

μ) entering from the left and dn moles of molecules exiting from the right.

The net increase in macroscopic kinetic energy is 1
2μdn(v

2
1 − v22) where v1

and v2 are the respective flow speeds while the net increase in gravitational

potential energy is μdng(h1 − h2) (we assume that other forms of poten-

tial energy are absent). Meanwhile, the net increase in energy inside the

dashed boundary due to the internal energies of the incoming and outgoing

molecules is dncv(T1−T2)+p1dV1−p2dV2 where dV1 and dV2 are the volumes

of the incoming and outgoing molecules at the respective ends. As for the

last two terms, remember that we have to include the flow work done by the

molecules behind the incoming molecules on the left end (which is positive)

and that by the molecules in front of the outgoing molecules on the right

end (which is negative as the force due to their pressure opposes the flow
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velocity v2). Since p1dV1 = dnRT1 and p2dV2 = dnRT2, the above can be

rewritten as

dncv(T1 − T2) + dnR(T1 − T2) = dncp(T1 − T2)

where cp is the molar heat capacity at constant pressure. Another way to

see this is that dncvT1+p1dV1 and dncvT2+p2dV2 are simply the enthalpies

of the incoming and outgoing molecules, dncpT1 and dncpT2! All-in-all, the

rate of change of energy in the demarcated region is

Q̇+ Ẇon +
1

2
μṅ(v21 − v22) + μṅg(h1 − h2) + ṅcp(T1 − T2) = 0. (2.28)

Most of the time, the rate of external heat flow Q̇ and work done Ẇon are

zero such that the above becomes

1

2
μv21 + μgh1 + cpT1 =

1

2
μv22 + μgh2 + cpT2 (2.29)

since ṅ is uniform. Equivalently,

1

2
μv2 + μgh+ cpT = constant. (2.30)

In words, the sum of the macroscopic kinetic and potential energies, the inter-

nal energy of the molecules and flow work performed by posterior molecules

at any point along a streamtube is a constant. In cases where the potential

energy term is also negligible, the conserved quantity is 1
2μv

2 + cpT . This

quantity divided by cp is known as the stagnation temperature Tt.

Tt =
μ

2cp
v2 + T.

Its physical meaning is the temperature at the point along the streamline

that is stationary. Now, the term “stationary” implies that we need to spec-

ify a reference frame for its meaning to be unambiguous. Recall that we have

assumed that the flow was steady when deriving the above equations. There-

fore, the relevant point must be stationary relative to the frame in which the

flow is steady and the streamlines do not move with time. Conversely, we

can express the maximum macroscopic speed (when T = 0) that the gas can

attain with respect to this frame as

vmax =

√
2cpTt
μ

.
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Problem: A rocket in outer space propels itself by burning fuel to release

diatomic gas of temperature T1 in its combustion chamber which has a cross

sectional area A1. The gas then flows adiabatically and is expelled out of the

nozzle, which has a cross sectional A2, at a speed v2 relative to the rocket and

at pressure p2 and temperature T2 < T1. If the rocket is designed correctly

(i.e. its cross sectional area is varied appropriately) such that steady flow

relative to the rocket is achieved, determine the thrust experienced by the

rocket.

We will analyze this set-up in the frame of the rocket. Let the pressure

of the released gas at the combustion chamber be p1 and let it have a speed

v1 relative to the rocket. Firstly, the adiabatic condition implies that

p1−γ1 T γ1 = p1−γ2 T γ2

where γ = 7
5 for a diatomic gas.

=⇒ p1 = p2

(
T1
T2

)7
2

.

Since the flow is steady in the frame of the rocket, mass continuity

(Eq. (2.27)) requires

p1A1v1
T1

=
p2A2v2
T2

.

Substituting the expression for p1 in terms of p2,

v1 = v2
A1

A2

(
T2
T1

)5
2

.

Applying Eq. (2.29) while neglecting the change in gravitational potential

energy,

1

2
μv21 +

7

2
RT1 =

1

2
μv22 +

7

2
RT2

where μ is the molar mass of the diatomic gas. Substituting the expression

for v1 in terms of v2,

v22 =
7R(T1 − T2)

μ

(
1− A2

1

A2
2

(
T2
T1

)5) .
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The rate of moles of molecules exiting the nozzle is η2A2v2 = p2A2v2
RT2

where

η2 is the number density of gas molecules at the nozzle. As such, after a time

interval dt, the momentum of the gas molecules that escape in the frame of

the rocket is

dp =
p2A2v2
RT2

dt · v2 = 7p2A2(T1 − T2)

T2

(
1− A2

1

A2
2

(
T2
T1

)5)dt

=⇒ dp

dt
=

7p2A2(T1 − T2)

T2

(
1− A2

1

A2
2

(
T2
T1

)5) .

Observe that after this time interval dt, the total momentum of the gas

flowing in the rocket increases by dp in the frame of the rocket. Therefore, by

the conservation of momentum, the rocket’s momentum must have changed

by −dp. Therefore, the thrust experienced by the rocket is

F = −dp
dt

= − 7p2A2(T1 − T2)

T2

(
1− A2

1

A2
2

(
T2
T1

)5) ,

where the negative sign indicates that the force is opposite in direction to

the relative velocity of the ejected gas.

2.7 Kinetic Theory of Gases

This section will discuss the microscopic perspective to ideal gases in clas-

sical thermodynamics by modeling a system as a large collection of discrete

molecules. Only monoatomic molecules with no rotational and vibrational

modes will be considered. In the limit where the volume of the system tends

to infinity with a constant density — an ideal known as the thermodynamic

limit — thermal fluctuations are smoothed out such that thermodynamic

quantities are close to their average values. Quantitatively, taking the aver-

age of N independent samples of a variable yields a standard deviation that

is 1√
N

times the standard deviation of a single sample. Since the standard

deviation is a natural measure of the spread or uncertainty of a distribution,

the decrease in standard deviation with N causes thermal fluctuations to be

negligible, as N in this context refers to the number of molecules in a system,

which is gargantuan. This notion also sheds light on the statistical nature of

thermodynamics which involves probabilistic laws that are accurate in the

regime of many constituents.
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2.7.1 Distribution Functions

Velocity Distribution Function

A velocity distribution function f(v) = f(vx, vy, vz) is used to describe the

fraction of molecules with a velocity in the immediate vicinity of a cer-

tain v, just like any other probability distribution function. Concretely, it

is a three-dimensional probability distribution function (one for each spa-

tial dimension) such that the fraction of molecules with velocities between

v = (vx, vy, vz) and (vx + dvx, vy + dvy, vz + dvz) is f(v)dvxdvydvz.

Since the motion of gas molecules is proposed to be isotropic, the veloc-

ity distribution function should only be dependent on speed and not the

direction of velocity.

f(v) = f(v).

Given this isotropic nature, a common mistake is to assume that the fraction

of molecules traveling at speeds between v and v + dv and whose velocities

make an angle between θ and θ + dθ with a fixed axis, such as the z-axis,

is equal for all θ. This confusion is best rectified by considering the velocity

space, in Fig. 2.10, which is a sphere that depicts the possible velocities of

the molecules as vectors extending from the origin.

Figure 2.10: Molecules with angles between θ and θ + dθ

Since every point in velocity space represents a velocity, the velocity

distribution function can be ascribed to every point in space to quantify

the fraction of molecules possessing that particular velocity per unit volume

around that point. Due to the isotropic nature of the distribution, this prob-

ability density is uniform over a spherical shell at a constant radius (and thus

constant speed) away from the origin. Observe that the fraction of molecules

travelling at speeds between v and v+dv that make an angle between θ and

θ+ dθ with respect to the z-axis is an approximately circular hoop of radius
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v sin θ, width vdθ and thickness dv (spherical coordinates). Then, the rele-

vant fraction is 2πv2f(v) sin θdθdv which is non-uniform across different θ

for a given speed.

Finally, the velocity distribution function needs to be normalized like any

other probability distribution function. This can be evaluated in Cartesian

coordinates and also conveniently, in spherical coordinates due to its isotropy.

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
f(v)dvxdvydvz = 1, (2.31)

ˆ ∞

0
4πv2f(v)dv = 1. (2.32)

Speed Distribution Function

The distribution of the speeds of molecules can be easily computed from the

velocity distribution. Since the velocity distribution is uniform for a constant

speed v, the fraction of molecules having a speed between v and v + dv is

simply the volume of a spherical shell of radius v and thickness dv, multiplied

by f(v). The speed distribution function fs(v) is then

fs(v) = 4πv2f(v) (2.33)

and is a one-dimension distribution. Then, the fraction of molecules with

speeds between v and v + dv and velocities that make an angle between θ

and θ + dθ with a certain axis can be expressed as

1

2
fs(v) sin θdθdv. (2.34)

Finally, note that if f(v) is normalized, fs(v) is also normalized as a result

of Eq. (2.32).

We have now covered the two important distribution functions in kinetic

theory. Do not worry about the exact functions for now as this will be dis-

cussed in a later section. Instead, let us focus on how thermodynamic vari-

ables can be described in terms of these distributions. However, we will still

be using the following results for the mean, mean square and mean cube

speeds which are consequences of the speed distribution:

〈v〉 =
√

8kT

πm
, (2.35)
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〈v2〉 = 3kT

m
, (2.36)

〈v3〉 =
√

128k3T 3

m3π
, (2.37)

where k is the Boltzmann constant, T is the temperature of the gas and m is

the mass of a single molecule.

2.7.2 Pressure

Collisions with a Stationary Area

We first analyze the rate of collisions of molecules per unit area with a

stationary wall. Consider an infinitesimal area dA and define the positive

z-axis to be parallel to its area vector (which is pointing outwards from the

container). We will adopt spherical coordinates in this problem. Firstly, we

consider molecules that travel at a particular speed v. The volume swept by

molecules with velocity v that subtends an angle θ with respect to the z-axis

in time dt is of the shape in Fig. 2.11.

Figure 2.11: Volume of molecules with velocity v that collide with the wall in time dt

The shape has a total volume of

dV = v cos θdAdt.

By Eq. (2.34), the number of collisions with the area dA in time dt

due to this particular class of molecules is thus ηdV · 1
2fs(v) sin θdθdv =

1
2ηfs(v) sin θdθdvdV , where η is the number density of molecules which is

assumed to be uniform. Therefore, the number of collisions per unit area,

per unit time due to molecules that travel at speeds between v and v + dv

and angles between θ and θ + dθ is

1

2
ηvfs(v) sin θ cos θdθdv. (2.38)
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Momentum Transfer Per Collision

When a molecule traveling at speed v and angle θ collides with the station-

ary wall, it rebounds and effectively reverses its velocity in the z-direction,

assuming that the collision is elastic. Therefore, the momentum transferred

to the infinitesimal area is 2mv cos θ in the positive z-direction. The pressure

contribution dp due to molecules traveling between speeds v and v+ dv and

angle θ and θ+dθ is then the momentum transferred per collision multiplied

by the number of collisions per unit area, per unit time.

dp = 2mv cos θ · 1
2
ηvfs(v) sin θ cos θdθdv = ηmv2fs(v) sin θ cos

2 θdθdv.

The total pressure on the wall is then obtained by integrating the above

over all relevant v and θ. Note that θ is only integrated from 0 to π
2 as only

molecules travelling in the positive z-direction are germane.

p =

ˆ ∞

0

ˆ π
2

0
ηmv2fs(v) sin θ cos

2 θdθdv

=
1

3
ηm

ˆ ∞

0
v2fs(v)dv

where
´ π

2
0 sin θ cos2 θdθ can be solved via the substitutions u = cos θ, du =

− sin θdθ. Now, observe that the final integral averages v2 to produce the

mean square speed. Thus,

p =
1

3
ηm〈v2〉 (2.39)

which is often written as p = 1
3ρ〈v2〉 where ρ = ηm is the mass density of

the gas. Substituting the expression for 〈v2〉 in Eq. (4.7), we can prove the

ideal gas equation.

p = ηkT,

pV = NkT,

where N is the total number of molecules.

2.7.3 Effusion

Effusion is the process where gas molecules escape from a small hole of area

A and a diameter smaller than the mean free path of the molecules — the

average distance traveled by the molecules between consecutive collisions.

Interesting effusion properties to compute would be the molecular flux out
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of the hole and the rate of change of internal energy of the gas remaining

in the container. The speed distribution of escaped molecules is also intrigu-

ing and shall be deferred to a later section. For now, we should understand

qualitatively that the speed distribution of effused molecules favors molecules

with higher speeds (as compared to the standard speed distribution fs(v))

as these molecules are more energetic and more likely to escape from

the hole.

Equation (2.38) is the rate of molecules of speeds between v and v+dv and

angles between θ and θ + dθ colliding with a stationary wall, per unit area,

and is similarly, also the rate of molecules effusing out of a small hole, per

unit area. After integration over the relevant range of θ (this does not change

the expression’s dependence on v), the (instantaneous) speed distribution

fe(v) of escaping molecules is proportional to vfs(v). It can be seen from

the additional factor of v, as compared to fs(v), that effusion preferentially

selects molecules with greater speeds as they are more likely to escape from

the hole.

Next, the molecular flux, which is the rate of moles of gas flowing out of

the hole, can be calculated by multiplying Eq. (2.38) by A and integrating

over the relevant limits.

Φ =

ˆ ∞

0

ˆ π
2

0

1

2
ηAvfs(v) sin θ cos θdθdv =

1

4
ηA

ˆ ∞

0
vfs(v)dv

Φ =
1

4
ηA〈v〉. (2.40)

The above can be expressed solely in terms of the thermodynamic properties

p and T by substituting 〈v〉 =
√

8kT
πm and by expressing η in terms of p and

T via the ideal gas law:

pV = NkT,

η =
N

V
=

p

kT
.

Therefore,

Φ =
pA√

2πmkT
. (2.41)

Since Φ is inversely proportional to
√
m, effusion can be used to separate

different gas molecules and isotopes of the same gas. As the lighter molecules

effuse at a greater rate, the preponderance of molecules left in the container

will be the heavier molecules.
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Problem: Effusion is often applied in uranium enrichment processes. Sup-

pose that we have a large sample of two different isotopes of uranium trapped

in two different gas molecules of molar masses μ1 and μ2 > μ1. Initially, the

ratio of molecules with molar mass μ1 to those of molar mass μ2 is q < 0.5.

We can purify a sample of homogeneous temperature by allowing it to effuse

through a membrane fraught with porous holes that have diameters smaller

than the mean free path of the molecules and collecting the molecules that

pass through the filter up till a period of time. Backwards effusion is negli-

gible. Determine the number of cycles needed to increase the previous ratio

to at least 2q by repeatedly applying this procedure.

Suppose that the ratio of molecules with molar masses μ1 to those with

μ2 is r currently. Since Φ ∝ η√
m
, the ratio of the rates of effusion is

Φ1

Φ2
=
r
√
μ2√
μ1

.

The new ratio after a single step is evidently

r′ =
√
μ2
μ1
r.

Therefore, the minimum number of stages required to increase the ratio to

at least 2q is

n = log√μ2
μ1

2.

Next, it is useful to determine the rate of energy loss engendered by the

escaping molecules. Equation (2.38) is the rate of molecules with speed v

and angle θ escaping the hole, per unit area. Therefore, the total kinetic

energy by this class of particles, that escape the hole, can be determined by

multiplying Eq. (2.38) by 1
2mv

2 (kinetic energy of a molecule of that class)

and A, and integrating over the relevant limits.

dE

dt
= −

ˆ ∞

0

ˆ π
2

0

1

4
ηAmv3fs(v) sin θ cos θdθdv

= −
ˆ ∞

0

1

8
ηAmv3fs(v)dv

= −1

8
ηAm〈v3〉
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where E is the total internal energy remaining in the container. Substituting

〈v3〉 =
√

128k3T 3

m3π
,

dE

dt
= −ηA

√
2k3T 3

mπ
. (2.42)

The average energy of an effusing molecule can be determined by dividing

the magnitude of the rate of energy lost by the molecular flux.

1

2
m〈v2e〉 =

∣∣dE
dt

∣∣
Φ

= 2kT

which is evidently more than the average kinetic energy of a molecule origi-

nally in the container, 3
2kT .

2.7.4 Mean Free Path

In this section, we will model the collisions between gas molecules and deter-

mine the mean free time and mean free path which are the average time

elapsed and distance covered between consecutive collisions of a molecule.

Important assumptions in this model are that colliding molecules are scat-

tered elastically in random directions after a collision and that collisions

between different time intervals are independent events.

Monoatomic gas molecules are modeled as hard spheres with a radius

r. Suppose that we select a particular particle and follow its motion. Then,

observe that the tracked molecule can collide with another molecule if the

center of the other molecule is within a circular cross section of radius 2r

from the center of the tracked molecule, as shown in Fig. 2.12.

Figure 2.12: Effective collision radius

Therefore, we define the effective collision cross sectional area as

σ = π(2r)2 = 4πr2.

Now, let the tracked particle have a constant velocity v until its next collision

and define u to be the velocity of a particular class of other molecules that
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it could collide with. Then in time dt, the effective collision volume swept

by the tracked particle, relative to this class of molecules, is

σ|v − u|dt.
The probability of a collision occurring between the tracked molecule and the

particular class of molecules during the time interval, is the above multiplied

by the number density of that particular class of molecules, f(u)ηduxduyduz.

ησ|v − u|f(u)duxduyduz.
Integrating the above over all u would yield the probability of the tracked

molecule colliding in the time interval dt. Then, we can average the resul-

tant expression over all v (all possible tracked molecules) to determine the

probability of a molecule colliding in the time interval dt on average. This

probability is

ησ〈|v − u|〉dt = ησ〈vr〉dt
where vr is the relative speed between molecules. The average is performed

over all possible v and u. Now, define P (t) as the probability that a molecule,

on average, has not collided from time t = 0 to time t. Then, from the first

principles of calculus,

P (t+ dt) = P (t) +
dP

dt
dt.

Since the collision events during different time intervals are independent, the

probability of a molecule surviving till t+dt is the product of the probability

it survives till t and the probability of it not colliding in the interval between

t and t+ dt. This applies to the average case as well.

P (t+ dt) = P (t)(1 − ησ〈vr〉)dt.
Comparing the two expressions for P (t+ dt),

dP

dt
= −ησ〈vr〉P

ˆ p

1

1

P
dP =

ˆ t

0
−ησ〈vr〉dt,

where the lower limit of P has been set to one as the probability that a

molecule, on average, survives till t = 0 is one. Therefore,

P (t) = e−nσ〈vr〉t.
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Now, we can use the above to calculate the mean time between collisions. The

probability of a molecule surviving till time t and colliding between the time

interval from t to t+ dt, on average, is simply the product of the probability

that it survives till time t and the probability of it colliding within the time

interval dt.

P (t) · (ησ〈vr〉)dt = ησ〈vr〉e−ησ〈vr 〉tdt.
Therefore, the mean free time is obtained by multiplying the above by t and

integrating over all t.

τ =

ˆ ∞

0
tησ〈vr〉e−ησ〈vr 〉tdt = 1

ησ〈vr〉 . (2.43)

It can be shown that the average relative velocity 〈vr〉 is exactly
√
2〈v〉 from

the velocity distribution of gas molecules. The proof is non-trivial and will

not be presented here. Following from this,

τ =
1√

2ησ〈v〉 . (2.44)

Substituting 〈v〉 =
√

8kT
πm ,

τ =

√
πm

4ησ
√
kT

. (2.45)

It can be seen that heavier molecules collide less frequently and that the

mean collision interval is shorter for a larger temperature — both properties

make intuitive sense. Following from this, the mean free path is

λ = 〈v〉τ =
1√
2ησ

. (2.46)

2.7.5 Statistics of an Ideal Gas

Macrostates and Microstates

A thermodynamics system can be described in two ways. Firstly, it can be

quantified on the whole in terms of the macroscopic properties it exhibits

such as temperature and pressure. These are the attributes measured during

experiments. A set of such variables is known as a macrostate. Next, we

can adopt another perspective by describing a system based on the param-

eters of all its constituents (e.g. by labeling all particles with their positions

and velocities). A configuration consisting of such parameters is known as a

microstate. Crucially, several microstates can result in the same macrostate.
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For example, suppose that you roll two dice — a possible macrostate may

be the sum of the two numbers. Consider the particular sum 4 — it can be

formed in three ways: 1 + 3, 2 + 2 and 3 + 1 which are different microstates

of the system.

Boltzmann Distribution

Consider a system coupled to another gargantuan system, known as a heat

reservoir, such that energy can be exchanged. The reservoir is so large that

any heat extracted from or deposited into it does not vary its temperature

significantly. If the system is in thermal equilibrium with the reservoir such

that the common temperature is T , the probability of the system undertaking

a microstate S with a certain energy E is proportional to e−
E
kT , which is

known as the Boltzmann factor.

p(S) ∝ e−
E
kT .

Assume that there is only a single microstate corresponding to a single energy

such that the probability can be expressed as a function of the energy of

the system instead. If there are N microstates with the ith state having

energy Ei, the probability of the system adopting the kth microstate with

energy Ek is hence

p(Ek) =
e−

Ek
kT∑N

i=1 e
− Ei

kT

.

Let us apply this to the simplest example of a two-state system with energy

levels 0 and E. Then, the probability of each microstate is

p(0) =
1

1 + e−
E
kT

,

p(E) =
e−

E
kT

1 + e−
E
kT

.

We can also calculate the average energy as

〈E〉 = 0 · p(0) + E · p(E) =
E

e
E
kT + 1

.

Another intriguing application of the Boltzmann distribution pertains to an

isothermal atmosphere with molar mass μ and uniform temperature T . By
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balancing forces on each gas section, one can obtain from basic mechanics

that the pressure p(h) at a small altitude h above the surface of Earth obeys

p(h) = p0e
−μgh

RT

where p0 is the pressure at the surface. An alternate perspective can be

adopted by considering the distribution of molecules as a function of alti-

tude. Since the gravitational potential energy per molecule at altitude h

is mgh where m is the mass of a single molecule (the reference point has

been set at the surface of the Earth), the Boltzmann distribution implies

that the density ρ(h) of the atmospheric molecules varies with altitude h

according to

ρ(h) = ρ0e
−mgh

kT

where ρ0 is the density at the surface of Earth. Multiplying the numerator

and denominator of the exponent by the Avogadro’s number NA,

ρ(h) = ρ0e
−μgh

RT .

Since ρ = pμ
RT =⇒ ρ ∝ p for an ideal gas,

p(h) = p0e
−μgh

RT .

Maxwell–Boltzmann Distributions

The Boltzmann distribution can be applied to a single ideal gas molecule

by considering all other gas molecules as the heat reservoir. The resultant

distributions (for velocity and speed) are known as the Maxwell–Boltzmann

distributions. In this process, we are making the assumptions that there

are no intermolecular forces and that the intermolecular distances are large

as compared to the mean free path (average distance between consecutive

collisions) of molecules, such that collisions occur once in a blue moon. These

can be satisfied in the case of a very dilute gas. Then, we can approximately

say that the system (which is one gas particle) is at equilibrium with a

reservoir (all other particles), maintained at a temperature T .

In the case of a monoatomic molecule with only translational freedoms,

its total energy (excluding possible macroscopic energies) is given by

E =
1

2
mv2 =

1

2
mv2x +

1

2
mv2y +

1

2
mv2z

where the x, y and z-directions are arbitrarily chosen. Then, the probability

of a molecule having a velocity v between (vx, vy, vz) and (vx + dvx, vy +
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dvy, vz + dvz) is proportional to the Boltzmann factor. Since the molecules

are assumed to be identical, the distribution of molecules having velocity v

is identical to the probability distribution of the velocity of a single molecule.

That is, a single molecule is representative of the entire system of molecules

as they are identical. Then, the fraction of molecules having velocity v, f(v),

is also proportional to the Boltzmann factor.

f(v) = Ae−
m(v2x+v2y+v2z)

2kT

where A is a normalization factor. Note that we have already used the

isotropic nature of the distribution to conclude that f is strictly a function

of speed and independent of the direction of velocity. Now, we can evaluate

A by imposing the condition that
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
f(v)dvxdvydvz = 1.

Before this, let us go through a few integration tricks.

Integration Trick: Differentiating a Parameter

We shall discuss a general method for evaluating integrals of the form´∞
−∞ x2ne−αx2dx and

´∞
0 x2n+1e−αx2dx where α is a constant and n is a

non-negative integer. Firstly, we begin with the integral

Ix =

ˆ ∞

−∞
e−αx

2
dx.

Consider a second integral Iy =
´∞
−∞ e−αy2dy where y is a variable indepen-

dent of x. Due to this independence, the product of these integrals can be

evaluated by combining their integrands.

IxIy =

ˆ ∞

−∞

ˆ ∞

−∞
e−α(x

2+y2)dxdy.

These limits of integration are tantamount to the entire xy-plane. Therefore,

the above can also be computed in terms of polar coordinates by substituting

x = r cos θ and y = r sin θ. Then,

IxIy =

ˆ ∞

0

ˆ 2π

0
re−αr

2
dθdr

= 2π

ˆ ∞

0
re−αr

2
dr
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= 2π ·
[
−e

−αr2

2α

]∞
0

=
π

α
,

where we have also conveniently proven that
´∞
0 xe−αx2 = 1

2α . Since Ix = Iy,

ˆ ∞

−∞
e−αx

2
dx =

√
π

α
.

Now, notice that the integral above is a function of α.

I(α) =

ˆ ∞

−∞
e−αx

2
dx.

Then, we can take the total derivative of this integral with respect to α.

dI(α)

dα
=

d

dα

(ˆ ∞

−∞
e−αx

2
dx

)
.

Since α is independent of x which is the variable that we are integrating

with respect to, the derivative can be moved within the integral.

dI(α)

dα
=

ˆ ∞

−∞

∂

∂α

(
e−αx

2
)
dx =

ˆ ∞

−∞
−x2e−αx2dx.

Note that the total derivative becomes a partial derivative in the second

expression as the integrand is also a function of x. We already know the

exact expression for I(α), which is given by
√

π
α , such that dI(α)

dα = −1
2

√
π
α3 .

Then,

ˆ ∞

−∞
x2e−αx

2
dx =

1

2

√
π

α3
.

We can repeat this differentiation process to further evaluate expressions of

the form
´∞
−∞ x2ne−αx2dx in general.

ˆ ∞

−∞
x2ne−αx

2
dx =

(2n− 1)!

(n− 1)! · 22n−1

√
π

α2n+1

for n ≥ 1. Finally, in cases where we wish to compute
´∞
0 x2ne−αx2dx,

observe that the integrand is an even function such that
´∞
0 x2ne−αx2dx =

1
2

´∞
−∞ x2ne−αx2dx.
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Next, to evaluate4
´∞
0 x2n+1e−αx2dx, we start from

ˆ ∞

0
xe−αx

2
dx =

1

2α
.

In a similar vein, we can differentiate the above with respect to α within the

integral to conclude that
ˆ ∞

0
x3e−αx

2
dx =

1

2α2

and in general,
ˆ ∞

0
x2n+1e−αx

2
dx =

n!

2αn+1
.

Normalization

Returning to the previous velocity distribution, we require

A

ˆ ∞

−∞
e−

mv2x
2kT dvx

ˆ ∞

−∞
e−

mv2y
2kT dvy

ˆ ∞

−∞
e−

mv2z
2kT dvz = 1.

These are integrals of the form
´∞
−∞ e−αx2dx which can be evaluated to be

A ·
(
2πkT

m

) 3
2

= 1

A =
( m

2πkT

) 3
2
.

Then, the velocity distribution function is

f(v) =
( m

2πkT

) 3
2
e−

m(v2x+v2y+v2z)

2kT =
( m

2πkT

) 3
2
e−

mv2

2kT . (2.47)

It is convenient to express the above in terms of the thermal speed of gas

molecules, vth =
√

2kT
m , whose physical meaning is the most probable speed

of the gas molecules as we shall prove later.

f(v) =
1√
π3v3th

e
− v2

v2
th . (2.48)

4Note that it is meaningless to determine
´∞
−∞ x2n+1e−αx2

dx, which is just zero as the
integrand is an odd function.
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Distribution of a Component of Velocity

Next, we can derive the one-dimensional distribution of a particular compo-

nent velocity such as vx. That is, we are interested in the fraction of molecules

with a particular x-component of velocity vx —molecules with different com-

ponents in the other directions but the same component in the x-direction

still belong to the same class. We argue that the components of velocity of

the particles — namely vx, vy and vz — should be independent variables

as the different components of velocity should be uncorrelated. Then, the

fractional density of the particles attaining a velocity v between (vx, vy, vz)

and (vx + dvx, vy + dvy, vz + dvz) is the product of the respective fractional

densities.

f(v) = f(vx, vy, vz) = g(vx)g(vy)g(vz)

where g(vi) is the distribution along a particular component. Apportioning

the different variables (i.e. we put all functions of vx into g(vx), functions of

vy into g(vy) and so on) and normalizing yields

g(vx) =

√
m

2πkT
e−

mv2x
2kT =

1√
πvth

e
− v2

v2
th (2.49)

and so on for the other directions.

Speed Distribution

The speed distribution is

fs(v) = 4πv2f(v) = 4π
( m

2πkT

) 3
2
v2e−

mv2

2kT =
4v2√
πv3th

e
− v2

v2
th . (2.50)

We shall now prove that vth is the most probable speed (i.e. the maximum

of fs(v)). Consider the derivative of fs(v) with respect to v.

dfs
dv

=
8v√
π3v3th

e
− v2

v2
th − 8v3√

π3v5th
e
− v2

v2
th .

For this to be zero,

v = vth

where the physically incorrect negative solution has been rejected. Finally,

one can check that the value of dfsdv is positive for values of v slightly smaller

than vth and negative for values of v slightly larger than vth to show that
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this corresponds to a maximum. Moving on, fs(v) is graphed for two values

of T in Fig. 2.13.

Figure 2.13: Maxwell–Boltzmann speed distribution

fs(v) is zero at v = 0, has a maximum and tends to zero as v tends to

infinity. For larger values of T , the distribution becomes broader but the peak

value decreases as the area under the curve must still be unity. The peak

also shifts towards the right for larger values of T as vth increases. From the

Maxwell–Boltzmann speed distribution, the mean and mean square speeds

can be computed as

〈v〉 =
√

8kT

mπ
,

〈v2〉 = 3kT

m
.

This is an important result (but do not overrate its significance) as it relates

the temperature of an ideal gas to its mean squared speed. The mean trans-

lational kinetic energy is then related to the temperature according to

1

2
m〈v2〉 = 3kT

2
. (2.51)

The mean cube speed can also be shown to be

〈v3〉 =
√

128k3T 3

m3π
.

Problem: Determine the speed distribution fe(v) of molecules effused from

a small hole in a compartment given that the distribution of the original gas

in the compartment is Maxwellian and that the compartment is maintained

at a constant temperature T .

We have previously remarked that fe(v) is proportional to vfs(v) and

thus v3e
− v2

v2
th . Therefore,

fe(v) = Av3e
− v2

v2
th
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for some constant A. Normalizing the distribution requires

A =
1

´∞
0 v3e

− v2

v2
th dv

.

Since we have calculated that
´∞
0 x3e−αx2dx = 1

2α2 ,

A =
2

v4th
,

fe(v) =
2v3

v4th
e
− v2

v2
th =

m2

2k2T 2
v3e

− v2

v2
th .
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Problems

1. Real and Ideal Gas Thermometers*

A constant volume gas thermometer is constructed from connecting a gas

chamber of a fixed volume to a manometer. The difference Δh in liquid levels

in the manometer reflects the pressure of the gas in the chamber and the

temperature T of the gas can then be read off a pre-calibrated linear graph

between Δh and T . To measure the temperature of a substance (usually a

liquid), the gas chamber is immersed in the substance such that its temper-

ature becomes the temperature of the substance (the heat capacity of the

gas is negligible). Now, a certain constant volume gas thermometer contains

one mole of a gas whose equation of state is(
p+

a

V 2

)
(V − b) = RT

where a and b are characteristic constants of the gas. This is known as the

van der Waals equation of state and is commonly used to model real gases.

Another constant volume gas thermometer contains one mole of an ideal gas

which obeys the ideal gas law, pV = RT . The thermometers are calibrated

at the ice and steam points to give centigrade scales. Show that the two

thermometers will give identical readings when placed in thermal contact

with a substance of any temperature.

2. Connected Vessels*

Two thermally insulated vessels of volumes V1 and V2 initially contain

monoatomic gases of initial pressures and temperatures p1, T1 and p2, T2.

They are then linked by a thermally insulated tube. Determine the final

pressure p and temperature T .

3. Isobaric Compression*

A certain amount of helium is cooled at constant pressure p0. As a result,

its volume decreases from V0 to V0
2 . Find the amount of heat lost in this

process.

4. Balloon*

A helium balloon is allowed to rise to a height such that the external pressure

is half of the ground pressure p1. Its initial volume and temperature are V1
and T1 respectively. Assume that the envelope of the balloon is a perfect
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insulator and that the process is quasistatic. Calculate the final volume and

temperature of the gas and the amount of work done by the gas. (Singapore

Physics Olympiad)

5. Cyclic Process*

The current pressure and volume of an ideal gas are p0 and V0. It then

undergoes a cyclic process as follows. It first expands under the constraint

that p = p0
V0
V to (2p0, 2V0). Then, its pressure is reduced isochorically from

2p0 to p0. Finally, it contracts isobarically until its volume returns to V0.

Determine the heat absorbed during this cyclic process.

6. Pushing a Piston*

A thermally insulated container of cross sectional area A is separated into

two compartments, A and B, by a frictionless divider which is a perfect

insulator. Certain moles of an ideal gas with an adiabatic constant γ fill

the two compartments. A massless, thermally insulated piston at one end

of compartment B is initially maintained at some pressure p. Initially, the

system is at equilibrium such that volumes of A and B are 2
3Al and

1
3Al.

The pressure on the piston is then increased so gradually that the system is

always at equilibrium, until the combined volume of the two compartments

becomes Al′. If the temperature increments in the two compartments are

ΔTA and ΔTB respectively, determine the number of moles of ideal gas they

contain, nA and nB.

7. Moving a Division**

A gas-tight, thermally isolated cylinder of total volume V is divided into

two compartments A and B by a piston made of a conducting material,

which can be controlled by an external agent outside the cylinder. Initially,

A and B are of equal volume; they contain respectively 1 and 2 moles of

an ideal monoatomic gas, all at temperature T0 (the external agent holds

the piston in place). The external agent then moves the piston to a position

such that A and B possess final volumes V
3 and 2V

3 respectively. This is done

sufficiently slowly for the temperatures of the two gas samples to remain

uniform and equal throughout the process. Find an expression for the final

temperature of the system while neglecting the heat capacity of the cylinder

and piston.
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8. Pumping a Balloon**

A balloon with surface tension γ (be wary that this is not the adiabatic

index) is placed in a vacuum chamber and connected via a small tube to a

gas container with a piston. The total number of moles of gas in the balloon

and piston is n. The system is allowed to equilibrate such that the pres-

sure of the gas in the combined system is p0. If the system is maintained

at a constant temperature T and the pressure on the piston is quasistati-

cally varied — such that the system is always at thermodynamic equilib-

rium — until all gas molecules in the piston are transferred to the balloon,

determine the amount of work done on the gas by the piston. The final

pressure of the gas is p1. Assume that the balloon constantly maintains a

spherical shape.

9. Water Tap**

A container is partially filled with an ideal gas (on top) and incompressible

water of density ρ. The initial pressure of the gas is 2pa where pa is the atmo-

spheric pressure. If the small hole of area A of the bottom of the container

is opened such that water begins to flow out of the container, determine the

time required for the water to stop flowing if the ideal gas undergoes an

isothermal process such that nRT = k where k is a constant. Assume that

the flow of water is energy conserving and steady and neglect any differ-

ence in pressure due to the height of the water. The velocity of water inside

the container is also negligible. Assume that the temperature of the water

remains constant as well.

10. Pumping a Tyre**

A thermally insulated container with a movable, massless piston is connected

to a thermally insulated tyre of constant volume V via a thermally insulated

tube. During each pumping cycle, the valve in the tube is first closed. Then,

the piston is expanded until the pressure and volume of the gas becomes

pa and Va, by taking in air from the outside. The gas in the piston, which

has an adiabatic index γ, is then compressed adiabatically until its volume

becomes Va
2 . Finally, the valve is opened until equilibrium is reached between

the container and the tyre. If the tyre does not contain any gas initially,
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determine the minimum number of cycles required to increase the pressure

in the tyre to 2γ−1pa.

11. Rotating Gas**

An open container, exposed to the atmosphere, contains water of density

ρw. An “L-shaped” tube is inserted into it as shown in the figure below. The

diameter of the vertical part of the tube is negligible while the horizontal

part of the tube has a uniform cross sectional area and length l. Initially, the

tube is motionless such that the water level is completely flat at equilibrium.

Subsequently, the tube is rotated at a constant angular velocity ω about the

vertical column such that the water level in the tube is a height Δh above

the water level in the container at equilibrium. If the atmospheric pressure

and temperature are pa and T and if the molar mass of the gas inside the

tube is μ, determine Δh. Assume that the gas in the tube undergoes an

isothermal process and l2ω2 � RT
μ where R is the ideal gas constant.

12. Adiabatic Oscillation**

A small cork of cross sectional area A and mass m blocks the opening of a

wine bottle that is filled with an ideal gas with an adiabatic constant γ. If

the atmospheric pressure is p0 and the volume of gas inside the bottle is V0 at

the equilibrium state, determine the angular frequency of small oscillations

of the cork about its equilibrium position.
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13. Bouncing Ball**

A thermally insulated container with a constant cross sectional area A is

separated into an upper and lower compartment by a divider of mass M .

The two compartments are filled with certain moles of ideal gas which can

exchange heat with one another as the divider is not thermally insulated.

A small ball of a certain massm is stuck to the bottom face of the divider. Ini-

tially, the ratio of the volumes of the upper and lower compartments is 3 : 1

and the pressure of the gas in the upper compartment is p1. Then, the ball of

mass m falls from the divider and bounces on the bottom of the container,

until it eventually comes to rest at the bottom of the lower compartment. If

the final ratio of the volumes of the upper and lower compartments is 2 : 1,

determine m.

14. Dumping Water***

An inverted container with a constant cross sectional area and mass m is

floating with its base at the water level as shown in the figure below. The

height of the air column is h0. The plate holding back the water on top is

then removed such that water falls down at negligible velocity — causing

the instantaneous depth of the container, which is defined to be the distance

between the water level and the base of the container, to become h1. The

column of air between the two water sections dissolves and has no impact on

the system. Argue qualitatively that the container should sink. If the entire

set-up has a constant temperature T and the gas in the container instanta-

neously attains thermodynamic equilibrium at every depth of the container,

determine the velocity of the container at depth h (assume that h0
h is small).

Neglect atmospheric pressure. Now, interpret your results for h0 → 0.

Gas Flows

15. Combining Flows*

Two tubes carrying an identical ideal gas flowing at pressures p1, p2 and

temperatures T1, T2 merge at a junction into a combined third tube. If the
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flow velocities at all parts of the tubes are negligible and if the volume

flow rate in the first tube is k times that of the second tube, determine the

temperature T3 of the gas exiting from the third tube. The flow is and the

tubes are thermally insulated.

16. Sustaining a Fan*

A fan of cross sectional area A steadily takes in diatomic air molecules of

molar mass μ, pressure p1 and temperature T1 and expels it at velocity v2,

pressure p2 and temperature T2. Determine the electric power needed to

sustain the fan (assuming that it is perfectly efficient).

17. Speed of Sound**

This problem will explore an elegant way of deriving the speed of a one-

dimensional sound wave in a gaseous medium: c =
√

γp
ρ where γ, p and ρ

are the adiabatic index, ambient pressure and density of the gaseous medium.

Suppose that the sound wave travels adiabatically in the x-direction at veloc-

ity c and that the currently oscillating point along the medium travels at

a small velocity −v (v � c) in the lab frame. The density of the currently

oscillating section only differs from the ambient pressure by a small amount

Δρ� ρ. Think of a way to apply the equations describing steady flow (mass

and energy continuity). Through these two equations and the adiabatic con-

dition, you will obtain two equations that are linear combinations of two

variables (one of which is v) that are equated to zero. By exploiting the fact

that the determinant must be zero for the two variables to have non-trivial

solutions, determine c.

Kinetic Theory of Gases

18. Pressure*

Prove Eq. (2.39) by considering molecules traveling at a particular

z-component of velocity vz. You will have to relate 〈v2z 〉 to 〈v2〉. (Note that we
did not use this simple proof in order to expedite the derivation of Eq. (2.40).)

19. Equipartition Theorem*

Suppose that the energy of a system in a particular state, quantified by

the variable x which can range from −∞ to ∞, is E = αx2 where α is a

constant. If the probability of the system adopting a certain state follows

the Boltzmann distribution, show that the average energy of the system
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is 1
2kT , where k is the Boltzmann constant and T is the temperature of

the system. If the energy of the system in a particular state is now E =∑N
i=1 αix

2
i , where the x′is are independent variables that collectively define

a state and each ranges from −∞ to∞, show that the average energy is given

by N
2 kT .

20. Equilibrating Effusion*

A container is separated into two compartments of volumes V1 and V2
by a massive divider. The first compartment initially contains n0 moles

of an ideal gas while the other compartment is empty. If a hole, with a

diameter smaller than the mean free path of molecules, is made on the

divider and the two compartments are maintained at temperatures T1 and

T2, determine the pressure in each compartment when the system has

equilibrated.

21. Isothermal Leaking**

A hole of area A, whose diameter is smaller than the mean free path of gas

molecules, is punctured on the surface of a container of volume V that rests

in a vacuum. If the initial number density of ideal gas molecules inside the

container is η0 and the gas is constantly in a state of equilibrium, determine

the number density η(t) if the gas is maintained at a constant temperature

T and if each molecule has mass m. Then, determine the external power

supplied to the gas inside the cylinder. Neglect all form of energy loss, other

than that due to the escaping molecules.

22. Thermal Conductivity**

This problem concerns estimating the thermal conductivity of an ideal gas

via the kinetic theory of gases. By Fourier’s law of conduction, the heat flux

density, or the power delivered per unit perpendicular area, across an area

is proportional to the temperature gradient.

dq

dt
= −kdT

dz

where the z-direction has been set as the direction along which temperature

varies. q is the heat flow per unit area — implying that dq
dt is the power

per unit area. The negative sign in the above equation implies that heat
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flows from regions of higher temperature to regions of lower temperature.

Finally, k is the thermal conductivity which we aim to determine in this

problem.

Now, consider the following set-up. Two large plates parallel to the

xy-plane are located at certain z-coordinates. They are maintained at differ-

ent temperatures such that a steady, position-dependent temperature T (z),

that is strictly decreasing with increasing z, is set up in the region between

them. An ideal gas with f degrees of freedom fills this region.

(a) Argue qualitatively why there will be power delivered across a plane of

a constant z-coordinate based on the varying temperature T (z).

(b) It is known that the gas molecules have a mean free path λ. Now, consider

a class of gas molecules with a certain velocity that makes an angle θ with

the z-direction. If the gas molecules cut across a plane of z-coordinate

z at a particular instance, what is the average kinetic energy carried by

them?

(c) Using the previous result, determine the heat flux density and thermal

conductivity k across a plane of z-coordinate z, in terms of the degrees

of freedom of the gas molecules f , the number density η (assumed to be

uniform throughout), λ and the average speed 〈v〉 of the gas molecules

at a plane of z-coordinate z. Assume that λ is small such that second

order and above terms in λ are negligible.

23. Adiabatic Condition***

Through the kinetic theory of gases, show that a process involving a

monoatomic ideal gas in a thermally insulated container with a slowly mov-

ing and thermally insulated piston conserves the quantity TV
2
3 where T and

V are the instantaneous temperature and volume respectively. The speed

of the piston is very small as compared to the speed of the gas molecules.

Assume that the collisions between the gas molecules and the piston are

perfectly elastic.

24. Leaking Container***

A hole of area A, whose diameter is smaller than the mean free path of gas

molecules, is made on a thermally insulated container of volume V , that

is placed in a large vacuum. If the initial number density of gas molecules

inside the container is η0 and the initial temperature is T0, show that the
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number density η(t) obeys

η(t) =
1(

η
− 1

6
0 +A

√
kT0

72πmV 2η
1
3
0

)6

where m is the mass of one molecule. Assume that the gas inside the con-

tainer constantly attains a homogeneous equilibrium state. Hint: consider

the rate of change of number density and the internal energy of the gas

inside the container.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch02 page 131

Thermodynamics and Ideal Gases 131

Solutions

1. Real and Ideal Gas Thermometers*

Since V is constant, observe that both equations of state imply a linear

relationship between p and T . For the van der Waals gas,

p =
RT

V − b
− a

V 2

while for the ideal gas,

p =
RT

V
.

Since the height difference Δh between the two liquid levels in a manometer

is proportional to the difference between the pressure of the gas and the

(constant) atmospheric pressure, the above implies that Δh obeys a linear

relationship with T for both gases.

Δh = m1T + c1,

Δh = m2T + c2.

Since the calibration itself is used to fit a linear relationship between Δh

and T and because we know that the actual relationship between Δh and T

is indeed linear for both gases, both thermometers will correctly reflect the

real temperature of the substance measured. The readings are then naturally

the same.

2. Connected Vessels*

Since the vessels are thermally insulated, the total internal energy must be

conserved. U = 3
2nRT = 3

2pV for an ideal gas. Therefore,

3

2
p1V1 +

3

2
p2V2 =

3

2
p(V1 + V2)

p =
p1V1 + p2V2
V1 + V2

.

Next, the total number of moles is

n =
p1V1
RT1

+
p2V2
RT2

.

The final temperature is then

T =
p(V1 + V2)

nR
=

(p1V1 + p2V2)T1T2
p1V1T2 + p2V2T1

.
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3. Isobaric Compression*

Let the initial and final temperatures of the gas be T0 and T1 respectively.

By the ideal gas law,

T1
T0

=
V0
2

V0
=

1

2

=⇒ T1 =
T0
2
.

The heat transferred to the gas in the process is then

Q = ncpΔT =
5

2
nR

(
T0
2

− T0

)
= −5

4
nR

p0V0
nR

= −5

4
p0V0

where the negative sign indicates heat loss by the gas.

4. Balloon*

Let the final volume and temperature be V2 and T2 respectively. By the

adiabatic condition,

p1V
γ
1 =

p1
2
V γ
2

V2
V1

=

(
p1
p1
2

) 3
5

= 2
3
5

V2 = 2
3
5V1

since γ = 5
3 for a monoatomic gas (helium). By the ideal gas law,

T2
T1

=
p1
2 V2

p1V1
=

1

2
· 2 3

5 = 2−
2
5

T2 = 2−
2
5T1.

By the first law of thermodynamics, during an adiabatic process,

Wby = −ΔU

=
3

2
(p1V1 − p1

2
V2)

=
3(1 − 2−

2
5 )

2
p1V1.
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5. Cyclic Process*

The PV curve of the process is a right-angled triangle with side lengths p0
and V0. Therefore, the work done by the gas (the reader should check for

the sign) is

Wby =
p0V0
2

.

The internal energy of the gas remains the same after the process as the ini-

tial and final states are the same. Then, by the first law of thermodynamics,

the heat absorbed by the gas is

Q =Wby =
p0V0
2

.

6. Pushing a Piston*

At each intermediate stage of the process, the system is in an equilibrium

state such that the pressures in the two compartments are equal. Further-

more, since the walls are insulated, the gases in the two compartments

undergo adiabatic processes. Let UA = 2
3Al, UB = 1

3Al, VA and VB be

the respective initial and final volumes of the gases in the compartments. If

the final common pressure is p′,

p′V γ
A = pUγA,

p′V γ
B = pUγB .

Dividing the first equation by the second, it can be seen that the ratio of

the volumes of the compartments remains the same. That is, VA = 2
3Al

′ and
VB = 1

3Al
′. By substituting one of these expressions into the corresponding

equation above,

p′ =
plγ

l′γ
.

Applying the ideal gas law to the gas in compartment A,

nARΔTA = p′VA − pUA =
2

3
pAl

(
lγ−1

l′γ−1
− 1

)

nA =
2pAl

3RΔTA

(
lγ−1

l′γ−1
− 1

)
.

Similarly,

nB =
pAl

3RΔTB

(
lγ−1

l′γ−1
− 1

)
.
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7. Moving a Division**

An important point to note in this problem is that the pressures of the

two gases need not be equal at any instance in time (even when thermal

equilibrium has been attained) as the forces on the piston can always be

balanced by the external agent. Let VA be the instantaneous volume of com-

partment A. If the external agent moves the piston such that VA is changed

to VA + dVA at this instance, the work done by the external agent on the

system comprising the two gases is (PB−PA)dVA, where PA and PB are the

respective pressures of the gases in compartments A and B. In writing this,

we have noted that the change in volume of the gas in B must be −dVA.
By the work-energy theorem, the work done by the external agent must be

equal to the increase in internal energy of the two gases, 3cvdT = 9
2RdT ,

where T is the instantaneous common temperature of the gases.

(PB − PA)dVA =
9

2
RdT.

Substituting PA = RT
VA

and PB = 2RT
V−VA ,

RT

(
2

V − VA
− 1

VA

)
dVA =

9

2
RdT

ˆ V
3

V
2

(
2

V − VA
− 1

VA

)
dVA =

9

2

ˆ T

T0

dT

T

2 ln
V
2
2V
3

+ ln
V
2
V
3

=
9

2
ln
T

T0

ln
27

32
=

9

2
ln
T

T0

T = T0

(
27

32

) 2
9

= 0.963T0 (3sf).

8. Pumping a Balloon**

The total work done by a gas in an isothermal process is given by Eq. (2.13).

Therefore, the total work done on the gas is

Won = −nRT ln
Vf
Vi

= nRT ln
p1
p0

since pV is constant for an isothermal process. This is not work done by the

piston on the gas, Wpiston, on, as the balloon also performs work on the gas,
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Wballoon, on.

Wpiston, on +Wballoon, on =Won

Wpiston, on =Won +Wballoon, by

whereWballoon, by is the work done on the balloon by the gas. This is equal to

the negative change in surface energy of the balloon. Recall that the surface

energy of a spherical balloon is 4πγr2 where r is the radius of the balloon.

Let the initial and final radii of the balloon be r0 and r1. We know that

p0 =
2γ

r0
,

p1 =
2γ

r1
,

due to the pressure discontinuity caused by surface tension across the surface

of a spherical balloon at equilibrium. Solving the above for r0 and r1 in terms

of the respective pressures, the change in surface energy is

Wballoon, by = 4πγr21 − 4πγr22 =
16πγ3

p21
− 16πγ3

p20
.

Therefore,

Wpiston, on = nRT ln
p1
p0

+
16πγ3

p21
− 16πγ3

p20
.

Another method in evaluating the work done by the piston on the gas would

be to evaluate − ´ pdV directly, with V being the volume of gas in the gas

piston. Let the instantaneous pressure of the gas and the radius of the balloon

be p and r. Since the gas is at equilibrium at every instance,

p =
2γ

r
.

Furthermore, by the ideal gas law,

p =
nRT

4
3πr

3 + V
.

Substituting the expression for r in terms of p, obtained from the first equa-

tion, into the second equation,

p =
nRT

32πγ3

3p3 + V
.
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Simplifying,

V =
nRT

p
− 32πγ3

3p3

dV =

(
−nRT

p2
+

32πγ3

p4

)
dp.

The work done on the gas by the piston is then

Wpiston, on = −
ˆ
pdV =

ˆ p1

p0

(
nRT

p
− 32πγ3

p3

)
dp

= nRT ln
p1
p0

+
16πγ3

p21
− 16πγ3

p20
.

9. Water Tap**

Let the instantaneous pressure and volume of the gas be p and V . Then, p

and V are related by

pV = k.

Next, let v be the velocity of water gushing out of the hole. Applying

Bernoulli’s principle5 to the water level and the hole,

p = pa +
1

2
ρv2

v =

√
2(p − pa)

ρ
.

The volume flow rate of water is Av. This is also the rate of increase of the

volume of the gas, dVdt .

dV

dt
= A

√
2(p − pa)

ρ
.

Substituting p = k
V ,

dV

dt
= A

√
2
(
k
V − pa

)
ρ

.

5The reader may wonder if Bernoulli’s principle is valid in this context, especially after
perusing the section on gas flows. In our derivation of Bernoulli’s principle, the possible
change in the internal energy of a fluid was excluded. In the current situation, this does
not matter as the temperature of the water is uniform and because water is presumed to
be incompressible.
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The initial and final volumes are k
2pa

and k
pa
. Then,

ˆ k
pa

k
2pa

V√
kV − paV 2

dV =

ˆ t

0
A

√
2

ρ
dt.

To evaluate the left-hand side, use the substitutions V = k
2pa

sin θ+ k
2pa

and

dV = k
2pa

cos θdθ. Then,

ˆ k
pa

k
2pa

V√
kV − paV 2

dV =

ˆ k
pa

k
2pa

V

√
pa ·

√
k2

4p2a
−
(
V − k

2pa

)2 dV

=

ˆ π
2

0

k

2
√
p3a

sin θdθ +

ˆ π
2

0

k

2
√
p3a
dθ

=
k

2
√
p3a

+
kπ

4
√
p3a

=
k(2 + π)

4
√
p3a

.

Then, the time required is

A

√
2

ρ
t =

k(2 + π)

4
√
p3a

t =
k(2 + π)

√
ρ

A
√

32p3a
.

10. Pumping a Tyre**

Let the final pressure of the gas after the adiabatic compression be p′a. Then
by the adiabatic condition,

paV
γ
a = p′a

(
Va
2

)γ
p′a = 2γpa.

We have shown in a previous problem that when two thermally insulated

vessels of initial pressures and volumes p1, p2, V1 and V2 are connected, the
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final pressure is

p =
p1V1 + p2V2
V1 + V2

.

Let us apply this result to the current problem. Let the pressure inside the

tyre after the ith cycle be pi. Then, the equilibrium pressure after the (i+1)th

cycle is that obtained by connecting two thermally insulated vessels of initial

pressures and volumes 2γpa, pi,
Va
2 and V . Then,

pi+1 =
2γpaVa + 2piV

Va + 2V
.

The above can be simplified into

pi+1 − 2γpa =
2V

Va + 2V
(pi − 2γpa).

It can be seen that the above is a geometric progression with a constant

ratio 2V
Va+2V . Using the base case p0 = 0,

pn − 2γpa = −
(

2V

Va + 2V

)n
2γpa.

When pn = 2γ−1pa, (
2V

Va + 2V

)n
=

1

2

n = − 1

log2
2V

Va+2V

.

The minimum number of cycles is the ceiling of the above value.

11. Rotating Gas**

Firstly, understand that when the tube is rotated, the pressure p(r) in the

tube must vary as a function of radial distance r from the axis of rotation to

provide the centripetal force required by each gas section to remain at rest

relative to the tube. As a consequence of the ideal gas law, the density ρ(r) of

the gas must also vary with radial distance. Consider an infinitesimal section

of gas between radial distance r and r + dr. It has a mass density ρ(r) and

we define its cross sectional area to be A. Therefore, its mass is dm = ρAdr.

The external forces on this element are pA radially outwards and (p+ dp)A
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radially inwards. The net force must provide the required centripetal force.

dpA = dmrω2 = ρrω2Adr.

Then,

dp

dr
= ρrω2.

Furthermore, we know from the ideal gas law that

p =
ρ

μ
RT

=⇒ ρ =
pμ

RT
,

dp

dr
=
pμrω2

RTˆ p

p0

1

p
dp =

ˆ r

0

μrω2

RT
dr

ln
p

p0
=
μr2ω2

2RT

p(r) = p0e
μr2ω2

2RT ,

where p0 is the pressure at radial distance r = 0 (i.e. along the axis of

rotation). Now, our objective is to determine p0 as its difference with the

atmospheric pressure enables us to compute Δh via the pressure difference

caused by a static column of fluid. To this end, we can exploit the fact that

the total mass of gas in the tube must be the same as before. That is,

ˆ l

0
ρ(r)dr =

ˆ l

0
ρ0dr

where ρ0 is the uniform density of gas before the tube was rotated.

ρ0 =
μpa
RT

.

Substituting ρ(r) = μp(r)
RT , the above requires

pal =

ˆ l

0
p(r)dr

=

ˆ l

0
p0e

μr2ω2

2RT dr
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≈
ˆ l

0
p0

(
1 +

μr2ω2

2RT

)
dr

= p0

(
l +

μl3ω2

6RT

)

=⇒ p0 =
pa

1 + μl2ω2

6RT

≈ pa

(
1− μl2ω2

6RT

)
.

This difference in pressure causes the water to rise up the tube until

pa − p0 = ρwgΔh

Δh =
μl2ω2pa
6ρwgRT

.

12. Adiabatic Oscillation**

At the equilibrium position, the pressure of the gas inside the wine bottle is

p0+
mg
A so that the net force due to pressure balances the weight of the cork.

Now, consider a small displacement x upwards, such that the new volume of

the gas is

V = V0 +Ax = V0

(
1 +

Ax

V0

)
.

Let the pressure of the gas at this point be p. Applying Newton’s second law

to the cork,

mẍ = (p− p0)A−mg.

If the oscillations are small and thus slow (by the conservation of energy),

the process that the gas in the bottle undergoes is adiabatic. In an adiabatic

process, the quantity pV γ is a constant. Therefore,

pV γ =
(
p0 +

mg

A

)
V γ
0

mẍ =
(p0A+mg)V γ

0

V γ
− p0A−mg =

p0A+mg(
1 + Ax

V0

)γ − p0A−mg.

Performing a binomial expansion on the denominator and discarding second

order terms in Ax
V0

,

mẍ = (p0A+mg)

(
1− γAx

V0

)
− p0A−mg = −γ(p0A+mg)A

V0
x.
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The angular frequency of oscillations is thus

ω =

√
γ(p0A+mg)A

mV0
.

13. Bouncing Ball**

Let the initial pressures in the upper and lower compartment be p1 and

p2. Let the final pressures be p′1 and p′2. In order for the system to be in

mechanical equilibrium, the pressure differences must balance the pressure

due to the weight of the piston (and the weight of the ball in the first case).

p2 = p1 +
(m+M)g

A
,

p′2 = p′1 +
Mg

A
.

Next, we know that gases must have common initial and final temperatures.

Then, the ratio of moles in the two compartments are given by the ideal gas

law as

n1
n2

=
p1V1
p2V2

=
p′1V ′

1

p′2V
′
2

.

Substituting V1
V2

= 3,
V ′
1
V ′
2
= 2 and the expressions for p2 and p′2 in terms of p1

and p′1,

p′1 =
3p1Mg

2(m+M)g − p1A
.

Next, we can apply the conservation of energy to this system. The decrease

in gravitational potential energy of the ball must be equal to the increase in

the internal energies of the gases and the gravitational potential energy of the

divider. Equivalently, the falling ball supplies heat to the system during the

collisions. If we let the total volume of the container be V0,

mgV0
4A

=
3

2
(p′1V

′
1 − p1V1 + p′2V

′
2 − p2V2) +

MgV0
12A

.

Simplifying,

p′1 = p1 +
5mg

12A
− 5Mg

36A
.

Equating the two expressions for p′1 would yield a quadratic equation in m.

30m2g2 + (20Mg + 57p1A)mg − 36p21A
2 − 31p1AMg − 10M2g2 = 0.
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Solving for m,

m = −M
3

− 19p1A

20g
+

√
4

9
M2 +

5p1AM

3g
+

841p21A
2

400g2

where we have rejected the other solution which is negative.

14. Dumping Water***

Before the water falls onto the container, the upthrust is just enough to

balance the weight of the container. However, when water is dumped onto

the container, the pressure of the gas inside the container should increase —

causing it to contract under isothermal conditions. This results in a shrinking

volume of gas and thus a smaller value of upthrust — causing the container

to sink further. This propagates a vicious cycle as the more the container

sinks, the higher the pressure of the gas and the smaller the upthrust — thus

causing it to sink even further.

Let us now try to solve for the velocity of the container ḣ as a function

of its depth h. Let the density of water be ρ and the cross sectional area of

the container be A. Initially, the upthrust must balance the weight of the

container.

ρAgh0 = mg.

Under isothermal conditions, the quantity pV is conserved. The initial pres-

sure of the gas is ρgh0 = mg
A and the initial volume is Ah0. Therefore, the

conserved quantity is

pV = mgh0.

Now, we aim to calculate the height of the air column x at thermodynamic

equilibrium when the depth of the container is h. The pressure and volume

of the gas at this juncture are then ρg(h + x) and Ax. Then,

ρg(h + x)Ax = mgh0.

Since ρg = mg
Ah0

,

mg

h0
(h+ x)x = mgh0

x2 + hx− h20 = 0

x =
−h+

√
h2 + 4h20
2

=
−h+ h

√
1 + 4

h20
h2

2
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where we have rejected the negative solution. Performing a binomial expan-

sion and neglecting higher order terms in
h20
h2 ,

x =
−h+ h

(
1 +

2h20
h2

)
2

=
h20
h
.

Now, apply Newton’s second law to the container — the external forces on

it are its weight and the upthrust.

mḧ = mg − ρAxg = mg − mg

h0
x

ḧ = g − gh0
h
.

Expressing ḧ as ḣdḣdh and separating variables,

ˆ ḣ

0
ḣdḣ =

ˆ h

h1

(
g − gh0

h

)
dh

ḣ2

2
= g(h − h1)− gh0 ln

h

h1
,

where we have removed the absolute value brackets for the ln term as h > h1.

Then,

ḣ =

√
2g(h − h1)− 2gh0 ln

h

h1
.

When h0 → 0,

ḣ =
√

2g(h − h1)

which is just the velocity of a free-falling particle (as there is no upthrust

when h0 = 0). Technically, this limit is slightly incorrect as the container

should not have been able to stay afloat before the water was dropped.

15. Combining Flows*

Suppose that in time dt, dn1 and dn2 moles of gas molecules enter the

junction from the first and second tubes respectively. By mass continuity,

the number of moles leaving the third tube in this time interval must be

dn1 + dn2. One can now enforce the continuity of energy flow across the
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junction, similar to the section on gas flows, to show that

dn1cpT1 + dn2cpT2 − (dn1 + dn2)cpT3 = 0.

Since pdV = dnRT , dn1
dt = p1

RT1
dV1
dt and dn2

dt = p2
RT2

dV2
dt where dV1

dt and dV2
dt are

the volume flow rates in the respective tubes. Dividing the previous equation

by dt and substituting these,

p1
dV1
dt

+ p2
dV2
dt

−
(
p1
T1

dV1
dt

+
p2
T2

dV2
dt

)
T3 = 0.

Since
dV1
dt
dV2
dt

= k,

T3 =
(p1 + kp2)T1T2
p1T2 + kp2T1

.

16. Sustaining a Fan*

By Eq. (2.27), mass continuity requires

p1v1
T1

=
p2v2
T2

where v1 is the flow velocity entering the fan as the cross sectional area A is

common for both sides of the flow.

v1 =
p2T1
p1T2

v2.

Note that the molar flow rate is

ṅ =
p2Av2
RT2

.

Applying Eq. (2.28) with Q̇ = 0, the rate, work done by the fan on the gas

flowing through it is

Ẇon = ṅ

[
cp(T2 − T1) +

1

2
μ(v22 − v21)

]
.

Substituting cp =
7
2R for a diatomic gas and ṅ = p2Av2

RT2
,

Ẇon =
p2Av2
2RT2

[
7R(T2 − T1) + μ

(
1−

(
p2T1
p1T2

)2
)
v22

]

which is also the power required to sustain the fan.
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17. Speed of Sound**

Since the sound wave propagates at velocity c in the x-direction, the pressure

and density should be constant with time in a frame that travels at c in the

x-direction relative to the lab frame — implying that the flow is steady. In

this new frame, the speed of the oscillating section is c+ v while the speed

of the sections that are not oscillating is c. Enforcing mass continuity,

(ρ+Δρ)(c+ v) = ρc.

Furthermore, by Eq. (2.29) and neglecting the gravitational potential energy

terms,

1

2
μ(c+ v)2 + cp(T +ΔT ) =

1

2
μc2 + cpT

where μ and cp are the molar mass and isobaric molar heat capacity of the

medium. T is the ambient temperature and T + ΔT is the temperature of

the oscillating section. Discarding terms that are second order in v or Δρ in

the above equations,

ρv +Δρc = 0,

μcv + cpΔT = 0.

ΔT can be related to Δρ through the adiabatic condition. Since p1−γT γ =

constant and ρ ∝ p
T by the ideal gas law,

ρ1−γT = c

for some constant c. Taking the total derivative of the above,

(1− γ)ρ−γTdρ+ ρ1−γdT = 0

dT =
(γ − 1)T

ρ
dρ.

Since Δρ and ΔT are small,

ΔT ≈ (γ − 1)T

ρ
Δρ.

Substituting this expression for ΔT and summarizing our equations,

μcv +
cp(γ − 1)T

ρ
Δρ = 0

ρv + cΔρ = 0.
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The above set of equations can be written in matrix form as

(
μc

cp(γ−1)T
ρ

ρ c

)(
v

Δρ

)
=

(
0

0

)
.

For non-trivial solutions to exist for v and Δρ, the determinant of the first

matrix must be zero.

μc2 − cp(γ − 1)T = 0

c =

√
cp(γ − 1)T

μ
.

Notice that cp(γ − 1) = cp · cp−cvcv
=

cp
cv

· R = γR and μ
RT = ρ

p by the ideal

gas law such that the above becomes

c =

√
γp

ρ
.

18. Pressure*

Consider an infinitesimal area dA and define the z-axis to be parallel to its

area vector. Consider a class of molecules that are travelling at z-component

of velocity vz. In time dt, the volume of such molecules colliding with the

area is

vzdAdt.

The number of such molecules colliding the infinitesimal area, per unit time

and area is then

ηvzg(vz)dvz

where η is the number density of molecules and g(vz)dvz is the fraction of

molecules with z-components of velocity between vz and vz+dvz. The elastic

collision of one of such molecules with the wall results in 2mvz amount of

momentum transferred to the wall. The pressure on the wall due to this

class of molecules is then the rate of such molecules colliding with the wall,

per unit area, multiplied by the momentum transferred per molecule. The

total pressure is then obtained by integrating the above over all classes of
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molecules (i.e. vz from 0 to ∞).

p =

ˆ ∞

0
2ηmv2zg(vz)dvz .

Note that the integral
´∞
−∞ v2zg(vz)dvz = 〈v2z〉 — implying that´∞

0 v2zg(vz)dvz =
1
2〈v2z〉. Then,

p = ηm〈v2z 〉.

Now, we need to relate 〈v2z 〉 to 〈v2〉.

〈v2〉 = 〈v2x + v2y + v2z〉.

Since the different components of velocities are independent,

〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z 〉.

Moreover, the three directions are symmetrical such that 〈v2x〉 = 〈v2y〉 = 〈v2z〉.

〈v2z〉 =
1

3
〈v2〉,

p =
1

3
ηm〈v2〉.

19. Equipartition Theorem*

By the Boltzmann distribution, the probability of attaining a state x which

has energy αx2 obeys the relationship

p(x) ∝ e−
αx2

kT .

Therefore, the average energy is

〈E〉 =
´∞
−∞ αx2e−

αx2

kT dx´∞
−∞ e−

αx2

kT dx
=

1
2

√
πk3T 3

α3 · α√
πkT
α

=
1

2
kT

where integrals of the form
´∞
−∞ e−αx2dx and

´∞
−∞ x2e−αx2dx have been com-

puted previously. In the second scenario, the probability of attaining a state
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(x1, x2, ..., xN ) which has energy E =
∑N

i=1 αix
2
i is

p(x1, x2, . . . , xN ) ∝ e−
∑N

i=1 αix
2
i

kT .

The average energy is therefore

〈E〉 =
´∞
−∞
´∞
−∞ . . .

´∞
−∞

(∑N
i=1 αix

2
i

)
e−

∑N
i=1 αix

2
i

kT dx1dx2...dxN

´∞
−∞
´∞
−∞ ...

´∞
−∞ e−

∑N
i=1

αix
2
i

kT dx1dx2 . . . dxN

=

N∑
j=1

´∞
−∞
´∞
−∞ . . .

´∞
−∞ αjx

2
je

−
∑N

i=1 αix
2
i

kT dx1dx2 . . . dxN
´∞
−∞
´∞
−∞ ...

´∞
−∞ e−

∑N
i=1

αix
2
i

kT dx1dx2 . . . dxN

=

N∑
j=1

(´∞
−∞ αjx

2
je

−αjx
2
j

kT dxj

)
·∏i �=j

(´∞
−∞ e−

αix
2
i

kT dxi

)
∏N
i=1

(´∞
−∞ e−

αix
2
i

kT dxi

)

=
N∑
j=1

´∞
−∞ αjx

2
je

−αjx
2
j

kT dxj

´∞
−∞ e−

αjx
2
j

kT dxj

=

N∑
j=1

1

2
kT

=
N

2
kT.

20. Equilibrating Effusion*

The effusion rate is proportional to p√
T
where p and T are the pressure and

temperature of the gas. Let the pressures of the compartments at equilibrium

be p1 and p2. Then,

p1√
T1

=
p2√
T2
.

Note that the pressure on both sides are not necessarily equal for an equi-

librium to be attained as we just have to ensure that there is no net transfer
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of molecules. Moving on, the total number of molecules must be conserved.

p1V1
T1R

+
p2V2
T2R

= n0.

Solving the two equations above,

p1 =
n0RT1T2

V1T2 + V2
√
T1T2

,

p2 =
n0RT1T2

V2T1 + V1
√
T1T2

.

21. Isothermal Leaking**

From the effusion equation,

V
dη

dt
= −1

4
ηA〈v〉

ˆ η

η0

1

η
dη = −

ˆ t

0

A

V

√
kT

2πm
dt

η = η0e
−A

V

√
kT
2πm

t
.

To compute the power supplied to the container, we can subtract the total

rate of change of internal energy of the gas by the rate of kinetic energy lost

by the escaped molecules. The latter is given by Eq. (2.42) as

dE

dt
= −ηA

√
2k3T 3

mπ
.

The former can be obtained by differentiating U = 3
2ηV kT . Since V and T

are constant,

dU

dt
=

3

2
· dη
dt
V kT.

Therefore, the external power is

P =

∣∣∣∣dUdt − dE

dt

∣∣∣∣ = A

√
k3T 3

8πm
η0e

−A
V

√
kT
2πm

t
.

22. Thermal Conductivity**

(a) Consider a plane of a certain z-coordinate z. In time dt, some molecules

on the bottom and top of this plane crosses the plane. Since the bottom

region possesses a higher temperature, more molecules on the bottom
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cross the plane than those on the top and they carry a larger kinetic

energy with them. Then, there will be a net energy transfer from the

bottom to the top, across the plane at z-coordinate z.

(b) The molecules crossing the plane at coordinate z would have, on average,

traveled a distance λ since their last collision. Therefore, the molecules

traveling at an angle θ with respect to the z-axis would have traveled a

distance λ cos θ in the z-direction on average and are representative of

the temperature T (z − λ cos θ) as their kinetic energies do not change

until their next collisions. The average kinetic energy of such molecules

is then

f

2
kbT (z − λ cos θ)

where we have used kb to denote the Boltzmann constant to avoid con-

fusion with the thermal conductivity k.

(c) Now, consider the net energy change due to one molecule with speed v

and angle θ leaving the plane at z and due to one molecule arriving with

speed v and angle θ, with temperature T (z − λ cos θ). The net energy

change due to the exchange of one such pair of molecules is

−f
2
kbT (z) +

f

2
kbT (z − λ cos θ) ≈ −f

2
kbλ cos θ

dT

dz
.

Next, we know from Eq. (2.38) that the fraction of molecules with

speed v and angle θ crossing the plane, per unit area and time, is
1
2ηvfs(v) sin θ cos θdθdv. Therefore, the heat flux density is obtained by mul-

tiplying this by − f
2kbλ cos θ

dT
dz and integrating over all relevant v and θ. Note

that the limits of θ are from 0 to π as we want to encompass molecules from

both above and below the plane of z-coordinate z. However, by combining

these into a single integral, we are assuming that the temperature variation

is small across distances in orders of λ as fs(v) would change across dif-

ferent z-coordinates. Including such variations would result in second order

terms in λ in the expression for the heat flux density which will be discarded

anyway. Therefore, we can integrate over all relevant limits with a constant

fs(v), taken to be the speed distribution at coordinate z.

dq

dt
= −f

4
ηkbλ

dT

dz

ˆ π

0
sin θ cos2 θdθ

ˆ ∞

0
vfs(v)dv

= −f
6
ηkbλ〈v〉dT

dz
.



November 13, 2018 7:3 Competitive Physics 9.61in x 6.69in b3255-ch02 page 151

Thermodynamics and Ideal Gases 151

Therefore, the thermal conductivity is approximately

k =
f

6
ηkbλ〈v〉

where 〈v〉 is the average speed at z-coordinate z.

23. Adiabatic Condition***

Consider an infinitesimal area dA on the piston and define the positive x-

direction to be parallel to its area vector. Let the velocity of this area be u.

The number of molecules with an x-component of velocity vx colliding with

this area in time dt is

ηg(vx)dvx(vx − u)dAdt

where η is the number density of molecules and g(vx)dvx is the fraction of

molecules with an x-component of velocity between vx and vx + dvx. The

energy change in the gas due to collisions with the piston can be computed

by observing that the final x-component of velocity of a gas molecule is

(vx − 2u) in the reverse direction after a collision. Therefore, if the mass of

a molecule is m, the change in energy due to one collision is

1

2
m(vx − 2u)2 − 1

2
mv2x = −2muvx

where we have discarded the second order term in u. Therefore, the change

in internal energy of the ideal gas due to the collision between this class of

molecules with the infinitesimal area dA is

−2mηug(vx)v
2
xdvxdAdt.

Then, the total change in internal energy is obtained by integrating the

above over all classes of molecules and all areas on the piston. In the case of

the latter, we are essentially integrating udAdt over the surface of the piston

which results in an infinitesimal change in volume dV . Thus, the total change

in energy is

dE = −2mηdV

ˆ ∞

0
g(vx)v

2
xdvx.

Since
´∞
0 g(vx)v

2
xdvx = 1

2〈v2x〉,

dE = −mη〈v2x〉dV = −1

3
mη〈v2〉dV

where v is the speed of a molecule and the angle brackets represent taking

the mean of. Next, since the internal energy E of a gas is simply the total
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microscopic kinetic energy,

E =
N

2
m〈v2〉 = ηV

2
m〈v2〉

=⇒ mη〈v2〉 = 2E

V
.

Substituting this into the expression for dE,

dE = −2E

3V
dV

1

E
dE = − 2

3V
dV

lnE = −2

3
lnV + c

EV
2
3 = C

for some constant C. Next, E is proportional to 〈v2〉 and thus T (by the

Boltzmann distribution). We can also state that E is proportional to T

directly by the equipartition theorem which is actually a consequence of

the Boltzmann distribution. Exploiting E ∝ T , the quantity TV
2
3 must be

conserved.

24. Leaking Container***

From the effusion equation, we know that

V
dη

dt
= −1

4
ηA〈v〉

dη

dt
= −Aη

V

√
kT

2πm
.

From Eq. (2.42), the total rate of change of internal energy is

dE

dt
= −Aη

√
2k3T 3

mπ
.

Now, we need to solve the system of equations comprising dE
dt and dη

dt . In

this process, we note that T is a variable as the more energetic molecules

are favored in escaping the container — causing the average energy of the

molecules remaining in the container to decrease with time. Hence, we first
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express everything in terms of E and η to eliminate T . Since E = 3
2ηV kT ,

T =
2E

3ηV k

dη

dt
= −A

√
Eη

3πmV 3
,

dE

dt
= −A

√
16E3

27mηπV 3
.

From the two equations above,

dE

dt
=

4E

3η
· dη
dt

1

E
dE =

4

3η
dη

=⇒ E

η
4
3

=
E0

η
4
3
0

= c

where E0 = 3
2η0V kT0 is the initial energy. We let the right-hand side be c

for the sake of convenience. Since E = 3
2ηV kT = cη

4
3 ,

T =
2c

3kV
η

1
3 .

Substituting this expression for T into dη
dt ,

dη

dt
= −A

√
c

3πmV 3
η

7
6 .

Solving this differential equation by separating variables would yield the

desired result.

η(t) =
1(

η
− 1

6
0 +A

√
kT0

72πmV 2η
1
3
0

)6 .
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Chapter 3

The Second Law and Heat Engines

The first law of thermodynamics, which was the main focus of the previous

chapter, is basically the principle of the conservation of energy. It asserts that

energy should be conserved in physical processes but it does not delineate a

direction for physical processes. Hence, this chapter will discuss the second

law of thermodynamics which concisely sets a particular direction for all

processes, and examine its implications on heat engines and related systems.

3.1 Kelvin-Planck’s and Clausius’ Statements

In nature, certain processes are observed to only proceed in a single direction

spontaneously, though other processes that are consistent with the conserva-

tion of energy are seemingly possible. A cup of hot coffee will lose heat to its

cool surroundings but never gain heat from it, without any external work,

though the latter is perfectly coherent with the first law of thermodynamics.

The very notion of temperature does not help either. The zeroth law of ther-

modynamics only implies that when two objects are in thermal equilibrium,

they have the same temperature. It does not dictate the direction of heat

conduction.

More generally, the classical laws so far are temporally reversible. That

is, if you take a video of an egg that is dropped onto the ground, so precise

that you can track the motion of individual atoms, and reverse the video

such that a cracked egg reverts to a complete egg, the system in reverse will

still obey all the classical laws that have been introduced. Therefore, this

replay is permissible. However, we know from common experience that this

never seems to occur. Therefore, a new law — known as the second law of

thermodynamics — is needed to prescribe the direction of evolution of a

system.

155
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The second law of thermodynamics can be stated in various, equiv-

alent forms which are remarkably succinct. The two most intuitive ones

are Kelvin-Planck’s statement and Clausius’ statement. Kelvin-Planck’s

statement asserts that it is impossible to construct a perpetual motion

machine of the second kind — a cyclic engine whose sole effect is to

absorb heat from a heat reservoir and produce an equivalent amount of

work done. Note that a heat reservoir is defined to be a large reposi-

tory of internal energy (as compared to the system it is connected to)

such that its temperature stays approximately constant throughout heat

transfer. As a concomitant of Kelvin-Planck’s statement, an engine that

is 100% thermally efficient is precluded. Clausius’ statement, on the other

hand, purports that it is impossible to construct a device that solely trans-

fers heat from a body of lower temperature to one of higher tempera-

ture. Note that the word “solely” in the context of the two statements

implies that there should not be any changes imposed on the external

environment.

These seemingly disparate statements are actually equivalent, as we shall

show later, but for now, let us examine their ramifications on the feasibility

of various processes. Due to these axioms, some processes are deemed to

be impossible. Consequently, processes can be categorized as reversible or

irreversible. A reversible process is an evolution of a system from an initial

state to a final state such that there is a process that allows the system to

return to its initial state without leaving any changes to its surroundings.

An irreversible process does not satisfy this requirement. An important fact

to understand is that a process is deemed irreversible only if you try every

path from the final state to the initial state (the path is not necessarily

the original movie played in reverse) and the above criterion is still not

fulfilled.

Lastly, note that a system can always be reverted from a final state

to its initial state, regardless of whether the original process is reversible

or irreversible. However, this reversion may involve changes to the external

surroundings of the system if the original process was irreversible. Ultimately,

the reversibility of a process is a completely different concept from whether

a system can be restored to its original state — the former concerns whether

a system can be reverted without leaving any traces of the occurrence of the

original process.

Reversible processes are idealizations and do not exist in reality, both

because of inherent irreversibilities, such as friction, in practical processes

and the infeasibility in meaningfully using a reversible process, as we
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shall see. As a result of Kelvin-Planck’s and Clausius’ statements, the fol-

lowing processes are irreversible.

It is impossible to reverse any process in which heat due to friction is pro-

duced. A fraction of work done is inevitably converted to heat by friction. In

order to reverse the process, this heat must be converted back to an equiva-

lent amount of work done which violates the Kelvin-Planck’s statement. In

a similar vein, it is impossible to reverse any process that occurs too quickly.

If the intermediate states of a system are not in thermodynamic equilibrium,

frictional losses and turbulence will arise and these are irreversible based on

the previous argument. Therefore, a reversible process must first be qua-

sistatic — implying that it would take eons for a reversible process to be

completed.

Direct heat transfer from a high-temperature body to a low-temperature

body with a finite temperature difference is also irreversible due to Clausius’

statement. Since heat transfer can only occur across a temperature gra-

dient between two bodies, a reversible heat transfer process is physically

impossible. However, we can “cheat” for theoretical purposes by putting two

bodies with an infinitesimal temperature difference in thermal contact to

approximate a reversible heat transfer process. Such a conceptual process is

infeasible in real life as it would take an eternity for a significant amount of

heat to be spontaneously transferred.

Finally, it is also impossible to reverse a process in which a gas expands or

contracts without performing work or absorbing heat. An example of such a

phenomenon is a gas escaping a ruptured membrane to fill up the evacuated

portion of a thermally insulated container — this process is known as a Joule

expansion and will be analyzed later. We can prove this by contradiction.

Suppose that there were a reverse process for Joule expansion. Then, one

could first run an isothermal expansion from an initial state to a final state to

absorb a certain amount of heat and produce an equivalent amount of work

(as internal energy does not vary in an isothermal process). Afterwards,

running the reverse Joule expansion process1 would yield a cyclic system

which absorbs a certain amount of heat to produce the same amount of

work — hence violating Kelvin-Planck’s statement. As another corollary,

the process of mixing different gases is also irreversible as it is effectively

two Joule expansions of two gases.

1In order for a reverse Joule expansion process to be the reverse process of an isothermal
process, the final and initial temperatures of a Joule expansion must first be identical. This
is indeed the case as the gas does no work (there is no external pressure) and does not
receive any heat during a Joule expansion.
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3.2 Heat Engines and Refrigerators

A heat engine works by receiving heat from a heat source and producing

work. Its process is cyclic so that it can produce a steady output. As the

operation cannot be perfectly efficient — as forbidden by Kelvin-Planck’s

statement — some exhaust heat must be dumped into a heat sink so that the

system can return to its initial state. The schematic in Fig. 3.1 summarizes

the design of a heat engine.

Figure 3.1: Heat engine

In a single cycle, the heat engine draws QH amount of heat from the

high-temperature reservoir and deposits QL amount of leftover heat while

producing W = QH −QL amount of work. There must be zero net heat or

work flowing into the heat engine during a cycle as the internal energy of

the heat engine must remain unchanged after a single cycle.

Next, a refrigerator works in a different way — its essential function

is to extract heat from a low-temperature reservoir and to deposit it in a

high-temperature reservoir. In practice, heat is constantly transferred from

the lower-temperature refrigerant to the higher-temperature room in order

to keep the refrigerator cold. However, this cannot occur spontaneously, as

precluded by Clausius’ statement. Therefore, a refrigerator is a cyclic system

that operates by receiving a certain amount of work to bring some heat from

a low-temperature reservoir to one of higher temperature.

Referring to Fig. 3.2, in every cycle, the refrigerator extracts QL amount

of heat from a low-temperature reservoir and transfers QH amount of heat to

the high-temperature reservoir, requiringW = QH −QL amount of external

work in the process.
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Figure 3.2: Refrigerator

3.2.1 Equivalence of Kelvin-Planck’s and Clausius’

Statements

With an understanding of how heat engines and refrigerators work, we shall

now prove the equivalence of Kelvin-Planck’s and Clausius’ statements by

contradiction. Suppose there exists a device that violates Kelvin-Planck’s

statement. Then, we can use it as a heat engine and connect its output

to a refrigerator such that it supplies the necessary external power to the

refrigerator. Both devices are connected to the same low-temperature and

high-temperature reservoirs.

Figure 3.3: Conceptual set-up

As shown in Fig. 3.3, the hypothetical engine receives QH heat from the

high-temperature reservoir and delivers W = QH amount of work to the

refrigerator. The refrigerator then draws QL heat from the low-temperature

reservoir and stores QH +QL heat in the high-temperature reservoir. Now,

closely observe the part of the system that is enclosed by the dotted lines
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(the combined system comprising the heat engine and refrigerator). If we

were to place it inside a black box (no peeking!) and observe its effects from

the outside, we would obtain the equivalent system in Fig. 3.4 which acts as

a refrigerator.

Figure 3.4: Equivalent system

The equivalent system effectively draws QL amount of heat from the low-

temperature reservoir and deposits it completely into a high-temperature

reservoir — a phenomenon that is forbidden by Clausius’ statement. Thus,

we have proven that if Kelvin-Planck’s statement is violated, Clausius’ state-

ment would be violated as well. To prove the converse, we consider a similar

set-up. Suppose there exists a device whose sole effect is to deliver QL amount

of heat from a low-temperature reservoir to a high-temperature one. Then,

we can use this system as a refrigerator to continuously pump the heat,

deposited during a heat engine cycle, back into the heat source.

Figure 3.5: Conceptual set-up 2
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Referring to Fig. 3.5, a heat engine absorbs QH heat from a high-

temperature reservoir and releases QL heat back into a low-temperature

reservoir, producing W = QH −QL amount of work to an external system

in the process. The hypothetical refrigerator then pumps QL heat from the

low-temperature reservoir back into the heat source. By considering the heat

engine, refrigerator and the heat sink as a whole, one would obtain a heat

engine which absorbs QH − QL amount of heat from the heat source and

produces W = QH − QL amount of work — a perfectly thermally efficient

device which is forbidden by Kelvin-Planck’s statement. Having proven the

converse, we have shown that Kelvin-Planck’s and Clausius’ statements are

in fact equivalent.

3.2.2 Carnot’s Principles

Kelvin-Planck’s and Clausius’ statements prescribe a theoretical limit on the

efficiencies of heat engines and refrigerators — measures that we shall now

quantify. Since the purpose of a heat engine is to produce useful work, the

efficiency η of a heat engine is defined as the work produced W divided by

the total amount of heat input QH .

η =
W

QH
=
QH −QL
QH

= 1− QL
QH

(3.1)

where QL is the total heat deposited into heat sinks. In general, QH is

not necessarily extracted from a single heat source and can be accumu-

lated across different heat sources at different junctures in a heat engine

cycle. Similarly, heat can also be deposited into various heat sinks at differ-

ent instances. However, for this section, we will solely be studying systems

operating between two reservoirs which means that these systems can only

exchange heat with this fixed pair of reservoirs and nothing else.

Since the purpose of a refrigerator is to extract heat from a low-

temperature reservoir, the efficiency of a refrigerator is quantified by the

ratio of the total amount of heat extracted to the external work received.

This measure is known as the coefficient of performance (COP).

COP =
QL
W

=
QL

QH −QL
. (3.2)

It should be noted that the COP can be greater than unity (this is why

the misleading word “efficiency” is not used for refrigerators). Proceeding

to the main topic, Carnot deduced certain principles concerning these effi-

ciencies from Kelvin-Planck’s and Clausius’ statements. Carnot’s principles

state that
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(1) An irreversible heat engine is less efficient than a reversible heat engine

when operating between the same two heat reservoirs. The COP of an

irreversible refrigerator is smaller than that of a reversible refrigerator

when operating between the same two reservoirs.

(2) The efficiencies of all reversible heat engines operating between identical

pairs of heat reservoirs are the same. Accompanying this, the coefficients

of performance of all reversible refrigerators operating between identical

pairs of heat reservoirs are the same.

We can prove the two claims by contradiction. A crucial component of our

proofs would entail the fact that a reversible heat engine, unsurprisingly,

can be reversed to operate as a refrigerator with the same QH , QL and W

(except that they are in the opposite directions) and vice-versa. Beginning

with the first principle, we assume that an irreversible heat engine is more

efficient than a reversible heat engine. We then connect this irreversible heat

engine and the reverse of the reversible heat engine (a refrigerator) to the

same pair of heat reservoirs in Fig. 3.6.

Figure 3.6: Conceptual set-up 3

The irreversible heat engine extracts Q′
H heat from the source and pro-

ducesW amount of work which is used to power the refrigerator. The exhaust

heat is then Q′
H −W . The refrigerator then extracts QH −W heat from the

low-temperature reservoir and deposits QH amount of heat into the high-

temperature one. Since the efficiency of the irreversible heat engine is greater

than that of the reversible heat engine (which is currently running in reverse),

W

Q′
H

>
W

QH

=⇒ QH > Q′
H
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and

QH −W > Q′
H −W.

Now, consider the combined system of the heat engine and refrigerator.

Its sole effect is to deliver QH−Q′
H amount of heat from the low-temperature

reservoir to the high-temperature reservoir, in contravention of Clausius’

statement. Therefore, the efficiency of an irreversible engine must be less

than or equal to that of a reversible engine. However, the equality case can-

not hold — if not, the fridge will be the reverse process for the irreversible

heat engine (as the combined system of the heat engine and fridge results

in no heat and work everywhere) and thus violate the premise. The effi-

ciency of an irreversible engine must then be less than that of a reversible

engine. In the case of refrigerators, one can assume that an irreversible

refrigerator has larger COP than a reversible refrigerator and consider a

similar set-up by running the reversible refrigerator in reverse as a heat

engine that supplies work to the irreversible refrigerator. The combined set-

up would then violate Clausius’ statement — leading to the conclusion that

the COP of an irreversible refrigerator is smaller than that of a reversible

refrigerator.

To prove the second claim, compare two reversible engines A and B.

Suppose that A is more efficient than B. Then, one can use A as a heat

engine, in replacement of the irreversible heat engine, and run B in reverse as

the refrigerator in the previous set-up. Then, one would conclude that Amust

be less efficient or equally efficient as B. Afterwards, one can reverse the roles

of A and B to conclude that B must also be less efficient or equally efficient

as A. Therefore, A and B must have the same efficiency. Since a reversible

refrigerator is its equivalent reversible heat engine in reverse, the coefficient

of performance of the refrigerator and the efficiency of its equivalent heat

engine can be related, if the heat reservoirs remain unchanged. From the

definitions of efficiency and COP and the facts that the magnitude of the

heat transfers and work are the same,

COP =
1

η
− 1.

Therefore, if all reversible heat engines have the same η, all reversible refrig-

erators should also have the same COP. Lastly, take note that these argu-

ments did not mention the working substance — the medium facilitating

the process — of the heat engines or refrigerators. Then, the efficiencies and

COPs of reversible heat engines and refrigerators across a constant pair of

reservoirs are independent of their working substance. This means that the
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efficiencies of a reversible heat engine that uses an ideal gas as its medium

and one that uses a real gas are the same across the same two reservoirs!

Thermodynamic Temperature

In this section, we shall study how the efficiency of reversible heat engines

can be used to formalize the definition of temperature through the Kelvin

scale. We have just concluded that the efficiency of a reversible heat engine

is independent of the engine process and the working substance. Then, the

efficiency η, and thus QL
QH

, can only be functions of the temperatures of the

high-temperature and low-temperature heat reservoirs, TL and TH .

QL
QH

= f(TL, TH).

Now, observe that we can choose the reversible heat engine that oper-

ates between a high-temperature reservoir at temperature TH and a low-

temperature reservoir at temperature TL as one that consists of the two

reversible heat engines and a middle-temperature reservoir at temperature

TM in Fig. 3.7.

Figure 3.7: Engine comprising two reversible heat engines
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The combined system, enclosed in dotted lines, is still a reversible heat

engine operating between the two reservoirs. Now, we know that

QM
QH

= f(TM , TH),

QL
QM

= f(TL, TM ),

where QM is the heat delivered via the middle reservoir. Then,

QL
QH

=
QL
QM

· QM
QH

f(TL, TH) = f(TL, TM ) · f(TM , TH).
Observe that the left-hand side is independent of TM . The only way for this

equation to be satisfied is for

f(TL, TM ) =
g(TL)

g(TM )
,

f(TM , TH) =
g(TM )

g(TH)
,

for some function g(T ) so that the terms in TM cancel. That is, in general,

f(Tx, Ty) =
g(Tx)

g(Ty)
.

Therefore, for a heat engine receiving QH from a heat source at temperature

TH and depositing QL into a heat sink of temperature TL,

QL
QH

=
g(TL)

g(TH)
.

We can choose any monotonic function g(T ) — the exact function will deter-

mine how the temperature scale is defined. Lord Kelvin chose the simplest

function g(T ) = T and established his Kelvin scale. On this scale, the ratio

between two temperatures is equal to the ratio between the heat transferred

to and from a reversible heat engine connected to reservoirs of those two

temperatures. This definition of temperature is independent of any ther-

mometric, physical property — such as the expansion of mercury — and

is thus known as a thermodynamic scale. Lastly, we need to have a refer-

ence temperature in order to define all other temperatures. In accordance

with international standards, 273.16K is defined to be the triple point of

water (the unique temperature at which the solid, liquid and gaseous phases

of water co-exist). Then, all other temperatures can be defined by setting
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TL or TH as 273.16K. For example, suppose that a heat engine connected

between a heat source at temperature T and a heat sink at 273.16K draws

QH heat from the source and deposits Qref heat into the sink. Then the

temperature T in Kelvins, is given by

Qref
QH

=
273.16K

T

=⇒ T =
QH
Qref

· 273.16K.

Thankfully, this novel thermodynamic scale does not differ much from the

previously pervasive Celsius scale. The magnitude of an additional Kelvin

is in fact equal to the magnitude of an additional degree Celsius and the

conversion formula between Kelvins and degree Celsius is

T (K) = T (◦C) + 273.15.

As a result of the Kelvin temperature scale, the efficiency of a reversible heat

engine operating between a heat source and sink at respective temperatures

TH and TL is by definition

η = 1− QL
QH

= 1− TL
TH

(3.3)

where TL and TH are measured in Kelvins.

3.2.3 What does it take to be Reversible?

— The Carnot Engine

Now that we have established that a reversible engine is the most efficient

when operating between a pair of heat reservoirs and have determined its effi-

ciency, let us analyze the criteria required for such an engine to be reversible.

Firstly, the operation of the engine must be frictionless and quasistatic, as

we have previously shown that processes involving friction are irreversible.

Secondly, when the engine exchanges heat with a reservoir, the engine’s

temperature must be identical to the reservoir’s temperature. This point is

less obvious so we shall provide a formal proof. Referring to Fig. 3.8, use a

reversible heat engine to deliver work to its refrigerator counterpart (which

exists due to its reversible nature), while operating between the same pair

of heat reservoirs.

Observe that if we isolate the engine, refrigerator and heat sink, this com-

bined system withdraws QH from the heat source and returns it back — all

while leaving no traces in itself and external entities. Therefore, the trans-

fers of QH between the engine and the heat source as well as between the
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Figure 3.8: Reversible heat engine and refrigerator (reverse engine)

refrigerator and the heat source must be reversible! The only way for this

to occur is when the engine and refrigerator temperatures are equal to that

of the heat source during the process of heat exchange. By considering the

engine, refrigerator and heat source as a combined system, we can similarly

deduce that the engine and refrigerator temperatures must be identical to

that of the heat sink during their interactions.

With this knowledge, we can now construct a reversible heat engine.

There can only be two states of the engine — when it is exchanging heat

with a reservoir and when it is not. In the case of the former, its temper-

ature, must be equal to the reservoir’s temperature, so the only way for

it to exchange significant heat is to undergo an isothermal process (at the

reservoir’s temperature). In the case of the latter, since the engine cannot

interact with other entities beside the reservoirs by assumption, it can only

undergo an adiabatic process. As such, we have drastically narrowed down

the possible processes (absent of frictional losses) of a reversible engine that

operates between a pair of reservoirs.

Now, the total number of reversible engines with the maximum efficiency

1− TL
TH

actually depends on a slight technicality in the definition of efficiency.

When we say that the engine withdraws QH amount of heat from the heat

source, one perspective is that the engine can only receive heat from the

heat source at each juncture and cannot lose any heat to it (i.e. it is a one-

way heat flow of QH). Another perspective is that the engine can receive

and return heat from and to the heat source, for a net heat intake of QH .

Evidently, the former definition is more restrictive, but it is in fact the more

pervasive one. This is because in a more general cycle which interacts with a

multitude of reservoirs, the heat sources and sinks are not labeled for us. We

then usually take the reservoirs that the system gains or loses heat from and

to as the heat sources and sinks respectively. That is, when we are computing
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the total heat input to a system (for efficiency calculations), we can simply

add the values of heat influxes and ignore the heat outflows.

Adopting the former perspective, there is in fact only one set of pro-

cesses that a reversible system operating between two reservoirs can undergo.

Visualizing the PV diagram of our engine, we have two enforced isotherms

(at the temperatures of the reservoirs) and only adiabats to connect them.

A reversible heat engine operating between two reservoirs must thus entail

two isotherms and two adiabats, as depicted in Fig. 3.9.

Figure 3.9: Carnot cycle

(1) 1 → 2: An isothermal expansion

(2) 2 → 3: An adiabatic expansion

(3) 3 → 4: An isothermal compression

(4) 4 → 1: An adiabatic compression

In particular, the Carnot engine follows this set of operations and uses an

ideal gas as its working fluid. Now, let us practice deriving the efficiency of a

heat engine by verifying Eq. (3.3) for the Carnot engine. In this derivation, it

is important to note that the engine only receives heat during process 1 → 2

from a heat source of temperature TH and deposits heat during process 3 → 4

to a heat sink of temperature TL. Let the pressure, volume and temperature

of the ith state of the ideal gas system (i ranges from 1 to 4) in the Carnot

engine be pi, Vi and Ti. Note that T1 = T2 = TH and T3 = T4 = TL as there

cannot be a finite temperature difference during a reversible heat transfer.

By the ideal gas equation,

p1V1 = p2V2 =⇒ p2
p1

=
V1
V2
, (Isothermal)

p3V3 = p4V4 =⇒ p3
p4

=
V4
V3
. (Isothermal)
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Based on the adiabatic condition,

p2V
γ
2 = p3V

γ
3 ,

p1V
γ
1 = p4V

γ
4 .

Dividing the former equation by the latter and substituting the results we

obtained from the two equations at the top,(
V2
V1

)γ−1

=

(
V3
V4

)γ−1

=⇒ V2
V1

=
V3
V4
.

The heat absorbed during process 1 → 2, QH , and the heat ejected during

3 → 4, QL, can be calculated by the first law of thermodynamics since the

internal energy of a gas does not change during an isothermal process.

QH =W12by =

ˆ V2

V1

nRTH
V

dV = nRTH ln
V2
V1
,

QL = −W34by = −
ˆ V4

V3

nRTL
V

dV = nRTL ln
V3
V4
.

There is a negative sign in front of QL as it is defined to be the heat ejected

from the system during process 3 → 4 (and not heat supplied to the ideal

gas). Thus, the efficiency of a Carnot engine is

η = 1− QL
QH

= 1− nRTL ln
V3
V4

nRTH ln V2
V1

= 1− TL
TH

where we have used the fact that the ratios of the volumes are equal. This

is to be expected as we have precisely defined temperature according to the

Kelvin scale to ensure this!

3.3 Clausius’ Inequality and Entropy

Scrutinizing the efficiency of a reversible heat engine that is operating

between two heat reservoirs at temperatures TL and TH , we observe that

QL
QH

=
TL
TH

. (3.4)

If we now standardize the sign of heat flow such that heat supplied to a

system is positive while heat extracted from a system is negative, we have
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for a reversible engine

−QL
QH

=
TL
TH

as QL was previously defined to be a positive quantity that represents the

heat extracted from the system into a heat sink. Rearranging,

QL
TL

+
QH
TH

= 0.

Note that QL and QH are the only heat exchanges of the system with an

external environment and these exchanges must occur when the system is at

temperature TL and TH respectively (as there cannot be a finite temperature

gradient during a reversible heat transfer). Therefore, we can write the above

sum as a path integral along the cycle that the system takes˛
δQ

T
= 0,

where δQ is an infinitesimal heat transfer (positive if it is a heat input) and

T is the instantaneous temperature of the system along the path it takes.

The loop superimposed on the integral underscores the fact that this path

is a complete cycle (i.e. starts and ends at the same point). Note that the

integrand is only non-zero when the system is exchanging heat with the two

reservoirs and hence evaluates to the previous sum above. We see that the

integral of δQT over a reversible engine cycle operating between two reservoirs

must be zero! This brings us to the question of determining this integral

along general cycles, both reversible and irreversible. The answer to this is

Clausius’ inequality.

Clausius’ Inequality: For any arbitrary cyclic process that a closed system

undergoes, ˛
δQ

T
≤ 0, (3.5)

where δQ is an infinitesimal heat transfer into the system and T is the

instantaneous temperature of the system at each juncture along its path.

A closed system refers to a system in which no mass exchange with an

external environment occurs. The equality case holds if and only if the cycle

is internally reversible.

Now, it is important to make a distinction between internal and external

irreversibilities (we have held this off till now). We will only consider closed

systems. An internally reversible process is one in which no irreversibilities,

such as friction and heat transfer between components of a system with a
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finite temperature gradient, occur within a system. Due to this definition, an

internally irreversible process that a system undergoes must be quasistatic.

However, irreversibilities at the boundaries of the system, such as heat trans-

fer between the system and its external environment across a finite temper-

ature difference, is still allowed. A process involving a system is externally

reversible if no irreversibilities occur during the interaction of the system and

its environment at their boundaries. Lastly, a process is totally reversible if

it is both internally and externally reversible. This total reversibility is what

we have been considering up till now.

Proof of Clausius’ inequality: A closed system undergoing a general

cyclic process may be connected to various reservoirs of different tempera-

tures at different junctures along the cycle. Then, let the ith reservoir in the

process2 have a temperature Ti in Fig. 3.10. Its temperature is matched to the

instantaneous temperature of the system during their point of interaction.

Now, consider the following hypothetical set-up where all of the reservoirs,

that are in direct correspondence with the system, are connected to a com-

mon principal reservoir of temperature Tp via reversible engines. Each engine

may function as a heat engine or a refrigerator.

Figure 3.10: System connected to an array of heat reservoirs

During the ith infinitesimal step along the cycle, the principal reservoir

supplies a certain amount of heat to the ith reversible engine which produces

2We will consider the case of discrete reservoirs first, for the sake of clarity.
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δWi amount of work in the process. The ith engine also transfers δQi heat to

a reservoir of temperature Ti, which in turn delivers δQi heat to the system.

We can in fact relate δWi to δQi as the facilitator is a reversible engine which

obeys

δQL
TL

=
δQH
TH

δW =

(
TH
TL

− 1

)
δQL

=⇒ δWi =

(
Tp
Ti

− 1

)
δQi.

In a single complete cycle, which comprises myriad such infinitesimal steps,

the system takes in a net heat of
∑
δQi and hence produces Ws =

∑
δQi

amount of work. It cannot keep any heat as internal energy because it returns

to its original state. Note that the system does not directly contravene

Kelvin-Planck’s statement as some δQi may be negative — implying that

some heat flows out of the system too. With that out of the way, consider

all auxiliary reservoirs and the system as a combined system in Fig. 3.11.

Figure 3.11: Equivalent system

The net effect of the combined system is seemingly to absorbWs+
∑
δWi

amount of heat from the principal reservoir and produce an equivalent

amount of work. Since this is forbidden by Kelvin-Planck’s statement,

Ws +
∑

δWi ≤ 0.

Substituting Ws =
∑
δQi and δWi = (

Tp
Ti

− 1)δQi,∑
δQi +

∑(
Tp
Ti

− 1

)
δQi ≤ 0

Tp
∑ δQi

Ti
≤ 0.
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Changing the above from a discrete sum to a closed loop integral (by imag-

ining the hypothetical set-up as a continuous, infinite series of reservoirs)

and dividing by Tp which is a positive quantity,

˛
δQ

T
≤ 0

for an arbitrary cyclic process taken by the system. Since we have matched

the temperatures of the auxiliary reservoirs to the instantaneous tempera-

ture of the system, T here represents the temperature of the system so this

inequality strictly involves only quantities of the cyclic system.

To show that the equality case must hold if the cycle is internally

reversible, we first realize that an internally reversible cycle of the system

is fully reversible in this context as it only interacts with heat reservoirs

with infinitesimal temperature gradients. Now, suppose that the integral is

negative such that Ws +
∑
δWi is negative in the previous set-up. Then,

reversing the system and all the reversible heat engines would yield a com-

bined system with a positive Ws +
∑
δWi — an evident contradiction as it

violates Kelvin-Planck’s statement.

To show that an irreversible cycle must result in a negative value of

the closed loop integral, suppose that the integral results in zero such that

Ws +
∑
δWi is zero. Then, the combined system, comprising the set of reser-

voirs and the system, draws no heat from the principal reservoir and per-

forms zero net work on the external environment. The states of the interior

of the combined system — the system and the reversible engines — have not

changed either as all processes are cyclic. The combined system thus results

in no change to the environment and itself — showing that each part of it

must be totally reversible and contradicting the premise of the irreversibility

of the original system. The equality case then occurs if and only if the cycle

is internally reversible.

3.3.1 Entropy

Clausius’ inequality implies that
˛
δQrev
T

= 0

for any internally reversible, cyclic process. A subscript has been added to

highlight the fact that this cycle must be internally reversible. As this integral

is zero for all such cycles, the following integral from an initial state 1 to

a final state 2 via an internally reversible route is solely dependent on the
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initial and final states.

ΔS =

ˆ 2

1

δQrev
T

. (3.6)

The above integral is defined as the change in entropy from state 1 to 2, ΔS.

Though the calculation of ΔS is performed over an internally reversible path,

the entropy changes between an initial and final state along all paths are

the same — the system can even undergo an irreversible process. ΔS is only

dependent on the initial and final states of a system and the absolute entropy

S, assuming that it exists,3 is a state function that is defined uniquely for

each state of the system.

Figure 3.12: Cycle

Referring to Fig. 3.12, consider a cyclic process where a system takes a

general route, internally reversible or irreversible, from an initial state 1 to a

final state 2 and takes an internally reversible route back to the initial state.

Applying Clausius’ inequality,
ˆ 2

1

δQ

T
+

ˆ 1

2

δQrev
T

≤ 0

where the first integral is along the general path and the second integral is

along the internally reversible route. Rearranging,
ˆ 2

1

δQrev
T

≥
ˆ 2

1

δQ

T

ΔS ≥
ˆ 2

1

δQ

T
.

Now for an isolated system which involves no mass and heat transfer, δQ is

zero such that

ΔS ≥ 0. (3.7)

3It actually does but this is beyond the scope of this book and is not germane here.
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The entropy of an isolated system can only increase! This is another com-

mon statement of the second law of thermodynamics. The equality case

only occurs when the process in the system is internally reversible. Apply-

ing this idea to the entire universe (the set of all particles) which is

considered as an isolated system, the entropy of the universe can only

increase!

We can use this notion of entropy to determine whether a process in a

system A is totally reversible. Since the entire universe contains all possible

systems, including those that system A interacts with, the process in A

is totally reversible if and only if this process, with respect to the entire

universe, is internally reversible (since external reversibilities of the process

with respect to A also become internal irreversibilities of the universe). Then,

the process in a system is totally reversible if and only if it does not result in

a net entropy change of the universe. At this juncture, we may be confused

by internal and external irreversibilities. The distinction between them is

entirely dependent on the choice of the system as the following example

shall illustrate.

Problem: Consider two bodies of different temperatures T1 and T2 that

are brought into thermal contact with T1 > T2. An infinitesimal amount

of heat, dQ, is transferred from the high-temperature body to the low-

temperature body. The two bodies only interact with each other and not

other parts of their surroundings. Is the high-temperature body under-

going an internally reversible process? What about the low-temperature

body? What about the combined system? Which of the above systems are

isolated systems? Find the entropy changes of each body and the entire

universe.

The one-body systems are both undergoing an internally reversible pro-

cess as heat transfer with an external system is not counted as an irreversibil-

ity within the system. The combined system comprising both objects does

not undergo an internally reversible process as there is heat transfer within

components of the system. Only the system comprising both objects is an

isolated system as there is no heat transfer between this system and its sur-

roundings. The infinitesimal changes in entropy of the high-temperature and

low-temperature bodies are

dSH = −dQ
T1
,

dSL =
dQ

T2
.
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The net change in entropy of the entire universe is the sum of these changes.

dStotal =
dQ

T2
− dQ

T1
> 0

as dQ is a positive quantity and T1 > T2. As expected of an irreversible

process, the entropy change of the universe is positive. Incidentally, this

also shows that the entropy version of the second law of thermodynamics

implies Clausius’ statement. If T1 < T2, the entropy change of the universe

is negative — a result that is forbidden by ΔS ≥ 0. Since we have already

shown that Kelvin-Planck’s and Clausius’ statements result in ΔS ≥ 0 and

because we have just proven the converse, these three versions of the second

law of thermodynamics are equivalent.

3.3.2 Entropy Calculations

The key to evaluating entropy changes is to actually ignore the process that

a system actually undergoes as entropy is a state function. However, we

must keep track of the system’s initial and final states and then identify a

reversible path along which entropy changes can be computed.

Entropy Change of a Heat Reservoir

If a heat reservoir, maintained at constant temperature T , receives Q amount

of heat, its entropy change is

ΔS =
Q

T
. (3.8)

This is the simplest case of a system receiving heat as its temperature does

not vary. However, there are still a few subtleties in writing the above expres-

sion as we must ensure that the process that we use in computing the entropy

change is indeed internally reversible. The Q amount of heat may not be

dumped into the reservoir as one lump sum as the reservoir may not go

through a series of equilibrium states (though it is extremely large). There-

fore, it is best to inject heat sparingly on many different occasions and to

sum all the individual entropy changes to compute the total entropy change.

Since the total sum of these interspersed heat inputs is still Q and the tem-

perature is always T , the above expression is valid.

Entropy Change of a System with a Constant Heat Capacity

A body of a constant heat capacity C receives or loses heat to an external

system such that its temperature changes from Ti to Tf . To determine its
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change in entropy, consider the quasistatic process where heat is injected

or ejected in infinitesimal amounts on each occasion, over infinitely many

occasions. This could be attained theoretically by connecting the body to

a series of reservoirs that establish an infinitesimal temperature difference

with the current temperature of the body. The body is always in thermody-

namic equilibrium and the process is internally reversible. Each infinitesimal

amount of heat dQ received results in an infinitesimal change in temperature

dT = dQ
C . Therefore, the entropy change of the body is

ΔS =

ˆ Tf

Ti

dQ

T
=

ˆ Tf

Ti

C · dT
T

= C ln
Tf
Ti
. (3.9)

Entropy Change of Ideal Gases

If n moles of an ideal gas with a specific heat capacity at constant volume

cv undergoes a process such that its temperature and volume changes from

Ti and Vi to Tf and Vf respectively, its entropy change is

ΔS =

ˆ
δQ

T

=

ˆ
dU + pdV

T

=

ˆ Tf

Ti

ncv
T
dT +

ˆ Vf

Vi

nR

V
dV

ΔS = ncv ln
Tf
Ti

+ nR ln
Vf
Vi
, (3.10)

since δQ = dU + δWby by the first law of thermodynamics and δWby = pdV

for an internally reversible process that we have chosen for the integration.

We reiterate the fact that the above expression is valid regardless of the

actual process that the gas undergoes. It does not matter if the process is

non-quasistatic — such that the gas is not always in equilibrium — as the

entropy change is dependent only on the initial and final states.

Joule Expansion

A thermally insulated rectangular container of total volume Vf is initially

separated into two regions by a membrane. The left side of the divider con-

tains an ideal gas of volume Vi and temperature T while the right side is

empty. A large hole is then punctured on the membrane such that the gas

begins to expand freely and finally attains equilibrium. What is the entropy

change of this process?
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As the container is thermally insulated, there is no heat transfer between

the gas and the container. Since there is no work done on or by the gas,

as there is nothing to resist the gas’ expansion, the internal energy of the

gas remains constant. Since the internal energy of a gas is strictly only

dependent on the gas’ temperature, the temperature of the gas stays con-

stant throughout. Therefore, the entropy change of this process is that of a

reversible isothermal expansion of a gas from volume Vi to Vf (even though

the actual process is a non-equilibrium process). Substituting Ti = Tf = T

into Eq. (3.10),

ΔS = nR ln
Vf
Vi
. (3.11)

This example emphasizes how the entropy change of an irreversible process

should still be calculated via a reversible path between the same initial and

final states.

3.4 Fundamental Relation of Thermodynamics

Based on the definition of entropy, we know that for an internally reversible

process,

δQ = TdS,

where δQ is the infinitesimal heat supplied to a system at temperature T

and dS is the infinitesimal change in entropy of the system (which is a state

function and thus has an actual derivative). On another note, the work done

during an internally reversible process on a system by an external agent is

δWon = −pdV.

Therefore, the first law of thermodynamics yields

dU = TdS − pdV (3.12)

for an internally reversible process. However, observe that the equation above

is expressed entirely in terms of state variables. Then, Eq. (3.12) must hold

for all processes, reversible or irreversible! Eq. (3.12) is known as the fun-

damental relation of thermodynamics and relates the changes in the state

variables of a system that has a uniform pressure and temperature. To further

convince yourself that the above equation is valid for all processes, consider
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the following. The first law of thermodynamics states that

dU = δQ+ δWon

and this is valid for all processes, both reversible and irreversible. In an

irreversible process,4 δWon > −pdV or δWby < pdV . For example, some pos-

sible work by the system could have been converted to heat due to friction.

and is thus rendered useless. However, in an irreversible process, δQ < TdS

as implied by Clausius’ inequality. Equation (3.12) just implies that the

differences in δWon and δQ in reversible and irreversible processes exactly

cancel out!

3.4.1 Spontaneous Reactions

Usually, the external environment of a system imposes constraints on the

evolution of a system. Suppose that the relevant system only interacts with

its surroundings which has instantaneous temperature Text and pressure pext.

In an infinitesimal process, the system gains δQ heat from its environment —

resulting in an entropy change of − δQ
Text

in the environment. The entropy

change of the system dS must thus satisfy

dS − δQ

Text
≥ 0

for the total entropy change of the universe to be non-negative. Applying

the first law of thermodynamics δQ = dU + δWby , where dU is the change

in internal energy of the system and δWby is the work done by the system,

dU + δWby − TextdS ≤ 0.

If the work done by the system is only that against its external environment,

δWby = pextdV where dV is the change in volume of the system. Thus,

dU + pextdV − TextdS ≤ 0 (3.13)

where the equality case only holds for a totally reversible process of the

system.

A spontaneous process is defined as one that can (not will) occur in

one direction without any external intervention (defined as inputting work

or heat through media besides the surroundings of the system). Since a

spontaneous process is foremost irreversible — else, its reverse process can

4Actually, this result is really proven from the fundamental relation of thermodynamics
and Clausius’ inequality but intuition guides us to the result as well. Since dU = δQ +
δWon = TdS − pdV and δQ < TdS, δWon > −pdV for irreversible processes.
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also occur — we can investigate the conditions for spontaneity under different

constraints via the inequality case of the above relationship. However, keep

in mind that these are not the only criteria to spark off a reaction as they

simply govern whether a process is possible and not whether it will actually

take place.5

(a) Isolated System: Since δQ = 0 for an isolated system, Eq. (3.13)

implies

dS > 0

for a spontaneous process. The equilibrium state is thus the state of

maximum entropy.

(b) A Solid (Classical Physics): Since the volume of a solid is approxi-

mately constant and its molecules are fixed (such that its entropy cannot

vary significantly), dV = 0 and dS = 0. We then require

dU < 0

for a spontaneous process — a familiar property in classical mechanics.

The equilibrium state is thus the state of minimum internal energy.

(c) System at Constant Entropy and External Pressure: In such

cases where there is work performed, we are in a slight conundrum as we

ideally wish to express everything in terms of properties of the system

but δWby is only related to pext. To circumvent this, we can simply look

at states where the system has attained mechanical equilibrium with its

environment such that its pressure is p = pext. The process between a

pair of such states is then most generally a finite process. As dS = 0 and

pext is constant, Eq. (3.13) for a finite step requires

ΔU + pextΔV ≤ 0.

Since the system’s pressure is p = pext in its initial and final states,

Δ(U + pV ) = ΔH < 0

for a spontaneous process, where H is the enthalpy of the system. Notice

that the possibility of the intermediate states possessing pressures that

differ from pext does not affect this result since H is a state function.

(d) System at Constant Volume and External Temperature: In this

case, we only consider states of the system that have attained thermal

5We also have to take into account the kinetics of the process in general (whether the
process will proceed readily).
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equilibrium with the external environment (i.e. the system’s temperature

is T = Text). Since dV = 0 and Text is constant, Eq. (3.13) for a finite

step is

ΔU − TextΔS ≤ 0.

As the system’s temperature is T = Text in its initial and final states,

Δ(U − TS) = ΔA < 0

for a spontaneous process, where A = U − TS is the Helmholtz free

energy of the system.

(e) System at Constant External Temperature and Pressure: Since

pext and Text are constant, Eq. (3.13) for finite processes is

ΔU + pextΔV − TextΔS ≤ 0.

Using a similar procedure as above, we only consider equilibrium states

of the system whose pressures and temperatures are equal to those of the

external environment. Then, since p = pext and T = Text in the initial

and final states of the system,

Δ(U + pV − TS) = Δ(H − TS) = ΔG < 0

for a spontaneous process, where G = H − TS is the Gibbs free energy

of the system. Chemists are the most familiar with this condition as

their experiments are often conducted under standard laboratory envi-

ronments (fixed pressure and temperature).
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Problems

Heat Engines and Refrigerators

1. Heat Pump**

Besides the heat engine and refrigerator, there is a third common appli-

ance known as the heat pump. The main objective of a heat pump is to

deliver heat to a high-temperature system. It operates by receiving a cer-

tain amount of external work W = QH − QL to withdraw heat QL from a

low-temperature reservoir of temperature TL and depositing heat QH into

the high-temperature reservoir (the system) of temperature TH > TL. Sug-

gest a measure for the performance of a heat pump (call it the coefficient

of performance COPHP ) and express the maximum COPHP in terms of

TL and TH .

As a concrete example, a building at temperature T is heated by a heat

pump which uses a river at temperature T0 as a heat source. The heat pump,

which has the ideal performance, consumes a constant power W while the

building loses heat to its surroundings at a rate α(T − T0), where α is a

constant. Show that the equilibrium temperature of the building, Te > T0,

is given by

Te = T0 +
W

2α

(
1 +

√
1 +

4αT0
W

)
.

2. Brayton Cycle**

A Brayton cycle uses an ideal gas as its working substance and consists of

the four following reversible steps. The ideal gas is first compressed adia-

batically and then expanded isobarically. Afterwards, it is further expanded

adiabatically and finally compressed isobarically to its initial state. Deter-

mine the efficiency of this engine in terms of the temperatures of the first

and second states, T1 and T2.

3. Otto Cycle**

An Otto cycle uses an ideal gas with an adiabatic index γ as its working

substance and consists of the four following reversible steps. The ideal gas is

first compressed adiabatically and its pressure is then increased isochorically.

Afterwards, it is expanded adiabatically and its pressure is finally decreased

isochorically to its initial value. Determine the efficiency of this engine in

terms of the volumes of the first and second states, V1 and V2, and γ.
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4. Stirling Cycle**

A Stirling cycle uses an ideal gas with an adiabatic index γ as its working

substance and consists of the four following reversible steps. The ideal gas is

first expanded isothermally and its pressure is then decreased isochorically.

Afterwards, it is compressed isothermally and its pressure is isochorically

increased to its initial value. Determine the efficiency of this engine in terms

of the volumes of the first and third states and γ.

5. Is Carnot Still the Most Efficient?**

We have shown that the Carnot engine is the most efficient engine when

operating between two heat reservoirs with temperatures TH and TL (TH >

TL), whereby its efficiency is given by ηCarnot = 1 − TL
TH

. Now, suppose

that you are given a series of reservoirs with temperatures ranging between

TL and TH and are asked to construct a heat engine that interacts with

any subset of these reservoirs. Show that the efficiency of an engine with

internal irreversibilities (e.g. friction) but a well-defined temperature at every

juncture (i.e. its process is quasistatic such that it is always in an equilibrium

state) is smaller than that of an internally reversible engine following the

same cycle of equilibrium states (hint: use Clausius’ inequality). Next, prove

that the efficiency of an internally reversible engine constructed with the

given reservoirs is no larger than the Carnot efficiency ηCarnot = 1 − TL
TH

.

This shows that a Carnot engine operating between the highest and lowest

temperature reservoirs is still the most efficient when a series of reservoirs

with intermediate temperatures is available.

The Second Law and Entropy

6. Gaseous Processes*

Determine the entropy change of n moles of a gas with an adiabatic con-

stant γ in expanding from an initial volume V to a final volume kV under

isothermal and isobaric conditions.

7. Mixing*

A thermally insulated container of total volume V is separated by a fric-

tionless divider into two compartments A and B that have volumes αV and

(1 − α)V respectively. n moles of a certain gas fills compartment A and a

certain amount of a different gas fills compartment B such that the system

is in equilibrium. Determine the entropy change, of the system comprising
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the two gases, associated with mixing the two gases by removing the divider

and waiting till the system attains thermodynamic equilibrium once again.

8. Connected Vessels*

Two thermally insulated vessels of volumes V1 and V2 initially contain n1
and n2 moles of different monoatomic gases that are at pressures p1 and

p2. These vessels are then connected by a thermally insulated tube. After

the system of vessels equilibrates, determine the change in entropy of the

universe.

9. Transferring via a Carnot Engine**

A small body with constant heat capacity C is placed in direct thermal con-

tact with a large reservoir of temperature T2 such that its temperature is

changed from T1 to T2. Determine the entropy changes of the body, reser-

voir and the universe. Show that the entropy change of the universe is non-

negative regardless of the relative magnitudes of T1 and T2. Now if the heat

is delivered to or extracted from the small body via a Carnot engine oper-

ating between the large reservoir and the small body, determine the entropy

changes of the body, reservoir and the universe.

10. Verifying the Second Law**

Two substances of heat capacities C1, C2 and initial temperatures T1 and

T2 are placed in thermal contact. They are isolated from their surroundings.

When thermal equilibrium is subsequently achieved, determine the entropy

change of the universe and show that it must be non-negative.

11. Maximum Work Done**

Determine the maximum work obtainable from a heat engine connected to

two reservoirs of constant heat capacities CH and CL at initial temperatures

TH and TL < TH .

12. Pushing a Piston**

A cylindrical container is separated by a fixed divider with a valve and a

frictionless piston is attached to its open right end. The walls of the cylinder,

divider and piston are perfect thermal insulators. The cylinder is filled with

12g of helium in the left compartment and 2g of helium in the right. Initially,

the pressures, volumes and temperatures of the gases are respectively, 6atm,
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11.2L and 273K in the left side, and 1atm, 11.2L and 273K in the right

side. The specific heat capacity (note that this is per unit mass) of helium

at constant pressure is cp = 5.25J/g K. The piston is pushed towards the

divider by a reversible compression until the pressure on the right side equals

6atm. At this juncture, the valve opens and the whole system is allowed to

reach equilibrium. What is the final equilibrium temperature? Find the total

entropy change of the whole process. (Singapore Physics Olympiad)

13. Reversible Heat Transfer**

A body of constant heat capacity C is heated up from a temperature T1
to T2 by bringing it into thermal contact and waiting till it establishes

thermal equilibrium with N large reservoirs of temperatures T1 + ΔT ,

T1+2ΔT, . . . , T1+(N − 1)ΔT , T2 in ascending order of temperature, where

ΔT = T2−T1
N . Determine the net entropy change of the universe due to this

process. Then, take the limit of N → ∞ and ΔT → dT where dT is an

infinitesimal change in temperature and show that this process is reversible.
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Solutions

1. Heat Pump**

Since the primary aim of a heat pump is to deliver heat QH via external

work W , its coefficient of performance is

COPHP =
QH
W

=
QH

QH −QL
=

1

1− QL
QH

.

There are various ways to show that the maximum COPHP occurs when

the heat pump is a Carnot cycle in reverse. The most direct way to do this

is to observe that COPHP = COPFR + 1 where COPFR is the coefficient

of performance if we used the heat pump as a refrigerator. Since COPFR is

maximized when the refrigerator is reversible (reverse Carnot cycle), COPHP
is maximized when the heat pump is a reverse Carnot cycle. Another method

is to exploit the fact that the entropy change of the universe must be non-

negative due to a heat pump cycle. Then,

QH
TH

− QL
TL

≥ 0

QL
QH

≤ TL
TH

COPHP ≤ 1

1− TL
TH

=
TH

TH − TL
.

Next, when the building is at its equilibrium temperature Te, its rate of heat

loss to its surroundings must be equal to its rate of heat gain from the heat

pump.

α(Te − T0) =W
Te

Te − T0

αT 2
e − (2αT0 +W )Te + αT 2

0 = 0

Te =
2αT0 +W +

√
(2αT0 +W )2 − 4α2T 2

0

2α
= T0 +

W

2α

(
1 +

√
1 +

4αT0
W

)
,

where we have chosen the root that is greater than T0.

Note: In our following solutions for heat engines and refrigerators, the ith

state is defined to have pressure pi, volume Vi and temperature Ti.
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2. Brayton Cycle**

The system takes in heat during process 2 → 3 and releases heat during

process 4 → 1.

Q23 = ncpΔT =
cp
R
(p3V3 − p2V2) =

cp
R
p2(V3 − V2)

Q41 =
cp
R
p1(V1 − V4)

where cp is the isobaric molar heat capacity of the gas medium. The total

work done by the gas in a single cycle is the net heat supplied to the ideal

gas as its internal energy remains constant.

W = Q23 +Q41 =
cp
R
[p2(V3 − V2) + p1(V1 − V4)].

The efficiency is then

η =
W

Qin
=

W

Q23
=
p2(V3 − V2) + p1(V1 − V4)

p2(V3 − V2)
.

To simplify the above expression, we know from the adiabatic condition,

applied to processes 1 → 2 and 3 → 4, that

p1V
γ
1 = p2V

γ
2

p4V
γ
4 = p3V

γ
3 =⇒ p1V

γ
4 = p2V

γ
3 ,

V1
V4

=
V2
V3
.

The efficiency can be expressed as

η = 1 +
p1(V1 − V4)

p2(V3 − V2)

= 1 +
p1V1

(
1− V4

V1

)
p2V2

(
V3
V2

− 1
)

= 1− p1V1
p2V2

= 1− T1
T2
.
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3. Otto Cycle**

The engine absorbs heat during process 2 → 3 and ejects heat during process

4 → 1.

Q23 = ncv(T3 − T2) =
cv
R
(p3V3 − p2V2) =

cv
R
V2(p3 − p2),

Q41 =
cv
R
(p1V1 − p4V4) =

cv
R
V1(p1 − p4),

where cv is the molar heat capacity of the gas at constant volume. The total

work done by the gas in a single cycle is the net heat supplied.

W = Q23 +Q41.

The efficiency is then

η =
W

Q23
= 1 +

V1(p1 − p4)

V2(p3 − p2)
.

To simplify the above expression, apply the adiabatic condition to processes

1 → 2 and 3 → 4.

p1V
γ
1 = p2V

γ
2

p4V
γ
1 = p3V

γ
2

=⇒ p1
p4

=
p2
p3
.

Then,

η = 1 +
p1V1

(
1− p4

p1

)
p2V2

(
p3
p2

− 1
) = 1− p1V1

p2V2
.

Since p1V
γ
1 = p2V

γ
2 ,

p1V1
p2V2

=
V γ−1
2

V γ−1
1

.

η = 1−
(
V2
V1

)γ−1

.
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4. Stirling Cycle**

The work done by an ideal gas in a reversible isothermal process in which

its volume changes from Vi to Vf isˆ
pdV =

ˆ
nRT

V
dV = nRT ln

Vf
Vi
.

The work done by the ideal gas during processes 1 → 2 and 3 → 4 are

W12 = nRT1 ln
V3
V1
,

W34 = nRT3 ln
V1
V3
.

The total work done by the gas is then

W =W12 +W34 = nR(T1 − T3) ln
V3
V1
.

The ideal gas absorbs heat during processes 4 → 1 and 1 → 2. The former

heat absorbed is ncvΔT = 1
γ−1nR(T1−T3) while the latter is the work done

by the gas from 1 → 2, W12, as its internal energy remains constant during

an isothermal process.

Q =
1

γ − 1
nR(T1 − T3) + nRT1 ln

V3
V1
.

The efficiency of the engine is then

η =
W

Q
=

nR(T1 − T3) ln
V3
V1

nR(T1−T3)
γ−1 + nR(T1 − T3) ln

V3
V1

=
T1 − T3

T1−T3
(γ−1) ln

V3
V1

+ T1 − T3
.

5. Is Carnot Still the Most Efficient?**

Since the internal energy of an engine does not change after a cycle, the

efficiency of a heat engine is

η =
W

Qin
=
Qin −Qout

Qin
= 1− Qout

Qin

where Qin is the sum of the positive values of heat influxes while Qout is the

sum of the positive values of heat outflows. By Clausius’ inequality,

δQ ≤ TdS

for any infinitesimal process (the equality case holds when the process is

internally reversible). Now, we shall classify the various δQ and dS’s into pos-

itive quantities and negative quantities. The positive quantities are labeled
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as δQpos and dSpos while the absolute values of the negative quantities are

labeled as δQneg and dSneg. Then,

Qin =

ˆ
δQpos,

Qout =

ˆ
δQneg,

while Clausius’ inequality implies that

δQpos ≤ TdSpos

−δQneg ≤ −TdSneg =⇒ δQneg ≥ TdSneg.

Therefore,

η = 1−
´
δQneg´
δQpos

≤ 1−
´
TdSneg´
TdSpos

where the equality case only holds for internally reversible engines. We have

hence proven the first claim. To prove the second one, observe thatˆ
TdSneg ≥

ˆ
TLdSneg = TL

ˆ
dSneg,

ˆ
TdSpos ≤

ˆ
THdSpos = TH

ˆ
dSpos.

Furthermore, ˆ
dSneg =

ˆ
dSpos

as
´
dSpos −

´
dSneg = 0 for the cycle to return to its original state (since

entropy is a state function). The efficiency of an internally reversible engine is

η = 1−
´
TdSneg´
TdSpos

≤ 1− TL
´
dSneg

TH
´
dSpos

= 1− TL
TH

= ηCarnot.

6. Gaseous Processes*

We will be using Eq. (3.10). During an isothermal expansion,

ΔS = nR ln
kV

V
= nR ln k.

During an isobaric expansion, the pressure is constant. Since the volume of

the gas expands by k times, its temperature must also increase by a factor
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of k by the ideal gas law. Then,

ΔS = ncv ln k + nR ln k =
γ

γ − 1
nR ln k.

7. Mixing*

The two gases initially have a common temperature and pressure. In order

for the pressures to be balanced, the number of moles of gas molecules in

compartment B must be

1− α

α
n.

After the removal of the divider, the two gases undergo free expansion, just

like the Joule expansion. Their final common temperature must be the same

as their initial common temperature as energy is conserved (the walls of the

container are insulated). Therefore, the total change in entropy is the sum

of the two changes in entropy associated with the free expansions of the two

gases. By Eq. (3.11),

ΔS = nR ln
Vf
VA

+
1− α

α
nR ln

Vf
VB

= −nR lnα− 1− α

α
nR ln (1− α) .

8. Connected Vessels*

We need to determine the final pressure p of the combined set-up. Since the

system is thermally insulated, its total energy must be the same. Its initial

energy is 3
2p1V1 +

3
2p2V2. Then,

3

2
p(V1 + V2) =

3

2
p1V1 +

3

2
p2V2

p =
p1V1 + p2V2
V1 + V2

.

Next, we will need to calculate the final temperature of the combined sys-

tem Tf . By the ideal gas equation,

p(V1 + V2) = (n1 + n2)RTf

Tf =
p1V1 + p2V2
(n1 + n2)R

.
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Applying Eq. (3.10) to the two gases, the total change in entropy of the

universe is

ΔS =
3

2
n1R ln

Tf
T1

+ n1R ln
V1 + V2
V1

+
3

2
n2R ln

Tf
T2

+ n2R ln
V1 + V2
V2

=
3

2
n1R ln

n1(p1V1 + p2V2)

(n1 + n2)p1V1
+ n1R ln

V1 + V2
V1

+
3

2
n2R ln

n2(p1V1 + p2V2)

(n1 + n2)p2V2
+ n2R ln

V1 + V2
V2

,

where T1 and T2 are the initial temperatures of the respective vessels.

9. Transferring via a Carnot Engine**

In the first case, the body receives C(T2 − T1) amount of heat. Therefore,

the entropy change of the large reservoir is

ΔSres = −C(T2 − T1)

T2

as the reservoir correspondingly loses C(T2 − T1) amount of heat (which

is possibly negative though). The entropy change of the body is given by

Eq. (3.9),

ΔSbody = C ln
T2
T1
.

The entropy change of the universe is the sum of the two above entropies.

ΔSuniverse = C ln
T2
T1

− C(T2 − T1)

T2
.

Defining a new variable x = T1
T2
,

ΔSuniverse = C(x− 1)−C lnx.

Substituting x = 1, we obtain ΔSuniverse = 0 which is expected. Now

consider

dΔSuniverse
dx

= C − C

x

which is negative when x < 1 and positive when x > 1. Coupled with the fact

that dΔSuniverse
dx = 0 when x = 1, x = 1 is a local minimum and ΔSuniverse ≥

0 for all x. In the second case, the entropy change of the reservoir is different

as it needs to supply more heat (as some of the heat is converted to work

by the Carnot engine). Then, let t be the instantaneous temperature of the
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body, δQH be the infinitesimal heat extracted from the reservoir and δQL
be the infinitesimal heat delivered to the body in a single infinitesimal cycle

(note that δQH and δQL are possibly negative). The infinitesimal change in

entropy of the reservoir due to this infinitesimal Carnot engine cycle is

dSres = −δQH
T2

.

We also know that for a Carnot engine,

δQH
T2

=
δQL
t
.

Then,

ΔSres =

ˆ
−δQH

T2
= −

ˆ T2

T1

δQL
t

= −
ˆ T2

T1

C · dt
t

= −C ln
T2
T1
.

The entropy change of the body remains the same as its initial and final

states are identical to those in the first case, ΔSbody = C ln T2
T1
. The total

entropy change of the universe is then

ΔSuniverse = 0,

which is expected of a Carnot engine as it is reversible.

10. Verifying the Second Law**

Denoting the final equilibrium temperature of the two substances as Tf , the

conservation of internal energy implies that

Tf =
C1T1 + C2T2
C1 + C2

.

The total entropy change of the universe is

ΔS =

ˆ Tf

T1

C1dT

T
+

ˆ Tf

T2

C2dT

T

= C1 ln
Tf
T1

+ C2 ln
Tf
T2

= C1 ln

(
C1 + C2

T2
T1

C1 + C2

)
+ C2 ln

(
C1

T1
T2

+ C2

C1 + C2

)
.

Defining x = T2
T1
,

ΔS = C1 ln

(
C1 + C2x

C1 + C2

)
+ C2 ln

(
C1
x + C2

C1 +C2

)
.
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When x = 1, ΔS = 0 as expected. Furthermore,

dΔS

dx
= C1

C2

C1 + C2x
− C2

C1
x

C1 + C2x
=

C1C2

C1 + C2x

(
1− 1

x

)

which is negative when x < 1 and positive when x > 1. Since dΔS
dx = 0 when

x = 1, x = 1 is a local minimum — implying that ΔS ≥ 0.

Alternatively, we can apply the AM-GM inequality as follows:

T1 + T1 + · · · + T2 + T2 + · · ·
kC1 + kC2

≥ kC1+kC2
√
T1 × T1 × · · · × T2 × T2 × · · ·

where k is a real number such that kC1 and kC2 are integers and where T1
and T2 are included kC1 and kC2 times respectively. Then,

(
C1T1 + C2T2
C1 + C2

)k(C1+C2)

≥ T kC1
1 T kC2

2

=⇒ TC1+C2
f ≥ TC1

1 TC2
2 ,

(C1 + C2) lnTf ≥ C1 lnT1 + C2 lnT2

ΔS = C1 ln
Tf
T1

+ C2 ln
Tf
T2

≥ 0.

The equality only holds if T1 = T2.

11. Maximum Work Done**

Let the final common temperature of the reservoirs be Tf . Then, the total

work done by the heat engine is

W = CH(TH − Tf ) + CL(TL − Tf )

by the first law of thermodynamics. We then seek to minimize Tf . Let the

instantaneous temperatures of the two reservoirs be tH and tL respectively.

Applying the second law of thermodynamics to an infinitesimal heat engine

cycle,

δQH
tH

+
δQL
tL

≥ 0

where δQH and δQL are the infinitesimal heat supplied to the heat source

and sink, respectively. Since δQH = CHdtH and δQL = CLdtL, integrating
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over the relevant limits would yield
ˆ Tf

TL

CL
dtL
tL

≥
ˆ Tf

TH

−CHdtH
tH

CL ln
Tf
TL

≥ CH ln
TH
Tf

Tf ≥ T
CH

CH+CL
H T

CL
CH+CL
L .

Therefore,

W ≤ CHTH + CLTL − (CH + CL)T
CH

CH+CL
H T

CL
CH+CL
L .

12. Pushing a Piston**

When the piston is pushed towards the divider, the gas on the right under-

goes an adiabatic compression. When the valve is opened subsequently, mix-

ing occurs and an equilibrium is attained.

Let Ti, Tf , Pi and Pf denote the initial and final temperatures and pres-

sures of the right gas before and after the compression (immediately before

the mixing). By the adiabatic condition,

Tf = Ti

(
Pf
Pi

)1− 1
γ

= 273 × 6
2
5 = 559K,

where we have substituted Ti = 273K, Pi = 1atm, Pf = 6atm and γ = 5
3 for

a monoatomic gas (helium). When the gases are mixed, the total internal

energy in the cylinder must remain constant. Denoting nl and nr as the

number of moles of helium in the left and right compartments respectively,

3

2
nlR · 273 + 3

2
nrR · 559 =

3

2
(nl + nr)R · T

where T is the final equilibrium temperature. Since nl = 6nr,

T = 314K.

There is no entropy change during the adiabatic compression. To study the

entropy change due to the mixing, observe that the final equilibrium pressure

is still 6atm. This is because the total internal energy of the set-up is con-

served during the mixing and the initial total internal energy is (by the ideal

gas law) 3
2pVl +

3
2pVr =

3
2p(Vl + Vr) where Vl and Vr are the volumes of the

left and right gases before mixing while p = 6atm. The final total internal

energy is 3
2pf (Vl + Vr) where pf is the final equilibrium pressure. Therefore,
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pf = p. Since the final equilibrium pressure is still 6atm, the entropy change

of each gas is equivalent to that of it undergoing a reversible isobaric process

from its initial to final temperature.

dS =
δQrev
T

=
mcpdT

T

ΔS = cpml

ˆ 314

273

dT

T
+ cpmr

ˆ 314

559

dT

T

= 5.25

(
12 ln

314

273
+ 2 ln

314

559

)
= 2.76J/K

where ml and mr are the masses of the gases originally in the left and right

compartments respectively.

13. Reversible Heat Transfer**

By considering the initial and final states of the body and applying Eq. (3.9),

the total entropy change of the body is

ΔSbody = C ln
T2
T1
.

Moving on, observe that the ith reservoir of temperature T1+iΔT is respon-

sible for increasing the body’s temperature from T1+(i−1)ΔT to T1+ iΔT .

The heat transferred from the reservoir to the body in this process is CΔT .

Then, the change in entropy of the ith reservoir is evidently − CΔT
Ti+iΔT

where

the negative sign indicates that it loses heat. The total entropy change of

the universe due to the entire procedure in the question is the sum of the

entropy changes of the body and the reservoirs.

ΔSuniverse = C ln
T2
T1

− CΔT

N∑
i=1

1

T1 + iΔT
.

As N → ∞ and ΔT → dT , the latter sum becomes an integral. The total

entropy change of the universe is then

ΔSuniverse = C ln
T2
T1

− C

ˆ T2

T1

1

T
dT

= C ln
T2
T1

− C ln
T2
T1

= 0

which shows that this process is reversible!
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Chapter 4

Heat Transfer and Phase Transitions

This chapter will analyze the common forms of heat transfer — convection,

conduction and radiation — and their accompanying effects such as expan-

sion and phase changes.

4.1 Convection

Convective heat transfers are difficult to analyze rigorously but a rule of

thumb adequate for small temperature differences is Newton’s law of cooling.

It states that the net heat flux density q̇ — the net power transmitted per

unit perpendicular area — between a small area on a liquid or solid surface

and the surrounding air (which convects heat away) is proportional to the

temperature difference between them for small differences. Concretely,

q̇ = −h(Ts − Ta)

where Ts is the temperature of the small area on the surface while Ta is the

temperature of the air shrouding our set-up. The negative sign hinges on

the fact that a surface of higher temperature loses heat to its surroundings.

h is a constant of proportionality that must be determined empirically (as

this is only an approximate relationship) and is commonly referred to as

the heat transfer coefficient. The total net power Q̇ transferred between a

surface with uniform temperature and its surroundings is then q̇ multiplied

by its surface area A.

Q̇ = −hA(Ts − Ta).

Problem: Assuming that Newton’s law of cooling holds with a heat transfer

coefficient h, determine the instantaneous temperature T (t) of a cup of cof-

fee with constant heat capacity C, whose interface with air has a constant

surface area A, as a function of time. The temperature of air in the room is

197
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approximately a constant Ta as air is vast and the initial temperature of the

coffee is T0 > Ta. Assume that the coffee is homogeneous at all times.

Let the instantaneous temperature of the coffee be T . By Newton’s law

of cooling, its net heat flux with its environment is

Q̇ = −hA(T − Ta).

Since Q̇ = CṪ ,

CṪ = −hA(T − Ta)

ˆ T

T0

1

T − Ta
dT =

ˆ t

0
−hA
C
dt

ln

∣∣∣∣ T − Ta
T0 − Ta

∣∣∣∣ = −hA
C
t.

Observing that T ≥ Ta at all times since T0 > Ta (more specifically, Ṫ is

negative only when T > Ta and becomes zero when T = Ta), we can remove

the absolute value brackets.

T = (T0 − Ta)e
−hA

C
t + Ta.

4.2 Conduction

Conduction occurs within a substance due to collisions between its con-

stituent particles and the diffusion of particles. The collisions between excited

particles and less energetic particles and the net diffusion of more energetic

particles result in the transfer of energy from regions of higher temperature

to regions of lower temperature. Quantitatively, Fourier’s law of conduction

states that the heat flux density is proportional to the temperature gradient.

In a one-dimensional heat flow along the x-direction,

q̇ = −kdT
dx

(4.1)

where q̇ is the heat flux density and dT
dx is the temperature gradient. k is

known as the thermal conductivity and is dependent on the various proper-

ties of the conducting medium. The negative sign stems from the fact that

the heat flux density points in the direction of decreasing temperature. Since

a one-dimensional flow is assumed, the total heat flux Q̇ across a surface of
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area A normal to the x-direction is

Q̇ = −kAdT
dx
. (4.2)

Usually, we will be analyzing steady state systems where there is no longer

any change in the temperature of any point on the substance with respect to

time. There can, however, still be heat conducted throughout the substance

as long as the heat influx is equal to the heat outflow for each point on the

substance if heat is not generated anywhere in the substance. This condition

is known as the continuity of heat flux which ensures that no net heat is

stored anywhere in the substance. If there is heat generated by portions of the

substance itself, the outflow must be greater than the influx for equilibrium

to be maintained.

Problem: Consider a slab of thickness l and uniform cross sectional area A,

in Fig. 4.1. Its ends are maintained at T0 and T1. Assuming that the system

has reached steady state, find the heat flux through the cross section of the

slab and the temperature of a layer at a distance x from the end at T0 as a

function of x.

Figure 4.1: Slab

From Fourier’s law of conduction,

Q̇ = −kAdT
dx

where the heat flux Q̇ is defined to be positive rightwards. Since the system

is at equilibrium, we can leverage the fact that Q̇ is uniform throughout all

cross sections to determine its value.
ˆ l

0
Q̇dx =

ˆ T1

T0

−kAdT

Q̇ =
kA(T0 − T1)

l
. (4.3)
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To determine the temperature T (x) of a layer at a distance x from the left

end, we integrate the expression with more general limits.

ˆ x

0
Q̇dx =

ˆ T

T0

−kAdT

T − T0 = − Q̇

kA
x

T =
T1 − T0

l
x+ T0.

Observe that from Eq. (4.3), we can relate the temperature difference across

the two ends of the slab and the heat flux in the following manner.

T0 − T1 = ΔT = Q̇ · l

kA
.

This holds for all substances with a uniform thermal conductivity and cross

sectional area (slabs in general). Scrutinizing the above, one may notice that

it is completely analogous to Ohm’s law for a resistor,

V = IR,

where V is the voltage, I is the current and R is the electrical resistance.

Temperature and heat flux are then analogous to voltage and current in

a circuit. l
kA is the thermal equivalent of electrical resistance, which we

shall refer to as thermal resistance. Observe that the expression for thermal

resistance is also completely analogous to that for electrical resistance for a

resistor with a constant cross section. In the case of the latter, for a resistor

with conductivity σ, length l and a constant cross sectional area A,

R =
l

σA
.

With that said, the following two equations can be written down. For a

steady state one-dimensional heat conduction with no heat generation at

any point in the system, the temperature difference between two surfaces is

directly proportional to the heat flux across them.

ΔT = Q̇R (4.4)

where R is the thermal resistance. Its value for a substance of uniform ther-

mal conductivity k, length l and cross sectional area A is

R =
l

kA
. (4.5)
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The thermal resistances of more general configurations need to be calculated

in other ways. Besides the similarity of resistances, analogies can be drawn

between Kirchhoff’s laws and certain properties in a thermal circuit. Kirch-

hoff’s loop rule, which states that the sum of voltages along a loop is zero,

is superficial in this context as its thermal counterpart basically asserts that

the sum of temperature differences along a loop is zero. However, the analo-

gous version of Kirchhoff’s junction rule, which enforces the condition that

the net current flowing out of a junction is zero at steady state, is rather

crucial. This is in fact the continuity of heat flux which asserts that the net

heat flux emanating from each point in a set-up with no heat generated must

be zero at steady state (else its temperature will vary). We will delve further

into the ramifications of these analogies right after the following example.

Varying Contact Area

For certain geometries of substances, the contact area may vary with x.

However, the heat flux should still be continuous throughout layers of the

substance in the steady state regime, as long as the substance does not

generate any heat by itself. Then, we may need to perform an integration to

calculate the rate of heat conduction.

Problem: In Fig. 4.2, a long cylindrical shell has an inner radius r0 and

outer radius r1, length l (l � r1) and a uniform thermal conductivity k. The

temperatures of the inner and outer surfaces are maintained at T0 and T1
respectively. When the system has attained steady state, determine the heat

flux across cylindrical shells and thus the thermal resistance of this set-up.

Neglect any edge effects.

Figure 4.2: Cylindrical shell

Due to the axial symmetry and comparatively large length of this set-up,

heat purely flows in the radial direction, perpendicular to the cylindrical

axis, while temperature is purely a function of radial distance from the axis.

Consider a cylindrical shell that is of radius r, length l and thickness dr from

the center of the original cylindrical shell. The heat flux density should be

uniform across this surface of area 2πrl due to symmetry. By Fourier’s law
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of conduction, the total heat flux through this shell is

Q̇ = −k2πrldT
dr
.

For the system to be in steady state, the heat flux across all cylindrical shells

must be the same so that the net heat flux into each layer is zero. Then,

Q̇

ˆ r1

r0

1

r
dr = −2πkl

ˆ T1

T0

dT

Q̇ =
2πkl(T0 − T1)

ln r1
r0

.

It can also be seen that the thermal resistance is

R =
ln r1

r0

2πkl
. (4.6)

4.2.1 Equivalent Resistance

The analogy between thermal resistors and electrical resistors extends

beyond a single resistor. We can determine the effective thermal resistance

for parallel and series configurations of various materials with different ther-

mal conductivity due to the analogy between continuities of heat and current

fluxes in steady state systems. When no heat is generated by a substance,

there must be no net heat flux entering or leaving each surface as this would

lead to an accumulation or deficit in internal energy — implying that the

system has not reached steady state yet. As remarked previously, this is

similar to Kirchhoff’s junction rule in circuitry.

Series Configuration

Before we derive an expression for the general case, consider the follow-

ing auxiliary problem. Two slabs of different thicknesses, l1 and l2, uniform

cross sectional area A and thermal conductivities k1 and k2 are connected

in series as shown in Fig. 4.3. The two ends are maintained at tempera-

tures T0 and T2 respectively. Find the heat flux, the effective thermal resis-

tance of the combined system and the temperature of the interface, T1, at

steady state.

Again, it is important to note the continuity of heat fluxes at the two

sides of the middle interface. If the heat flux between the left side and the

interface is Q̇, the heat flux between the interface and the right surface must

also be Q̇. Next, an equivalent thermal circuit can be drawn as shown above.
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Figure 4.3: Slabs in series

Recalling our definition of R previously, we can define

R1 =
l1
k1A

,

R2 =
l2
k2A

.

Then applying the results derived previously,

Q̇ =
T0 − T1
R1

,

Q̇ =
T1 − T2
R2

.

Eliminating T1, we get

T0 − T2 = (R1 +R2)Q̇

Q̇ =
T0 − T2
R1 +R2

=
(T0 − T2)A
l1
k1

+ l2
k2

.

The equivalent resistance is defined such that

T0 − T2 = ReqQ̇

=⇒ Req = R1 +R2 =
l1
k1A

+
l2
k2A

.

T1 can be solved for by eliminating Q̇ in our original simultaneous

equations. (
1

R1
+

1

R2

)
T1 =

T0
R1

+
T2
R2

T1 =
R2T0 +R1T2
R1 +R2

=
k1l2T0 + k2l1T2
k1l2 + k2l1

.
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Figure 4.4: Equivalent circuit

In general, for a thermal circuit constructed from an array of thermal

resistors arranged in series, an equivalent thermal resistance can be derived.

Referring to Fig. 4.4, let there be a total of N thermal resistors with resis-

tances R1, R2, . . . , RN and let T0 and TN be the temperatures of the ends of

the circuit (maintained at constant temperature). Then for 0 < i < N , let

Ti be the temperature of the interface between the ith and (i + 1)th ther-

mal resistors. We would like to find the equivalent resistance of this circuit

Req and the various Ti’s. For a system in equilibrium, Q̇ must be constant

throughout. Thus,

Ri+1Q̇ = Ti − Ti+1

for all 0 ≤ i < N . Summing the above for all i, we get

N∑
i=1

RiQ̇ = T0 − TN

Q̇ =
T0 − TN∑N

i=1Ri
,

Req =

N∑
i=1

Ri. (4.7)

To calculate Ti we can spilt the circuit into two components, one contain-

ing resistors R1 to Ri and the other containing Ri+1 to RN . Then, we can

compute the equivalent resistances for these two parts.

R1i =
i∑

j=1

Rj ,

R(i+1)N =

N∑
j=i+1

Rj .
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Then,

Q̇ =
T0 − Ti
R1i

,

Q̇ =
Ti − TN
R(i+1)N

.

Eliminating Q̇,

Ti =
R(i+1)NT0 +R1iTN

R1i +R(i+1)N
.

Parallel Configuration

Now consider another auxiliary problem of two slabs, of surface areas A1

and A2, equal thickness l and thermal conductivities k1 and k2 connected in

parallel, as depicted in Fig. 4.5. Let the ends be maintained at temperatures

T0 and T1.

Figure 4.5: Slabs in parallel

The definition of the equivalent thermal resistance Req is such that

(T0 − T1) = Q̇tReq,

where Q̇t is the total heat flux from the left end to the right end. Next, the

total heat flux is simply the sum of the individual heat fluxes across the slabs

as there cannot be any accumulation of energy anywhere in the system.

Q̇t = Q̇1 + Q̇2 =
T0 − T1
R1

+
T0 − T1
R2

=
T0 − T1
Req

=⇒ 1

Req
=

1

R1
+

1

R2
.
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The total heat flux is then

Q̇t =
T0 − T1
Req

=
k1A1 + k2A2

l
(T0 − T1).

In general, if we have N thermal resistors in parallel that are of resistances

R1, R2, . . . , RN ,

Q̇t =

N∑
i=1

Qi =

N∑
i=1

T0 − T1
Ri

.

By definition of the equivalent resistance,

Q̇t =
T0 − T1
Req

1

Req
=

N∑
i=1

1

Ri
. (4.8)

With these equivalent resistances, various thermal conduction problems can

be solved as if they were simple circuit problems.

Incidentally, the notion of an equivalent resistance provides an alternative

derivation of the thermal resistance of a cylindrical shell given by Eq. (4.6).

Due to axial symmetry, the entire cylindrical shell can be divided into many

shells of varying radius and infinitesimal thickness whose inner and outer

surfaces individually possess uniform temperature. Furthermore, since the

heat flux must be continuous across all layers, the thermal resistance of the

cylindrical shell can be deemed as summing those of the infinitesimal shells

in series. Lastly, because the heat flow is radial and perpendicular to each

shell, the thermal resistance of a shell of radius r and thickness dr follows

the format of the thermal resistance of a slab.

dr

kA
=

dr

2πklr
,

where the contact area in this context is now the cylindrical surface of radius

r and length l, A = 2πrl. For readers who are not yet convinced that we can

do this, we can further divide the shell into strips of length l, thickness dr

and width rdθ (cylindrical coordinates). These strips are effectively slabs and

hence have thermal resistance dr
klrdθ . The previous shell is composed of myr-

iad such strips placed side-by-side or connected in parallel as the heat fluxes

across these strips are along different “branches” of a circuit. The effective

resistance of a shell is then obtained from integrating the reciprocal of the

thermal resistance of a strip klrdθ
dr from θ = 0 to θ = 2π and subsequently

taking the inverse of this result which yields dr
2πklr . With this clarification, we
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can proceed with determining the equivalent resistance of the entire cylin-

drical shell. Since the equivalent resistance of resistors in series is the sum

of all the individual resistances, the equivalent resistance of the cylindrical

shells at different radii is tantamount to the integral of dr
2πklr from r0 to r1.

R =

ˆ r1

r0

dr

2πklr
=

ln r1
r0

2πkl

which is consistent with Eq. (4.6). Now, there is a pivotal warning to be made

here. When we claim that a resistor is composed of different components

connected in series or parallel, we must first check that the surfaces of the

components are each of uniform temperature. This is because resistance is

foremost, only defined for objects with surfaces of uniform temperature (e.g.

the slab whose two ends have uniform, albeit different, temperatures). In

the above example of a cylindrical shell, the uniform temperatures of the

inner and outer surfaces of each infinitesimal shell enable us to add the

infinitesimal shells in series. In general, caution must be taken in slicing a

resistor into surfaces with uniform temperature if one wants to apply the

technique of adding resistors.

4.3 Radiation

Thermal radiation is the energy emitted in the form of electromagnetic

waves. Unlike conduction and convection, these electromagnetic waves do

not require any medium to propagate and in fact travel at the theoretically

maximum speed. Thermal radiation is emitted by every object with a non-

zero absolute temperature (i.e. measured with respect to the Kelvin scale).

The Stefan-Boltzmann law states that the total heat flux density q̇ radiated

by a surface across all wavelengths due to a black body can be computed as

q̇ = σT 4, (4.9)

where T is the temperature of the surface on the black body and

σ is the Stefan-Boltzmann constant whose numerical value is 5.670 ×
10−8Wm−2K−4. A black body is an idealized physical entity that absorbs

all incident electromagnetic radiation and emits the maximum amount of

radiation for a given temperature and surface area.

For realistic bodies, the heat flux density q̇ radiated from a surface is less

than that of a black body and is calculated as

q̇ = εσT 4 (4.10)
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where 0 ≤ ε ≤ 1 is known as the emissivity of the body. It measures the

ability of a body to emit thermal radiation in comparison to a black body

counterpart. Next, the luminosity L of a body is defined to be the total

power emitted via radiation by a body. For a body with a uniform surface

temperature T , it is simply q̇ multiplied by the exposed surface area A of

the body.

L = εσAT 4. (4.11)

4.3.1 Wien’s Displacement Law

In general, each wavelength of light contributes a different proportion to

the total power radiated by a black body. Wien’s displacement law relates

the peak wavelength, which makes the largest contribution to this radiated

power, to the temperature of the black body.

λpeakT = b (4.12)

where b is Wien’s constant which has a numerical value 2.898×10−3 mK. The

inversely proportional nature of temperature relative to the peak wavelength

provides a rough explanation of why blue stars are actually hotter than red

stars.

4.3.2 Radiation at a Surface

In general, when radiation strikes a surface, a fraction of it may be absorbed,

reflected or transmitted in accordance with the absorptivity (α), reflectiv-

ity (ρ) and transmissivity (t) of the surface. Since these are the only effects

possible, the sum of these coefficients should be unity.

α+ ρ+ t = 1.

For a black body, α = 1, ρ = 0 and t = 0. That is, a black body is a perfect

absorber as well. In general, these coefficients are dependent on the wave-

length of radiation and the temperature of the surface. However, due to the

prevalent insensitivity of these coefficients to temperature and wavelength

variations in real materials, the absorptivity, reflectivity and transmissivity

are assumed to be uniform across all wavelengths and temperatures. Such an

ideal object is known as a gray body. Finally, it may be helpful to note that

in some cases, the surfaces are thick enough such that they can be assumed

to be opaque — causing t = 0 and further simplifying the set-up.
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Kirchhoff’s Law of Radiation

Kirchhoff’s law states that the absorptivity and emissivity of a gray

body are equal1 when the body is at thermodynamic equilibrium with its

surroundings.

α = ε. (4.13)

That is, a good emitter is also a good absorber. Kirchhoff’s law can be

proven by leveraging the impossibility of heat transfer between two bod-

ies which are at the same temperature. Consider an arbitrary gray body

of an arbitrary shape and size, with an absorptivity α and emissivity ε.

Now, imagine enclosing this body with a slightly larger black body replica

of a similar shape and size. The arbitrary body and the black body are

both at temperature T and both have surface area A. Evidently, all radia-

tion that is emitted by the arbitrary body impinges on the surface of the

black body. The luminosity of the arbitrary body is εσAT 4. The power

it absorbs, due to the radiation by the black body, is ασAT 4. As there

can be no net heat flux between these two bodies, these expressions must

be equal.

=⇒ α = ε.

Even though we have considered a particular set-up in our proof of Kirch-

hoff’s law, the absorptivity and emissivity of a gray body are properties

that are independent of the external environment and hence identical across

all types of surroundings. Furthermore, since α and ε are uniform for a gray

body across all wavelengths and temperature by proposition, Kirchhoff’s law

of radiation is often applied, even in the case where the gray body has not

attained thermodynamic equilibrium with its surroundings. That is, α = ε

is assumed to hold in all cases for a gray body.

Problem: Two large, thin plates of area A are oriented parallel to each other

in a vacuum in Fig. 4.6. The left plate is a black body while the right plate is

an opaque gray body with an emissivity ε. If the left plate is maintained at

a temperature T1, determine the equilibrium temperature of the right plate

T2. Note that each plate has two surfaces.

1Actually, a stronger version states that the absorptivity and emissivity of a body for
all wavelengths of radiation are equal at thermodynamic equilibrium. However, this is not
particularly enlightening as it implies that we would need to define an absorptivity and
emissivity for each wavelength. Thus, we shall just consider all wavelengths of radiation
as a whole by adopting the gray body assumption.
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Figure 4.6: Radiating plates

The incident power on the right plate, due to the left, is E1 = σAT 4
1 . By

Kirchhoff’s law, εσAT 4
1 amount of power is absorbed by the right plate and

(1 − ε)σAT 4
1 amount of power is reflected back to the left plate. Next, the

right plate also emits E2 = εσAT 4
2 amount of power on each side. Therefore,

the net heat flux between the left and right plates is E1 − (1− ε)E1 −E2 =

εσA(T 4
1 − T 4

2 ). For the right plate to be at equilibrium, this must also be

equal to the heat flux on its right side, E2 = εσAT 4
2 . Therefore,

εσA(T 4
1 − T 4

2 ) = εσAT 4
2

T2 =
T1
4
√
2
.

Notice that in the above example, we imposed the condition that the heat

flux must be continuous instead of enforcing the fact that the power emitted

by the second plate must equal the power absorbed. Both methods will work

fine but the former is often simpler and less messy in more complicated

set-ups.

Problem: Two large black plates of area A are oriented parallel to each

other and are maintained at temperatures Ti and Tf . Now, if N identical

black plates are slotted between them — numbered from 1 to N from left

to right, with the first plate being the closest to the plate with temperature

Ti — determine the net heat flux transferred between adjacent plates at

steady state and the temperature of the jth plate in the N intermediate

plates.

Let Q̇ be the common net heat flux between adjacent plates, positive

rightwards. By the continuity of heat flux,

σA(T 4
i − T 4

1 ) = Q̇

σA(T 4
1 − T 4

2 ) = Q̇

...

σA(T 4
N − T 4

f ) = Q̇.
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Summing all of the above equations,

σA(T 4
i − T 4

f ) = (N + 1)Q̇

Q̇ =
σA(T 4

i − T 4
f )

N + 1
.

From the previous series of equations, we have the “arithmetic progression”

T 4
j = T 4

j−1 −
Q̇

σA

with T0 being Ti. Therefore,

T 4
j = T 4

i − jQ̇

σA
=

(N + 1− j)T 4
i + jT 4

f

N + 1

Tj =
4

√
(N + 1− j)T 4

i + jT 4
f

N + 1
.

View Factor

In the previous problems, the emitted radiation by a plate, in the direction

of another, was completely projected on the other plate. However, this is not

necessarily true in general. Consider the case where there are two radiating

bodies, A and B, at temperatures T0 and T1. They possess surface areas AA
and AB respectively. Each body emits thermal radiation and also receives

thermal radiation from the other body. The view factor, FAB , is defined as

the fraction of radiation emitted by A that strikes the surface of B (note

that this is not the fraction absorbed by B and that radiation reflected

by A is not counted). The view factor is a purely geometric property that

is dependent on many factors such as the orientations of the bodies. The

reciprocity theorem states that

FABAA = FBAAB . (4.14)

This can be proven, again, by imposing the condition that there cannot be

a net heat flux between two objects of the same temperature. Suppose that

A and B were black bodies at the same temperature T , such that there is

no reflected radiation. Then, the power incident on B due to radiation by A

is FABσAAT
4. Similarly, the power incident on A due to B is FBAσABT

4.

For the net heat flux to be zero, these quantities must be equal — implying
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that

FABAA = FBAAB .

Since the view factors and surface areas are purely geometric properties, the

above result must hold for non-black bodies as well — hence proving the

reciprocity theorem.

Moving on, we wish to compute the net heat flux between A and B

in general. We first start off with the simplest case where A and B are

both black bodies. The amount of power absorbed by B due to the thermal

radiation by A is

Q̇A→B = FABσAAT
4
0 .

Similarly, the amount of power absorbed by A due to B is

Q̇B→A = FBAσABT
4
1 .

The net heat flux between A and B is

Q̇AB = Q̇A→B − Q̇B→A = FABσAAT
4
0 − FBAσABT

4
1 .

Employing the reciprocity theorem,

Q̇AB = FABσAA(T
4
0 − T 4

1 ). (4.15)

Proceeding with a new set-up, consider the special case where A is a small

object with emissivity εA in a room whose surrounding temperature is T1.

B in this case is the surroundings of A and acts as a black body such that

εB = 1. The general system of a gray body A and black body B cannot be

solved with just their view factors as FAB is not generally representative of

the radiation reflected from the surface of the gray body that is incident on

the black body. One would expect the distribution of reflected light to differ

from that of light emitted by A. However, in this case, we know that both the

emitted and reflected forms of radiation by A are completely received by B

due to its all-encapsulating nature — we can thus circumvent this loophole.

The power emitted by B and incident on A is

FBAσABT
4
1 .

εAFBAσABT
4
1 amount of power is absorbed by A and the rest is reflected

back to B. The surface area AB of the surroundings is not well-defined

at the moment but we will apply the reciprocity theorem later to cir-

cumvent this muddy point. Moving on, the power emitted by A and
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absorbed by B is

εAFABσAAT
4
0 .

The net heat flux between the object and its surroundings is

Q = εAFABσAAT
4
0 − εAFBAσABT

4
1 .

Applying the reciprocity theorem yields

Q = εAσAA(T
4
0 − T 4

1 ) (4.16)

since FAB = 1 as the surroundings B receives all radiation by A. This is an

extremely useful result that is expressed solely in terms of the properties of

object A.

Problem: A spherical black body of absolute temperature T0 and radius r

is covered by a thin, concentric, and black spherical shell of radius R. Let

the temperature of the surroundings far away be T2. What is the equilibrium

temperature of the shell, T1?

The view factor of the sphere to the shell is 1 since all radiation emitted

from the sphere reaches the shell. The net heat flux from the sphere to the

shell, Q̇, is then given by Eq. (4.15) as

Q̇ = σ4πr2(T 4
0 − T 4

1 ).

The net heat flux from the shell to the surroundings, Q̇′ is

Q̇′ = σ4πR2(T 4
1 − T 4

2 )

by Eq. (4.15) again as the view factor of the shell to the surroundings is also 1.

Lastly, for the shell to be at equilibrium, the heat fluxes must be equal.

Q̇ = Q̇′.

Solving,

T1 =
4

√
r2T 4

0 +R2T 4
2

r2 +R2
.

4.3.3 System of Gray Bodies

Having discussed a few special systems, this section will try to analyze a more

general system of gray bodies. But first, we define the following quantities

for the sake of convenience. The radial exitance M of an object is the total

power emitted by the surface of an object per unit area. We emphasize the

fact that this is the power emitted which implies that reflected radiation is
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not counted. The irradiance E on an object is the total power incident (not

absorbed by!) on the surface of an object per unit area. Finally, the radiosity

J of an object is the total power leaving the surface of an object per unit

area. Power emitted, reflected and transmitted by a surface all contribute to

the radiosity.

In a system of gray bodies, radiation may be reflected back and forth

between gray bodies. Then, relevant quantities such as the net heat flux

between two bodies may be determined by summing an infinite series, or

better yet, by solving simultaneous equations involving the quantities we

have just defined. Consider the following problem.

Problem: Two large opaque plates with area A and emissivities ε1 and ε2
are parallel to each other. If the two plates are maintained at temperatures

T1 and T2 respectively, determine the net heat flux between them.

By Kirchhoff’s law, the absorptivities of the two plates are ε1 and ε2
respectively. Observe that when plate 1 emits a certain amount of exitance

M1, a fraction ε2 of it is absorbed by plate 2 and the rest is reflected back to

plate 1. Plate 1 then absorbs a fraction ε1 of the power again and reflects the

rest and so on. A similar process occurs for the exitance emitted by plate 2.

The net power per unit area emitted from plate 1, in the direction of the

plate 2, is then

q̇ =M1 − ε1(1− ε2)M1 − ε1(1− ε1)(1 − ε2)
2M1

− ε1(1− ε1)
2(1− ε2)

3M1 − · · ·
− ε1M2 − ε1(1− ε1)(1 − ε2)M2 − ε1(1 − ε1)

2(1− ε2)
2M2 − · · ·

=M1 − ε1(1− ε2)M1

1− (1− ε1)(1 − ε2)
− ε1M2

1− (1− ε1)(1 − ε2)
,

where the negative terms involving M1 are due to the reflected portions of

M1 that plate 1 absorbs back and the negative terms involving M2 stem

from plate 1 absorbing part of the radiation emitted by plate 2. The heat

flux between the two plates is then the above multiplied by the area of

plate 1.

Q̇ = A

(
M1 − ε1(1− ε2)M1

1− (1− ε1)(1 − ε2)
− ε1M2

1− (1− ε1)(1− ε2)

)
.

Substituting M1 = ε1σT
4
1 and M2 = ε2σT

4
2 ,

Q̇ =
σA(T 4

1 − T 4
2 )

1
ε1

+ 1
ε2

− 1
.
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A more elegant method employs the definition of irradiance and radiosity.

The radiosity J of each plate, in the direction towards the other, is only

the sum of its radial exitance M and the reflected power per unit area

as the opaque plates do not transmit any power. The reflected power per

unit area of a plate is simply one minus its absorptivity (which is equal to

its emissivity) multiplied by the irradiance on the plate E.

J1 =M1 + (1− ε1)E1,

J2 =M2 + (1− ε2)E2.

However, we know that the irradiance on a particular plate is simply the

radiosity of the other plate. Then,

J1 =M1 + (1− ε1)J2,

J2 =M2 + (1− ε2)J1.

Solving these equations simultaneously would yield

J1 =
M1 + (1− ε1)M2

1− (1− ε1)(1 − ε2)
,

J2 =
M2 + (1− ε2)M1

1− (1− ε1)(1 − ε2)
.

The net heat flux density q̇ emanating from plate 1, in the direction towards

plate 2, is the radiosity of plate 1 minus the irradiance on plate 1 which is

the radiosity of the plate 2. Thus,

q̇ = J1 − J2 =
ε2M1 − ε1M2

1− (1− ε1)(1 − ε2)
.

The net heat flux between the plates is then the net heat flux density from

plate 1 multiplied by the area of plate 1 as all of the net heat flux density

emerging from plate 1 is incident on plate 2.

Q̇ = q̇A =
σA(T 4

1 − T 4
2 )

1
ε1

+ 1
ε2

− 1
.

Opaque gray Systems with Partial Capturing of Radiosity

In the previous problem, the radiosity of a plate completely impinged on the

other. However, the irradiance on a component in a system due to another

component is only a portion of the latter’s radiosity in general due to the

relative orientations of the components. In an attempt to rectify this, one

might immediately think of the view factor Fji which was defined as the
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fraction of radiation emitted by a component j that is projected on another

component i. However, we cannot directly say that the irradiance on compo-

nent i due to component j is
FjiJjAj

Ai
where Jj is the radiosity of component

j. This is due to the fact that the direction of reflected light from compo-

nent j will most probably be different from that of its emitted light (whose

direction is arbitrary). However, if we assume that reflections off component

j are diffuse — such that light is scattered off the surface of component

j haphazardly — we can indeed say that the irradiance on component i

due to component j is
FjiJjAj

Ai
. This assumption of diffuse reflections is very

common.

Now, consider a system of N opaque components with the ith component

possessing a surface area Ai, radiosity Ji, emissivity εi and exitance Mi. The

irradiance on component i is
∑N

j=1
FjiJjAj

Ai
. Then, the various Ji’s can be

related by

Ji =Mi + (1− εi)
N∑
j=1

FjiJjAj
Ai

.

The summation includes component i, as in general, a portion of its own

radiosity may be incident on itself. By the reciprocity relation of view factors,

FjiAj = FijAi.

Therefore,

Ji =Mi + (1− εi)
N∑
j=1

FijJj . (4.17)

Following from this, we have a system of N variables (the various Ji’s) and

N equations. Therefore, the radiosity of each surface can be solved for, in

principle. Afterwards, we can compute the net heat flux Q̇i (defined to be

positive when emitted) emanating from component i by taking the product

of its area Ai and by its radiosity subtracted by the total irradiance on it.

Q̇i = Ai

⎛
⎝Ji − N∑

j=1

FijJj

⎞
⎠.

This can be further simplified by employing Eq. (4.17).

Q̇i = Ai

(
Ji − Ji −Mi

1− εi

)
=

Ai
1− εi

(Mi − εiJi).
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Substituting Mi = εiσT
4
i where Ti is the temperature of the ith surface,

Q̇i =
Aiεi
1− εi

(σT 4
i − Ji). (4.18)

Problem: Two long concentric cylinders of radii r1 and r2, with r1 < r2 and

emissivities ε1 and ε2, are maintained at temperatures T1 and T2 respectively.

Determine the net heat flux between the cylinders if they have length l.

Ignore any edge effects and assume that reflections off the cylinders are

diffuse.

Let the exitances and radiosities of the cylinders be M1, M2, J1 and J2
respectively. Then,

J1 =M1 + (1− ε1)F11J1 + (1− ε1)F12J2,

J2 =M2 + (1− ε2)F21J1 + (1− ε2)F22J2.

Evidently, all radiation emitted by cylinder 1 is received by cylinder 2. Then,

F12 = 1 and F11 = 0. By the reciprocity theorem,

A1 = F21A2

2πr1l = F212πr2l

F21 =
r1
r2

=⇒ F22 = 1− r1
r2
,

as the leftover radiosity from the larger cylinder that is not incident on the

smaller one must be redirected to itself. Substituting these values into the

radiosities,

J1 =M1 + (1− ε1)J2,

J2 =M2 + (1− ε2)
r1
r2
J1 + (1− ε2)

(
1− r1

r2

)
J2.

Solving these (with M1 = ε1σT
4
1 and M2 = ε2σT

4
2 ) would yield

J1 =

(
ε1ε2 + ε1

r1
r2

− ε1ε2
r1
r2

)
σT 4

1 + (1− ε1)ε2σT
4
2

ε2 + ε1
r1
r2

− ε1ε2
r1
r2

.

Finally, the net heat flux between the cylinders is also the net heat flux

emanating from cylinder 1.

Q̇ =
A1ε1
1− ε1

(
σT 4

1 − J1
)
=

2πr1lσ(T
4
1 − T 4

2 )

1
ε1

+ r1
r2

(
1
ε2

− 1
) .



November 13, 2018 7:4 Competitive Physics 9.61in x 6.69in b3255-ch04 page 218

218 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

4.4 Thermal Expansion

Objects usually expand when heated because their molecules vibrate and

move about faster, causing intermolecular distances to increase. Similarly,

objects usually contract when cooled. Empirically, it is found that for small

changes in temperature, the fractional change in length along a single dimen-

sion is proportional to the change in temperature.

ΔL

L0
= αΔT (4.19)

where ΔL is the change in length and L0 is the original length before the

temperature change. α is known as the coefficient of linear expansion which

varies across different objects and ΔT refers to the change in temperature

of the object (usually in Kelvins or degree Celsius). This equation is valid

for small fractional changes, ΔL
L0

� 1. An equivalent form of the above

equation is

L = L0(1 + αΔT ) (4.20)

where L is the final length of the object.2 Similarly, we can define the coef-

ficient of expansion for area and volume.

ΔA

A0
= αAΔT,

ΔV

V0
= αVΔT,

where A and V refer to area and volume respectively.

A = A0(1 + αAΔT ),

V = V0(1 + αVΔT ).

For objects that expands isotropically (the same percentage in all directions)

and for small fractional changes,

αA ≈ 2α, (4.21)

αV ≈ 3α. (4.22)

To show these, let the initial lengths of an object along three perpendicular

directions be x1, y1 and z1 respectively. Let the final lengths be x2, y2 and z2.

2You may worry that the above expression gives different results for the same rise in
temperature if we intersperse the heating of the object, as compared to the case where its
temperature is increased on only one occasion. However, such disparities are second order
and can be neglected.
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We only consider the lengths in the x and y-directions in the case of area for

the sake of illustration. For an isotropic expansion,

A ∝ xy,

V ∝ xyz,

where x, y and z are the object’s dimensions. Therefore,

A

A0
=
x2
x1

· y2
y1

= (1 + αΔT )2 ≈ 1 + 2αΔT,

V

V0
=
x2
x1

· y2
y1

· z2
z1

= (1 + αΔT )3 ≈ 1 + 3αΔT,

where second order and above terms in αΔT have been discarded. Compar-

ing the different expressions for A
A0

and V
V0
, it can be seen that

aA ≈ 2α,

aV ≈ 3α.

Problem: Find the mean radius of curvature r when an initially straight

bimetallic strip consisting of two metal strips, with coefficients of linear

expansion α1 and α2 (α2 > α1) and a small common thickness x, is heated

such that its temperature increases by ΔT .

Let the initial length of the bimetallic strip be L0. Let the final length of

the strips with coefficients of α1 and α2 be L1 and L2 respectively. Then,

L1 = (1 + α1ΔT )L0,

L2 = (1 + α2ΔT )L0.

Evidently, the first strip should occupy the inner part of the arc while the

second strip occupies the outer part. The mean radius of curvature is the

distance between the interface of the two strips and the center of the circle.

If the arc produced by the bimetallic strip subtends an angle θ,

L1 = θ
(
r − x

2

)
,

L2 = θ
(
r +

x

2

)
.
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Then,

r − x
2

r + x
2

=
L1

L2
=

(1 + α1ΔT )

(1 + α2ΔT )

r =
x[2 + (α1 + α2)ΔT ]

2(α2 − α1)ΔT
.

Problem: A straight line is drawn using a marker on a uniform circular

plate. It takes the form of a chord that lies a perpendicular distance h from

the center of the circle. If the coefficient of linear expansion of the plate

is α, determine the final shape of the line after the plate is heated such that

its temperature is increased by ΔT . The expansion of the plate is isotropic.

Tom claims that the line will now be bent. Is he correct?

Intuitively, an isotropic expansion is akin to us taking a photo of the plate

and then enlarging the image. Therefore, we would expect that the final line

takes the form of a chord that lies a perpendicular distance (1+αΔT )h from

the center of the circle and that Tom is wrong. If one is not satisfied with this

argument, one can consider the following more quantitative proof. Define the

origin at the center of the circle, x-axis to be parallel to the chord and the

y-axis to be perpendicular to the chord. Define θ to be the clockwise angular

coordinate of a point on the line from the y-axis. The radial coordinate of a

point on the initial straight line as a function of θ, r(θ), is

r(θ) =
h

cos θ
.

The new radial coordinate of a point on the line as a function of θ, r′(θ),
after the isotropic expansion is simply r(θ) scaled by a factor of (1 + αΔT )

as the circular disk is stretched radially.

r′(θ) =
h(1 + αΔT )

cos θ
.

This equation takes the same form as the previous equation, except that h

is replaced by h(1+αΔT ). Therefore, the new curve represents a chord that

lies a perpendicular distance h(1 + αΔT ) from the center of the circle.

4.5 Phase Transitions

A phase is defined as a physically distinct state of matter that is homo-

geneous. Common phases3 include the solid, liquid and vapour (gaseous)

3There are in fact other exotic phases but we shall only consider the three common ones.



November 13, 2018 7:4 Competitive Physics 9.61in x 6.69in b3255-ch04 page 221

Heat Transfer and Phase Transitions 221

phase. The process involving a pure substance — whose chemical composi-

tion is uniform across all molecules — that evolves from one phase to another

is known as a phase transition. Consider the following phase transitions of

water.

When a block of ice is heated at atmospheric pressure, one would find that

its temperature rises until its melting point. At this juncture, ice begins to

melt into water. However, the temperatures of ice and water stagnate at the

melting point, though heat is continuously supplied, until the ice completely

melts. Similarly, heating the water further would increase its temperature

until its boiling point, at which water begins its transition to its vapour state

(steam). Again, the heat supplied during this transition is not embodied as

rises in the temperatures of the water and steam, until all water has boiled

off. Afterwards, the temperature of steam continues to increase as it absorbs

more heat.

There is a common trend where the temperature of a substance remains

constant during such phase transitions. There must be some explanation for

this seemingly missing heat that is not manifested as an increase in tem-

perature of the substance. We name the dormant heat supplied to facilitate

solid-liquid and liquid-gas transitions the latent heats of fusion and vapor-

ization respectively.

To understand why a latent heat is necessary, we consider the first law of

thermodynamics. During a phase transition, there is a change in the poten-

tial energy of the substance. During melting, the substance is transformed

from an ordered lattice into a disordered liquid whose particles are further

apart. Energy is required for the molecules to overcome the attractive bond-

ing between them so that they can escape from their rigid structure. From

another perspective of energy, the potential energy in a liquid is larger than

that in a solid (less negative as the potential energy between two molecules

is usually negative due to the attractive nature of their interactions) as

molecules are further apart. In a similar vein, vapor molecules are essen-

tially liberated during boiling and the intermolecular forces between them

become negligible. Energy is required to help them overcome the attractive

bonding in the liquid state. The potential energy of a vapor is virtually zero

and, thus, is larger than the potential energy of a liquid.

Besides a change in potential energy, work is also performed by the sub-

stance during a phase transition between solid, liquid and vapor phases due

to discontinuities in densities. Specifically, work must be performed by the

substance in overcoming the external pressure when expanding or contract-

ing during a phase transition.
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Therefore, latent heat plays the roles of changing the microscopic poten-

tial energy of a substance and enabling it to perform work as it changes

phase. Since the potential energy and volume changes of a liquid-vapor

transition often outstrip those of a solid-liquid transition, the latent heat

of vaporization is much larger than the latent heat of fusion. Moreover, the

latent heat supplied does not lead to an increase in the microscopic kinetic

energy of the substance — implying that its temperature remains constant.

Quantitatively, it is convenient to define the specific latent heat of fusion

and vaporization, which is the latent heat per unit mass of substance, as the

latent heat required to completely boil or melt a substance often scales with

mass. In general, we define L as the specific latent heat of a substance during

a particular phase transition. L is different for different states at which phase

transition occurs as the work done by the substance varies. The amount of

heat, Q, that needs to be supplied to facilitate the particular phase transition

of mass m of a substance from a phase of lower internal energy to one of

higher internal energy is

Q = mL. (4.23)

Since a phase transition is an internally reversible process as the different

phases must coexist at the same temperature (such that there is no heat

transfer between constituents of different temperatures),

Q = TΔS = TmΔs

where T is the temperature at which the phase transition occurs and Δs is

the entropy change per unit mass of the substance (specific entropy change),

in completely converting from one state to another. Then,

L = TΔs, (4.24)

where the phase with a larger internal energy also possesses greater entropy.

4.5.1 Phase Diagrams

To visualize the phases of a substance at different equilibrium states, a phase

diagram can be drawn. Each state of a substance can be ascribed a unique

pressure, volume and temperature, which are in fact connected by an equa-

tion of state (such as the ideal gas law in the case of ideal gases). Therefore,

only two properties are needed to specify a state of a system. In light of this

clarification, a phase diagram is usually plotted as a pressure-temperature

diagram, exemplified by Fig. 4.7.
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Figure 4.7: Phase diagram of common substances

The experimental phase diagram of a typical substance4 is depicted

above. There are three lines that demarcate boundaries between phases in

the P-T diagram. These lines are the respective coexistence lines where dif-

ferent phases of the substance can coexist at a single equilibrium pressure

and temperature. A phase transition occurs when the state of the substance

is on a coexistence line (as one phase is progressively converted to another)

and is completed when the state crosses over this line. To navigate over a

coexistence line from a phase with lower internal energy to one with higher

internal energy, a latent heat needs to be supplied to the substance — this

latent heat is dependent on the point on the coexistence line and the direction

in which the state of the substance traverses. On another note, an interest-

ing observation is that the substance can actually directly transition from a

solid to vapor without passing by the liquid state at low pressures. Such a

phase transition is known as sublimation and the reverse process is known

as deposition.

At low temperatures and high pressures, the substance takes the form of

a solid as expected. At high temperatures and low pressures, the substance

is a vapor. At intermediate temperatures and pressures, the substance is a

liquid.

There are a few interesting properties of the phase diagram. Firstly, there

is a single temperature and pressure at which the three phases can coexist —

this is known as the triple point. At pressures below that at the triple point,

the substance can sublime. Furthermore, the pressure at the triple point is

the lowest pressure at which a liquid can exist for all substances while the

4Water is an atypical substance. Its solid-liquid coexistence line has a negative gradient
for reasons that will be elaborated later.
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temperature at the triple point is the lowest temperature at which a liquid

can exist for typical substances (not water).

Problem: Determine the specific latent heat of sublimation Ls at the triple

point if the specific latent heats of fusion and vaporization are Lf and Lv at

the triple point respectively.

Let the specific entropies of the solid, liquid and vapor states of the sub-

stance at the triple point be ss, sl and sv respectively. Let the temperature

at the triple point be T . Then,

Lf = T (sl − ss),

Lv = T (sg − sl),

Ls = T (sg − ss) = Lv − Lf .

Moving on, interesting observations regarding the coexistence lines can be

made. The solid-vapor line originates at absolute zero (0K) and zero pressure

and ends at the triple point. The solid-liquid line extends from the triple

point to infinity. However, the liquid-vapor line starts from the triple point

and terminates at a certain juncture! This state is known as the critical

point and the temperature and pressure at this point are termed the critical

temperature Tc and the critical pressure pc respectively.

So what actually occurs in the supercritical region, at states with tem-

peratures and pressures larger than the corresponding critical values? The

liquid and vapor phases become indistinguishable and the substance morphs

into a homogeneous fluid (which is neither liquid or gaseous and is sim-

ply referred to as a fluid). Surface tension vanishes such that the meniscus

dividing the two phases disappears. The density of the substance also evolves

continuously — a stark contrast with the previously discontinuous densities

of the liquid and gaseous states. Therefore, if you change the state of a

substance from the liquid region to the supercritical region and back to the

vapor region, you won’t actually observe a phase transition! These properties

are rather counter-intuitive as the supercritical region is rather exotic. For

example, the critical pressure of water is roughly 218 atm which is enormous

and hard to achieve.

To better illustrate the prevalent abrupt jump in density during a liquid-

vapor phase change and the seamless transition in the supercritical region,

consider the temperature against volume graphs of a pure substance heated

at constant pressure from a liquid state, for different values of pressure in

Fig. 4.8. Note that we usually analyze heating at constant pressure as it
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is a decent representation of the processes on Earth which are commonly

conducted under atmospheric pressure.

Figure 4.8: Isobars on T-V diagram

Let us focus on the curve describing the particular pressure p1 (which

is the smallest out of all the pressures that we will consider and is smaller

than the critical pressure pc) which is reflected by the bottom-most graph.

As the liquid is heated, its temperature and volume increase from state 1 to

state 2. At this juncture, the graph becomes disjoint between segments 12

and 34. The substance attains an equilibrium state where its liquid and

vapor phases, which respectively correspond to states 2 and 3, coexist with

different volumes. Collectively, this pair of disjoint points correspond to a

single point on the liquid-vapor coexistence line on the P-T diagram and thus

have the same temperature. The coexistence of phases will persist until suf-

ficient heat (commensurate with the latent heat of vaporization at constant

pressure p1) is supplied to completely vaporize the substance. To visualize

this on the above diagram, we can instead define V as the average volume

of the substance such that V increases from state 2 (where the substance

is completely liquid) to state 3 (where the substance is completely vapor)

along a horizontal line. Subsequent heating beyond this point would cause

the temperature and volume of the vapor to increase indefinitely (e.g. from

states 3 to 4).

At a slightly larger pressure p2 > p1, which is still smaller than pc, a simi-

lar trend of discontinuous lines occurs. However, the graph is shifted upwards

and the horizontal gap between the disjoint points is reduced. Plotting the

locus of the pairs of disjoint points at different pressures, we obtain the bell-

shaped curve depicted in dotted lines. The portion on the left of the peak
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corresponds to the liquid phases while that on the right corresponds to the

vapor phases when the two phases coexist. Notice that there is a certain min-

imum pressure (defined as the critical pressure pc) where the states of the

substance is a continuous curve — its point of inflexion produces the peak of

the bell-shaped curve. That is, at this pressure, the supposedly disjoint pair

of points converge to form a single point which is a point of inflexion. At pres-

sures above pc, such as p3 > pc, the states of the substance during heating

under constant pressure is a continuous curve such that there is no volume

discontinuity as the liquid and vapor phases become indistinguishable and

an “integrated fluid.”

The above analysis suggests that if we are given an equation of state

that models the liquid or vapor phases of a substance, we can determine the

critical pressure pc by finding the pressure that produces a point of inflexion

on the T-V diagram when the substance is heated or cooled at constant

pressure. Afterwards, the critical temperature Tc can also be determined.

Problem: In light of the ineptness of the ideal gas law in describing phase

transitions, the van der Waals model was developed and proposes that the

equation of state of a real gas is(
p+

a

v2

)
(v − b) = RT,

where p and T are the pressure and temperature of the gas and v is the

volume of the gas per unit mole. a and b are known constants. Determine

the critical pressure and temperature predicted by this model.

To determine the pressure p at which there is a point of inflexion in the

T-V diagram when the gas is cooled under constant pressure, we need to

determine (
∂T

∂V

)
p

= 0,

(
∂2T

∂V 2

)
p

= 0,

where the subscript p underscores the fact that we treat p as a constant in

computing the partial derivative. Since the number of moles n is fixed and

V = nv, the above is equivalent to finding(
∂T

∂v

)
p

= 0,

(
∂2T

∂v2

)
p

= 0.
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From the van der Waals equation of state,(
∂T

∂v

)
p

=
1

R

[
−2a

v3
(v − b) + p+

a

v2

]
= 0,

(
∂2T

∂v2

)
p

=
1

R

[
6a

v4
(v − b)− 4a

v3

]
= 0.

From the second equation, we obtain the specific molar volume at this

juncture.

3(v − b) = 2v

=⇒ v = 3b.

Substituting this into the first equation, the critical pressure is

−2a · 2b
27b3

+ pc +
a

9b2
= 0

=⇒ pc =
a

27b2
.

Finally, substituting pc and v into the equation of state, the critical temper-

ature is

Tc =
8a

27Rb
.

4.5.2 Coexistence of Phases

This section will analyze the coexistence lines in greater detail. As an intro-

duction, consider a closed system containing the liquid and vapor phases of

a substance that has not yet established an equilibrium.

If the pressure on the liquid due to the vapor is too low, liquid molecules

will escape the liquid (evaporate) at a greater rate than gas molecules enter-

ing the liquid (condensing). Thus, the liquid will vaporize to produce more

gas molecules — causing the vapor pressure to increase. Conversely, if the

vapor pressure is too high, there will be a net influx of molecules into the

liquid — condensing the gas and reducing the vapor pressure.

Therefore, there is a tendency for the system to equilibrate until there

is no net exchange of molecules between the phases. A dynamic equilibrium

is established such that the rate of molecules evaporating from the liquid

phase is equal to the rate of molecules condensing from the vapor phase.

When such an equilibrium has been established, the liquid and vapor are

referred to as a saturated liquid and vapor respectively. The vapor pressure

at this juncture, for a given common temperature T between the liquid
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and vapor, is known as the saturated vapor pressure ps(T ). Similarly, the

common temperature, for a given vapor pressure p, is known as the saturation

temperature Ts(p). The liquid-gas coexistence line represents the saturation

pressure at various temperatures or equivalently, the saturation temperature

at various pressures. Observe from the coexistence line that in general, there

is a one-to-one mapping between the equilibrium pressure and temperature

when two or more phases coexist. Therefore, in a certain sense, there is only

a single independent variable when phases coexist.

In light of the above discussion, another important point to understand

is that a substance generally does not exist as a purely liquid or a purely

vapor phase at equilibrium due to evaporation and condensation. Evapora-

tion always occurs, because the energy distribution of surface molecules in

a liquid is Boltzmann-like such that some highly energetic molecules will

definitely leave the liquid over time. Therefore, a purely liquid phase can-

not be at equilibrium. However, there is still a slight chance for a purely

vapor phase to attain an equilibrium as a vapor will in fact not condense

in empty space to form small droplets. This is because, when a liquid phase

has yet to form, the intermolecular forces are too weak to cause molecules

to congregate together to produce a liquid. From the perspective of energy,

the molecules need to provide the surface energy required to build the liq-

uid surface — a difficult barrier to overcome. A nucleation center, such

as a dust particle, is in fact required to keep the molecules together and

to spark off condensation. It reduces the interface of the liquid with its

vapor (as part of the surface is stuck to the nucleation center) such that the

energy barrier is lowered. Therefore, in the case of extremely clean vapors,

it is possible for them to attain an equilibrium. Such vapors which exist in

the vapor region of the phase diagram and lie outside of the coexistence

lines are known as supersaturated vapors. They exist in a state of unstable

equilibrium as the presence of a nucleation center will immediately trigger

condensation.

Clausius–Clapeyron Equation

The equation of a coexistence line p(T ) is modeled by the Clausius–

Clapeyron equation which states that

dp

dT
=

L

TΔv
,

where L is the specific latent heat during the transition at the current state

(T, p) on the coexistence line and Δv is the specific change in volume (volume
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change per unit mass) across the two phases, from one of lower internal

energy to one of higher internal energy, at the particular (T, p) state.

Proof: There is a delightful proof of the Clausius–Clapeyron equation that

is based on conjuring a hypothetical reversible heat engine, that utilizes

two coexisting phases of a pure substance as its working substance, and

imposing the efficiency of a reversible heat engine dictated by the second

law of thermodynamics.

For purposes of illustration, let our working substance be a combination

of a saturated liquid and vapor stored in a container (this proof also works

for other coexisting phases). Now, consider the following four processes of

an infinitesimal Carnot cycle performed by this working substance.

(1) The working substance is expanded isothermally at temperature T when

it is put in thermal contact with a reservoir of temperature T . Mass m

of the liquid is vaporized in this process such that the total volume per

unit mass of the working substance changes from v1 to v2. Since this

change in total volume is much steeper than the change in pressure of

the working substance (this extends to all pairs of coexisting phases as

well but holds especially in the case where one phase is a vapour), in the

limit where v2−v1 � v1, this process on the PV diagram of the working

substance is approximately depicted by a straight line at a constant

pressure p.

(2) The working substance is expanded adiabatically such that its tempera-

ture and pressure decrease to (T + dT ) and (p+ dp) respectively, where

dT < 0 and dp < 0.

(3) The working substance is compressed isothermally at temperature (T +

dT ) when it is put in thermal contact with a reservoir of temperature

(T + dT ). Mass m of the vapour is condensed in this process. Again, the

pressure of this process is constant at (p+ dp).

(4) Finally, the working substance is compressed adiabatically such that its

pressure and temperature reverts from (p+ dp), (T + dT ) to p, T .

Since the graph depicting this cycle on a PV diagram is approximately a

parallelogram with edge length m(v2 − v1) = mΔv and height −dp, the
work done by this infinitesimal Carnot cycle is −mΔvdp. Furthermore, the

working substance only receives heat during the first process which is of

amountmL where L is the specific latent heat of vaporisation. Consequently,

the efficiency of this cycle is

η =
W

Qin
= −Δvdp

L
.
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As all processes are reversible, this must be equal to the Carnot efficiency

1− T+dT
T = −dT

T .

−Δvdp

L
= −dT

T

=⇒ dp

dT
=

L

TΔv
.

Scrutinizing the Clausius–Clapeyron equation, one can see that the gradients

of the coexistence lines are usually positive as Δv is positive for most tran-

sitions. Furthermore, the solid-liquid coexistence line should be extremely

steep at Δv is small. That said, water is an anomaly as the density of ice is

actually smaller than that of water — causing Δv to be negative. Then, the

solid-liquid line for water has a steep, negative gradient.

Unfortunately, the Clausius–Clapeyron equation is hard to solve for in

general as L and Δv are both functions of state that are difficult to model.

For example, L for a liquid-gas transition decreases as temperature increases,

attaining zero at the critical temperature and causing the liquid-gas line to

terminate.

However, we can determine approximate solutions for solid-gas and

liquid-gas transitions at temperatures much lower than Tc for a small tem-

perature change. The specific latent heat L remains approximately constant

and Δv can be taken to be the specific volume of the gaseous state, vg, which

is much larger than the specific volumes of the other phases. Then,

dp

dT
=

L

Tvg
.

Assuming that the ideal gas law holds,

pvg =
RT

μ

where μ is the molar mass of the gas molecules. Then,

dp

dT
=
Lpμ

RT 2

ˆ p

p0

1

p
dp =

ˆ T

T0

Lμ

RT 2
dT

ln
p

p0
=

Lμ

RT0
− Lμ

RT

p = p0e
−Lµ

R

(
1
T
− 1

T0

)
, (4.25)

where (T0, p0) is a reference point on the coexistence line.
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4.5.3 Mixture of Gases

In this section, we will study the coexistence of the liquid and vapor phases

of a substance when its vapor phase is mixed with a disparate gas. This is a

ubiquitous phenomenon as Earth is brimming with air (which is a mixture

of different gases) that envelopes all other substances. First and foremost,

a pivotal assumption regarding gas mixtures is the Dalton model. It states

that the total pressure p of a mixture of N gases that occupy a certain

volume at thermal equilibrium is simply the sum of the individual pressures,

referred to as the partial pressures pi, that each gas would have caused in

that volume.

p =
N∑
i=1

pi

where pi is the partial pressure of the ith gas. This relationship is evident

from the kinetic theory of gases as the different gases would simply engender

their own pressures if they do not interact with each other. That is, the

Dalton model is simply stating that each gas operates as if it is the only gas

in that particular volume and is unaffected by the presence of other gases

(assuming that there are no interactions). The partial pressure pi can be

expressed as a fraction of p via the ideal gas law. If there are ni moles of the

ith gas occupying the common volume V at temperature T ,

piV = niRT

for all 1 ≤ i ≤ N . Summing the above for all i,

pV = nRT

where

n =
N∑
i=1

ni

is the total number of moles of gas molecules. Dividing the ideal gas law of

the ith gas by the previous equation,

pi =
ni
n
p.

That is, the partial pressure generated by the ith gas is simply its mole

fraction relative to the entire mixture multiplied by the total pressure.
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Next, we proceed with our main topic — analyzing the coexistence of the

liquid phase of a substance with a mixture of gases at equilibrium. For the

sake of illustration, consider a set-up involving liquid water and its vapor

(water vapor) mixed with atmospheric air. Since atmospheric air normally

contains a portion of water vapor, we shall explicitly exclude this component

in referring to air and instead, treat it as part of the vapor. Air, with water

vapor removed from its constituents, is often referred to as dry air. Now, there

are two common assumptions made in this context. Firstly, the coexistence

of liquid water and its vapor is presumed to be unaffected by the presence of

dry air. That is, when a dynamic equilibrium has been established such that

the amount of liquid water remains constant, the partial pressure of water

vapor must be the saturated vapor pressure corresponding to temperature

of the mixture T , ps(T ). Secondly, the experiment is often conducted at

constant pressure, which is atmospheric pressure p0, such that the sum of

the partial pressures of water vapor and dry air must be equal to p0 at all

instances.

Let us first consider a set-up where the liquid phase has yet to form —

there is solely a mixture of supersaturated water vapor and dry air in a

container. Now, as this mixture is cooled at constant pressure, the partial

pressure of water vapor remains constant as its mole fraction relative to the

mixture remains constant. Eventually, the mixture attains a temperature at

which water vapor first begins to condense — this temperature is known as

the dew point. In other words, the dew point of a mixture of water vapor

and air is the temperature at which liquid water first begins to form when

the mixture is cooled at constant pressure. Since the partial pressure pw of

water vapor remains constant during this process, the dew point is simply

the saturation temperature Ts(pw) of water vapor at that constant partial

pressure pw.

The above discussion implies that we need to know the partial pressure

of water vapor pw in order to calculate the dew point. However, a more

common measure which enables the indirect calculation of pw is the relative

humidity φ of an air-water vapor mixture. Firstly, an air-water vapor mixture

is defined to be saturated when a dynamic equilibrium has been established

between the water vapor and liquid water (i.e. the state of water is on the

liquid-vapor coexistence line). The relative humidity is then defined as the

ratio of the mole fraction of water vapor in the current mixture to the mole

fraction of water vapor in a saturated mixture at the same temperature and

total pressure. This is equivalent to the ratio of the partial pressure of water

vapor in the current mixture pw to the saturation pressure of water vapor



November 13, 2018 7:4 Competitive Physics 9.61in x 6.69in b3255-ch04 page 233

Heat Transfer and Phase Transitions 233

at the same temperature ps(T ).

φ =
pw
ps(T )

.

Problem: Determine the dew point of a mixture of dry air and water vapor

with relative humidity φ and current temperature T0. Suppose that you have

a P-T graph of the liquid-vapor coexistence line of water.

Firstly, we need to compute the partial pressure of water vapor in the

mixture which is

pw = φps(T0).

ps(T0) can be determined from the P-T graph by drawing a vertical line

at T-coordinate T0 and finding the pressure of the point of intersection of

this line and the liquid-vapor coexistence line of water. Moving on, the dew

point is the saturation temperature Ts(pw) at vapor pressure pw. This can be

identified by drawing a horizontal line on the P-T diagram at P-coordinate

pw and finding the temperature of the point of intersection of this line and

the liquid-vapor coexistence line.

Next, what occurs if we continue to cool the previous mixture at constant

pressure after the dew point has been reached and wait for an equilibrium

to be established (assume that its final temperature is still greater than

the triple point temperature)? Firstly, note that water cannot solely exist

in its liquid phase at the end of this process as we have already remarked

that a purely liquid phase cannot be at equilibrium. Instead of completely

condensing into liquid water, what actually occurs is that water vapor par-

tially condenses such that its partial pressure decreases as its mole fraction

decreases. Its final partial pressure must correspond to the saturation pres-

sure at the final temperature of the set-up in order for liquid water and water

vapor to attain a dynamic equilibrium. Since the pressure of the mixture is

immutable, this also implies that the partial pressure of air increases.

Problem: A mixture of supersaturated water vapor, with initial partial

pressure pw0, and n moles of dry air molecules is cooled at constant pressure

p0 from an initial temperature T0 to a smaller final temperature T1 that is

below the temperature of the dew point but above the temperature of the

triple point of water. Describe the evolution of the state of water during

this process on a P-T diagram and determine the number of moles of water

vapor Δn that is condensed. Assume that you know the saturation pressure

of water vapor as a function of temperature, ps(T ).

On a phase diagram, the state of water begins as a supersaturated vapor

at (T0, pw0) and travels along a horizontal line (at constant partial pressure
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pw0) until it intersects the liquid-vapor coexistence line (the temperature at

this point of intersection is the dew point). As the mixture is further cooled,

the state of water travels along the coexistence line, towards decreasing tem-

perature, until temperature T1.

The mole ratio between water vapor and air is simply the ratio between

their partial pressures. Therefore, the initial number of moles of water

vapor is

nw0 =
pw0

p0 − pw0
n.

The final partial pressure of water vapor is the saturation pressure at

temperature T1, ps(T1). Therefore, the final number of moles of water

vapor is

nw1 =
ps(T1)

p0 − ps(T1)
n.

The moles of water vapor condensed is then

Δn = nw0 − nw1 =

(
pw0

p0 − pw0
− ps(T1)

p0 − ps(T1)

)
n.

Finally, let us consider the reverse process of the previous set-up. Suppose

that we start with liquid water and an air-water vapor mixture and heat it at

constant pressure p0. Liquid water will first begin to vaporize and increase the

partial pressure of water vapor as its mole ratio increases. The equilibrium

state of water initially moves along the liquid-vapor coexistence line towards

increasing temperature. However, as the partial pressure of water increases,

the partial pressure of air must decrease for the pressure of the mixture to

remain constant. This insinuates that there is a certain limiting temperature

where it is no longer possible for water to have an equilibrium state with

coexisting liquid and vapor phases as the partial pressure of air decreases

below zero. At this juncture, liquid water is said to boil as the bubbles

formed by evaporation can no longer be restrained by the external pressure

p0. Since liquid water just begins to boil when the partial pressure of air is

zero and when the partial pressure of its saturated vapor in a bubble is at

least as large as the external pressure for the bubble to continue expanding,

the boiling temperature Tb corresponds to the temperature at which the

saturation pressure of water is the constant external pressure p0.

ps(Tb) = p0.

Note that p0 refers to the atmospheric pressure patm in most situations.

During boiling, like any other phase transition, the temperature of water
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remains constant until sufficient latent heat has been supplied to completely

vaporize liquid water.

Problem: The immiscible liquid phases of two substances A and B are stored

together in an open container at atmospheric pressure patm. Given their sat-

uration pressures as functions of temperature psA(T ) and psB(T ), determine

the condition on the temperature T at which boiling first occurs. After-

wards, explain how one can determine which substance has a higher molar

rate of boiling throughout this boiling process. Assume that the heights of

the liquids are small such that the pressure is uniform throughout the set-up.

Observe that at the interface between A and B, a bubble comprising the

saturated vapors of both A and B can form. If we assume that Dalton’s law

holds, the total pressure of the bubble is the sum of the partial pressures of

the vapors of A and B. Therefore, boiling first occurs at this interface, rather

than the possible interfaces of A and B with air. The boiling temperature T

satisfies

psA(T ) + psB(T ) = patm.

To identify the substance that boils at a greater rate, observe that the tem-

peratures of the two substances remain constant during boiling — implying

that the partial pressures of their saturated vapors contained in the bubbles

remain constant too as there is a one-to-one mapping between saturation

pressure and temperature. Since the molar ratio of the saturated vapors of

A and B contained in a bubble is equal to the ratio of their partial pressures,

the substance with a higher saturation pressure at this boiling temperature T

will boil at a greater molar rate, throughout the entire boiling process since

this molar ratio is constant.
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Problems

Conduction

1. Concentric Spheres**

Two concentric, hollow spheres have radii r1 and r2 respectively with r1 < r2.

Denote their instantaneous temperatures as T1 and T2. If the space between

them is filled with a material with thermal conductivity k and negligible heat

capacity, determine the instantaneous heat flux between the two spheres.

Using the previous result, find T1(t) and T2(t) if the heat capacities of the

spheres are C1 and C2 and if their initial temperatures are T10 and T20.

2. Cylindrical Shell with Felt**

Suppose that the cylindrical shell in Section 4.2 is now covered with felt

that has a uniform thermal conductivity k2 and an outer radius r2. Let the

thermal conductivity of the cylindrical shell, with inner and outer radii r0
and r1, be k1. The inner surface of the cylindrical shell is maintained at T0
while the outer surface of the felt is maintained at T1. Determine the heat

flux across cylindrical layers.

3. Current in a Wire**

Consider a long cylindrical wire with a radius R and thermal conductivity k.

A current runs through it such that each unit volume of the wire produces

p amount of heat per unit time. If the temperature of the cylindrical surface

of the wire is maintained at T0, determine the temperature distribution in

the wire T (r) as a function of its radial coordinate r.

4. Conducting Gas**

n0 moles of an ideal gas fill a container of constant cross sectional area A

and length l. It is known that the thermal conductivity of a section of ideal

gas is proportional to the square root of its temperature k = c
√
T . If the

ends of the container are maintained at temperatures T1 and T2 respectively,

determine the pressure of the gas at steady state. Assume one-dimensional

heat flow in the direction perpendicular to the cross section of the container.

5. Truncated Cone**

A truncated cone has two circular surfaces of radii r0 and r1, r0 < r1, which

are maintained at temperatures T0 and T1 respectively. The perpendicular
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distance between these two surfaces is h. Find the heat flux in the direction

of the axis. Assume that r1 − r0 � h such that the half-angle of the cone is

small. Where is this assumption necessary in your working?

6. Regular Polygon**

The N vertices of a homogeneous regular N -gon are maintained at tem-

peratures T1, T2, . . . , TN respectively by an external agency. Determine the

steady state temperature of the centroid.

7. Slabs and Gases**

Three slabs (filled with black) have thermal conductivities k1, k2 and k3,

cross sectional areas A1 = A2 = A and A3 and lengths l1, l2 and l3. They are

connected by tubes filled with gases (shaded gray) of heat transfer coefficient

h as shown in the figure below. The cross sectional areas of the gas tubes

are not given and are irrelevant. If the left end of the left slab and the right

end of the right slab are maintained at temperatures T1l and T2r, determine

the condition for the middle slab to have a uniform temperature at steady

state.

Radiation

8. Radiation Pressure*

A small, black plate of area A is stationary at a large distance away from the

Sun which is a spherical black body with radius rs, mass M and constant

temperature Ts. Determine the mass of the plate, m. Neglect all other grav-

itational effects and assume that the surface of the plate is perpendicular to

the line joining the center of the Sun to it.

9. Spherical Space Station*

A space station takes the form of a black sphere in outer space with sur-

roundings at zero absolute temperature. Due to the operation of the space
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station, its internal appliances produce a certain amount of power that is

conducted isotropically within the sphere. If the equilibrium temperature of

the space station under such circumstances is T , determine the new equilib-

rium temperature T ′ of the space station after a black spherical shell, of a

slightly larger radius than the space station, is used to envelope the space

station. What if N thin black shields are used? What if a single thin shield,

made of an opaque gray material of emissivity ε, is used?

10. Transmitting Plate**

Two plates of emissivities ε1 and ε2 are oriented parallel to each other. The

first plate is opaque while the second plate has a reflectivity r. If the two

plates are maintained at temperatures T1 and T2 respectively, determine the

heat flux transmitted across the second plate.

11. Three Gray Plates**

Two large, gray and opaque plates with emissivities ε1 and ε3 are oriented

parallel to each other and are maintained at temperatures T1 and T3 respec-

tively. Now, another plate of equal emissivity, absorptivity and transmittivity

is placed between the two plates. Determine the equilibrium temperature of

this plate, T2.

12. Earth’s Atmosphere***

In this problem, we will model the effect of an atmosphere on Earth. Suppose

that the Sun is a black body with temperature T1 and radius r1. The Earth

is a sphere that is located at a distance R from the Sun and has a radius r3.

The emissivity of the Earth is ε3.

(1) If there is no atmosphere on Earth, determine the temperature of the

Earth at equilibrium, T3.

(2) Now, we consider the effects of an atmosphere. Model the atmosphere as

a spherical shell of gas, with an emissivity ε2 and outer radius r2 > r3,

surrounding the Earth. At thermal equilibrium, its absorptivity for both

ultraviolet and infrared light is ε2. The atmosphere transmits a frac-

tion t of ultraviolet light but is completely opaque to infrared. Assuming

that the Sun emits ultraviolet light while the Earth emits and re-emits

infrared, determine the temperature of the atmosphere T2 and the Earth,

T3, at thermodynamic equilibrium. Assume that the atmosphere is a per-

fect thermal conductor such that all incident radiation is instantaneously

evenly distributed across it.
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Thermal Expansion

13. Ring*

A flat, circular ring has an inner radius and outer radius. If the ring is now

heated such that it undergoes isotropic expansion, does the area of the hole

in the middle increase or decrease?

14. Spherical Balls**

Spherical ball A is hung down from a massless, inextensible string that is

connected to a wall. Spherical ball B lies motionless on a horizontal floor.

The same quantity of heat Q is supplied to both balls. Assuming no heat

losses, are the final temperatures of the balls the same? If not, estimate the

difference in the final temperatures in terms of parameters of your choice.

(International Physics Olympiad)

Phase Transitions

15. Latent Heat*

Consider a container with a piston that contains a certain amount of gaseous

and liquid states of the same substance. The piston is first fixed and the

system is at equilibrium at temperature T . The latent heat of vaporization

per mole of gas of this configuration is determined to be L. Now, consider

the case where the massive piston is not fixed and is instead, balanced by

the difference between the interior pressure and atmospheric pressure. The

system is initially at equilibrium at temperature T . Determine the latent

heat of vaporization per mole of gas of this new configuration in terms of L

and T . Assume that the gaseous form of the substance is ideal and attains

thermodynamic equilibrium at every instance.

16. Gas in Rocket*

A motionless cylindrical vessel of cross sectional area A in outer space ini-

tially contains an ideal gas of total mass M and initial pressure p � ps
where ps is the saturation pressure at its current temperature (which is

above the triple point temperature but below the critical temperature). The

vessel is then given a constant acceleration a along its cylindrical axis while

its temperature is maintained. Determine the mass of liquid m formed by

condensation due to this motion after the system has equilibrated. Hint: you

have to consider different regimes of a.
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17. Melting Ice**

1kg of ice at 0◦C floats in 5kg of water at 50◦C. The whole system is ther-

mally isolated. Determine the change in entropy of the whole system when

thermal equilibrium has been reached. The specific heat capacity of water is

4.2kJkg−1K−1 and the latent heat of fusion of ice is 333kJkg−1.

18. Boiling Point**

Model the atmosphere as a spherical shell of uniform gas with molar mass

μ and uniform temperature Ta that envelopes the spherical, uniform Earth.

If the atmospheric pressure and boiling point of water at the surface of the

Earth is p0 and T0 respectively, determine the boiling point of water at a

small height z from the surface of the Earth. Assume that the latent heat of

vaporization is a constant L in this regime and that the specific volume of

water vapor is much larger than that of water.

19. Heating a Container**

A closed container of constant volume currently contains certain amount of

gaseous and liquid states of the same substance at equilibrium. If the current

temperature of the system is T and the specific latent heat of vaporization

in the current state is L, determine the fractional change in the moles of

gaseous molecules due to evaporation if the equilibrium temperature of the

system is slightly increased by ΔT � T . The specific volume of the gas can

be assumed to be much greater than that of the liquid. The gas molecules

have molar mass μ.
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Solutions

1. Concentric Spheres**

Similar to the case of a cylindrical shell, the isotropic nature of the set-up

implies that the heat flux is purely radial. Let the heat flux between adjacent

spherical shells be Q̇ (positive towards the outer shells). Then, consider the

heat flux across a spherical shell of radius r.

Q̇ = −k4πr2dT
dr
.

Since Q̇ is uniform throughout all spherical shells (as the material cannot

absorb any heat else it will experience an infinite temperature change),

ˆ r2

r1

Q̇

r2
dr = −

ˆ T2

T1

4πkdT

Q̇

(
1

r1
− 1

r2

)
= 4πk(T1 − T2)

Q̇ =
4πk(T1 − T2)

1
r1

− 1
r2

.

Another method is to calculate the thermal resistance between the two shells

as the sum of the thermal resistances of many infinitesimal shells of varying

radius in series. Because the heat flux density is perpendicular at every point

on a spherical shell, the thermal resistance of an infinitesimal shell of radius

r and thickness dr is analogous to that of a slab, dr
kA(r) = dr

4πkr2
. The total

resistance between the two shells is then

R =

ˆ r2

r1

dr

4πkr2
=

1

4πk

(
1

r1
− 1

r2

)

so the heat flux is

Q̇ =
T1 − T2
R

=
4πk(T1 − T2)

1
r1

− 1
r2

.

In the second part of the problem, we have

C1
dT1
dt

= −Q̇ = −A(T1 − T2),

C2
dT2
dt

= Q̇ = A(T1 − T2),
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where A = 4πk
1
r1

− 1
r2

. To decouple this pair of equations, multiply the first

equation by C2 and subtract the second equation, multiplied by C1, from it.

C1C2
d(T1 − T2)

dt
= −(C1 + C2)A(T1 − T2),

d(T1 − T2)

dt
= −(C1 + C2)A

C1C2
(T1 − T2).

The solution to this differential equation in variable (T1 − T2), after substi-

tuting the initial conditions, is

T1 − T2 = (T10 − T20)e
− (C1+C2)A

C1C2
t
.

On the other hand, since the total internal energy of the spheres must be

conserved,

C1T1 + C2T2 = C1T10 + C2T20.

Solving these equations simultaneously,

T1 =
C2

C1 + C2
(T10 − T20)e

− (C1+C2)A
C1C2

t
+

C1

C1 + C2
T10 +

C2

C1 +C2
T20,

T2 = − C1

C1 + C2
(T10 − T20)e

− (C1+C2)A
C1C2

t
+

C1

C1 + C2
T10 +

C2

C1 + C2
T20.

2. Cylindrical Shell with Felt**

Recall that we derived the thermal resistance of a cylindrical shell as

R =
ln r1

r0

2πk
.

The shells and the felt are connected in series. Thus, the equivalent thermal

resistance is

Req = R1 +R2 =
ln r1

r0

2πk1
+

ln r2
r1

2πk2
.

Thus, the rate of heat conduction is

Q̇ =
T0 − T1
Req

=
2π(T0 − T1)
ln

r1
r0
k1

+
ln

r2
r1
k2

.



November 13, 2018 7:4 Competitive Physics 9.61in x 6.69in b3255-ch04 page 243

Heat Transfer and Phase Transitions 243

3. Current in a Wire**

Consider a cylindrical shell between radii r and r+dr. The heat flux entering

this shell is Q̇(r) while the heat flux emanating from it is Q̇(r+ dr). Let the

length of the wire be l. Then, the volume of this shell is 2πrldr which implies

that the heat generated per unit time is 2πprldr. At equilibrium, the net heat

flow through this shell must be equal to the heat generated.

Q̇(r + dr)− Q̇(r) = 2πplrdr.

Shifting dr to the left-hand side and applying the first principles of calculus,

dQ̇

dr
= 2πplr.

Separating variables and integrating, we can determine the heat flux through

a cylindrical shell between radial distances r and r + dr.

ˆ Q̇

0
dQ̇ =

ˆ r

0
2πplrdr

Q̇ = πplr2,

where we have used the fact that the heat flux must be zero at r = 0 as

the shell at r = 0 has negligible volume and thus generates negligible heat.

Now, to determine the temperature distribution, we apply Fourier’s law of

conduction.

Q̇ = kA
dT

dr
= k2πrl

dT

dr
.

Then,

dT

dr
=
pr

2k
.

Integrating this and imposing the limit T = T0 at r = R, the temperature

T (r) is

ˆ T

T0

dT =

ˆ r

R

pr

2k
dr

T = T0 +
pr2

4k
− pR2

4k
.
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4. Conducting Gas**

At steady state, the heat flux and pressure must be continuous throughout

the gas. By Fourier’s law of conduction, the heat flux across a cross section is

Q̇ = −cA
√
T
dT

dx

where the x-direction has been set to be the direction perpendicular to the

cross section, pointing from the end at T1 to the end at T2. Shifting dx to

the left and integrating,

ˆ l

0
Q̇dx =

ˆ T2

T1

−cA
√
TdT.

Since Q̇ is a constant,

Q̇ =
2cA(

√
T 3
1 −

√
T 3
2 )

3l
.

To determine the temperature at a distance x from the end at temperature

T1, we perform the previous integration over more general limits.

ˆ x

0
Q̇dx =

ˆ T

T1

−cA
√
TdT.

Substituting the expression for Q̇,

T =

(√
T 3
1 − (

√
T 3
1 −

√
T 3
2 )x

l

) 2
3

.

Now, we need to ensure that the total number of moles is n0. We know from

the ideal gas law that

p = ηRT

where η is the molar density of molecules. Then,

η =
p

RT
=

p

R

(√
T 3
1 − (

√
T 3
1−

√
T 3
2 )x

l

)2
3

.

Now, we need to ensure that

n0 = A

ˆ l

0
ηdx.
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In this integration, remember that p must be uniform at steady state. Then,

ˆ l

0
ηdx =

ˆ l

0

p

R

(√
T 3
1 −

(√
T 3
1 −

√
T 3
2

)
x

l

) 2
3

dx

=

⎡
⎢⎣− p

R

⎛
⎝√T 3

1 −
(√

T 3
1 −

√
T 3
2

)
x

l

⎞
⎠

1
3

· 3l√
T 3
1 −

√
T 3
2

⎤
⎥⎦
l

0

=
3pl
(√
T1 −

√
T2
)

R(
√
T 3
1 −

√
T 3
2 )
.

Substituting n0 = A
´ l
0 ηdx,

n0 =
3pAl

(√
T1 −

√
T2
)

R
(√

T 3
1 −

√
T 3
2

) ,

p =
n0R

(√
T 3
1 −

√
T 3
2

)
3Al(

√
T1 −

√
T2)

=
n0R(T1 +

√
T1T2 + T2)

3Al
.

5. Truncated Cone**

Let h2 be the height of the truncated part of the cone. Let the origin be at

the center of the circular surface with radius r0 and let the positive x-axis

be directed perpendicular towards the other surface. We can calculate h2 by

using similar triangles,

h2
r0

=
h2 + h

r1

h2 =
hr0

r1 − r0
.

The half-angle of the cone, θ, is

θ = tan−1 r0
h2

= tan−1 r1 − r0
h

.

Now we consider a circular surface with thickness dx that is at x-coordinate

x from the origin. The radius of this circular surface is

r = (x+ h2) tan θ.
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By Fourier’s law of conduction, the heat flux through this surface is

Q̇ = −kAdT
dx

= −kπr2dT
dx

= −kπ(x+ h2)
2 tan2 θ

dT

dx
.

Since the system is in thermal equilibrium, Q̇ is constant.

Q̇

ˆ h

0

1

(x+ h2)2
dx = −

ˆ T1

T0

kπ tan2 θdT

Q̇ =
kπ tan2 θ(T0 − T1)

1
h2

− 1
h+h2

=
πr0r1k(T0 − T1)

h
.

The assumption of a small half-angle is necessary in ensuring that all circular

surfaces possess uniform temperatures such that we can approximate the

heat flow to be solely one-dimensional (perpendicular to the bases of the

truncated cone) in the above working.

An alternative method is to deem the truncated cone as many circular

disks of infinitesimal thickness dx connected in series. Firstly, the uniform

temperatures of the two surfaces of each infinitesimal disk cause the resis-

tance of an infinitesimal disk to be well-defined. Next, because the heat flux

density is perpendicular at all points on each disk, the thermal resistance of

an infinitesimal disk at x-coordinate x is analogous to that of a slab.

1

kA(x)
dx =

1

kπ(x+ h2)2 tan2 θ
dx.

Integrating the above from x = 0 to x = h, the total thermal resistance of

the truncated cone is

R =

ˆ h

0

1

kπ(x+ h2)2 tan2 θ
dx =

1

kπ tan2 θ

(
1

h2
− 1

h+ h2

)

=⇒ Q̇ =
T0 − T1
R

=
kπ tan2 θ(T0 − T1)

1
h2

− 1
h+h2

=
πr0r1k(T0 − T1)

h
.

6. Regular Polygon**

Let the external power supplied to the ith vertex be Q̇i and the temperature

at the centroid be Tc when an equilibrium has been established. At steady

state, the net power received by the polygon must be zero. This implies that

N∑
i=1

Q̇i = 0.

Now, rotate the entire set-up by 2π
N radians (N − 1) times to obtain (N − 1)

rotationally symmetric set-ups. Superposing these (N − 1) set-ups with the
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original set-up,
∑N

i=1 Q̇i power flows into each vertex to establish a vertex

temperature
∑N

i=1 Ti and centroid temperature NTc at steady state. Since∑N
i=1 Q̇i = 0, no external power is delivered to any point on the polygon —

implying that its temperature must be uniform at steady state. Equating the

temperature of the centroid and the temperature of a vertex in this set-up,

NTc =

N∑
i=1

Ti

Tc =

∑N
i=1 Ti
N

.

7. Slabs and Gases**

Let the steady state temperatures of the right end of the first slab, left end

of the second slab and the top and bottom ends of the third slab be T1r,

T2r, T3t and T3b respectively. Furthermore, let the steady state temperatures

of the gases in the top and bottom sections be Tg1 and Tg2 respectively.

Drawing the thermal circuit of the set-up, we obtain Fig. 4.9.

Figure 4.9: Thermal circuit

The thermal resistance between the surface of a slab of area A′ and a gas

of heat transfer coefficient h is 1
hA′ as Newton’s law of cooling states that

Q̇ = −hA′ΔT . For the temperature of the middle (third) slab to be uniform,

T3t = T3b which implies that there is no heat flux in the middle branch. Then,
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Tg1 and Tg2 must be equal. For this to occur, the ratio between the left and

right portions of the bottom and top horizontal segments must be equal

(since they are connected in parallel between predetermined temperatures

T1l and T2r). That is,

1
hA
1
hA

=
1
hA + l1

k1A
1
hA + l2

k2A

=⇒ l1
k1

=
l2
k2
.

8. Radiation Pressure*

The luminosity of the Sun is

L = 4πr2sσT
4
s .

Let the plate be located at a distance r from the center of the Sun. The

irradiance on the plate at a distance r from the center of the Sun, due to

the Sun’s radiation, is

E =
4πr2sσT

4
s

4πr2
=
r2sσT

4
s

r2
.

Since the plate is a black body, all incident radiation is absorbed. This implies

that its absorbed power is

P =
r2sAσT

4
s

r2
.

For a photon, its energy E is related to its momentum p by

E = pc

where c is the speed of light. Since P is the average energy per photon

multiplied by the rate of photons incident on the plate and because the force

on the plate is the average momentum per photon multiplied by the rate of

impinging photons,

F =
P

c
=
r2sA

r2c
σT 4

s .

This force must balance the gravitational force on the plate due to the sun.

GMm

r2
=
r2sA

r2c
σT 4

s

m =
r2sA

GMc
σT 4

s .
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9. Spherical Space Station*

Let the heat flux density produced by the internal appliances of the space

station be q̇. Since the original equilibrium temperature of the black space

station was T , by the continuity of heat flux,

q̇ = σT 4.

Now, observe that when a black shield is used to cover the space station,

the heat flux density throughout the space station and the shield must still

be q̇ by the continuity of heat flux as the internal appliances still operate

in the same manner. This directly implies that the equilibrium temperature

of the shield is T (as the shield is akin to the original space station) and that

the shield emits an exitance (heat flux density) q̇, both radially inwards and

outwards. The space station therefore receives q̇ heat flux density from the

internal appliances and q̇ heat flux density from the shield — for a total of

2q̇ which must also be the heat flux density radiated by it at steady state.

Consequently,

σT ′4 = 2q̇ = 2σT 4

T ′ = 4
√
2T.

When N black shields are used, we can repeat the above arguments to show

that the exitance of the outer-most shield is q̇, which causes the exitance

of the second outer-most shield to be 2q̇, which causes the exitance of the

third outer-most shield to be 3q̇ and so on as the interior of a shield always

transmits a heat flux density q̇ to that shield by the continuity of heat flux.

The space station therefore receives q̇ heat flux density from the internal

appliances and Nq̇ heat flux density from the inner-most shield — for a

total of (N + 1)q̇.

σT ′4 = (N + 1)q̇ = (N + 1)σT 4

T ′′ = 4
√
N + 1T.

In the second scenario, the equilibrium temperature of the shield is not T but

it still emits an exitance q̇, both radially inwards and outwards. The space

station then receives 2q̇ from the heat produced by its internal appliances

and from the exitance of the shield. However, even though the space station

emits exitance σT ′′4 (where T ′′ is its equilibrium temperature), a fraction

(1 − ε) is reflected back by the shield and reabsorbed by the space station.

Therefore, the space station effectively only radiates a heat flux density
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εσT ′′4. Balancing the heat flux densities received by and emanating from

the space station,

εσT ′′4 = 2q̇ = 2σT 4

T ′′ = 4

√
2

ε
T.

10. Transmitting Plate**

LetM1, J1 andM2, J2 be the exitances and radiosities of the first and second

plates in the directions towards each other respectively. Then,

J1 =M1 + (1− ε1)J2,

J2 =M2 + rJ1.

Note that the coefficient of J1 in the second equation is not (1− ε2) as some

radiation is transmitted as well. Solving the two equations above simultane-

ously,

J1 =
M1 + (1− ε1)M2

1− (1− ε1)r
,

J2 =
M2 + rM1

1− (1− ε1)r
.

The net heat flux from the first plate to the second is then

Q̇ = (J1 − J2)A =
[(1− r)M1 − ε1M2]A

1− (1− ε1)r
.

Part of this heat flux is transmitted and the rest is absorbed by the sec-

ond plate (note that the reflected portion has already been excluded). The

portion of radiation transmitted is then

Qt =
t

ε2 + t
Q̇ =

1− ε2 − r

1− r
Q̇ =

A(1− ε2 − r)
[
(1− r)ε1σT

4
1 − ε1ε2σT

4
2

]
(1− r)(1− r + ε1r)

,

where t is the transmissivity of the second plate and where we have substi-

tuted M1 = ε1σT
4
1 and M2 = ε2σT

4
2 .

11. Three Gray Plates**

The emissitivity, absorptivity and transmittivity of the middle plate are

each 1
3 . Define J1 and J3 to be the radiosities of the first and third plate,
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towards the middle plate. Define J21 and J23 to be the radiosities of the mid-

dle plate in the directions of the first and third plates respectively. Finally,

let M1, M2 and M3 be the respective exitances of the plates. Then,

J1 =M1 + (1− ε1)J21,

J3 =M3 + (1− ε3)J23.

In relating the radiosities of the middle plate, we must take extra care.

J21 =M2 +
1

3
J3 +

1

3
J1.

The second term 1
3J3 is the contribution to the radiosity towards the first

plate, due to the transmitted radiation from the third plate. The third term
1
3J1 stems from the reflected irradiance on the second plate, due to the first

plate. Similarly,

J23 =M2 +
1

3
J1 +

1

3
J3.

Now, 1
3J1 is the transmitted portion and 1

3J3 is the reflected portion. We

immediately realize that

J21 = J23.

When the second plate has attained thermodynamic equilibrium, the net

heat fluxes on both sides of this plate must be equal. Then,

J1 − J21 = J23 − J3,

J1 + J3 = 2J21.

Substituting this expression into the previous equation in J21 yields

J21 =M2 +
2

3
J21

J21 = J23 = 3M2 = σT 4
2 .

Then,

J1 =M1 + (1− ε1)σT
4
2 ,

J3 =M3 + (1− ε3)σT
4
2 .

Adding these equations together and using J1 + J3 = 2J21 = 2σT 4
2 ,

M1 +M3 = (ε1 + ε3)σT
4
2 .
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Substituting M1 = ε1σT
4
1 and M3 = ε3σT

4
3 ,

T2 =
4

√
ε1T 4

1 + ε3T 4
3

ε1 + ε3
.

12. Earth’s Atmosphere***

When there is no atmosphere, there must be no net heat flux between the

Sun and the Earth. The Sun emits a total power of 4πr21σT
4
1 . The intensity

of this radiation at a distance R from the sun is then

4πr21σT
4
1

4πR2
=
r21σT

4
1

R2
.

The power absorbed by the Earth at thermodynamic equilibrium is then

the intensity multiplied by the cross sectional area of the Earth πr23 and its

absorptivity ε3.

P =
ε3πr

2
1r

2
3σT

4
1

R2
.

This must be equal to the power radiated by the Earth which is ε34πr
2
3σT

4
3 .

Equating these powers,

ε3πr
2
1r

2
3σT

4
1

R2
= ε34πr

2
3σT

4
3

T3 =
4

√
r21
4R2

T1.

In the presence of an atmosphere, we can use a similar process to first deter-

mine the equilibrium temperature of the atmosphere T2.

Referring to Fig. 4.10, we first define the power, radiated by the Sun and

incident on the atmosphere, spread per unit area of the atmosphere, as

E =

πr21r
2
2σT

4
1

R2

4πr22
=
σT 4

1 r
2
1

4R2
.

Now, note that the net heat flux between the atmosphere and the Earth must

be zero at equilibrium. Then, the net heat flux between the atmosphere and

exterior surroundings (including the Sun) must also be zero for the heat flux

to be continuous. The atmosphere reflects a fraction 1−ε2− t of the incident
radiation by the Sun. Therefore, the net heat flux between the atmosphere
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Figure 4.10: Earth with atmosphere

and its exterior surroundings is

4πr22(E − (1− ε2 − t)E −M2)

whereM2 = ε2σT
4
2 . Imposing the condition that the above expression is zero

and substituting the expression for E,

(ε2 + t)E =M2,

T2 =
4

√(
1 +

t

ε2

)
r21
4R2

T1.

Now, we move onto the condition that there must be no net heat flux between

the atmosphere and the Earth. When an atmosphere is present, there will be

infrared light repeatedly bouncing between the atmosphere and the Earth.

However, no infrared light that is emitted or reflected by the Earth escapes

the combined system of the atmosphere and Earth due to the opacity of the

atmosphere to infrared. That said, the atmosphere still permits a portion

of the Sun’s ultraviolet radiation to be transmitted. Define J2, M2, J3 and

M3 to be the respective radiosities and exitances of the atmosphere and the

Earth, in the direction towards each other. Then,

J2 =M2 + tE + (1− ε2)F23J3 + (1− ε2)F22J2,

J3 =M3 + (1− ε3)F32J2 + (1− ε3)F33J3.

Since the spherical Earth is enclosed by the atmosphere, it is evident that

F32 = 1 and F33 = 0. Then, F23 and F22 can also be determined. By the
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reciprocity theorem,

F32A3 = F23A2.

Substituting F32 = 1, A3 = 4πr23 and A2 = 4πr22,

F23 =
r23
r22
.

The fraction of radiation emitted by the atmosphere that is not received by

the Earth must be returned to the atmosphere. Thus,

F22 = 1− F23 =

(
1− r23

r22

)
.

Then,

J2 =M2 + tE + (1− ε2)
r23
r22
J3 + (1− ε2)

(
1− r23

r22

)
J2,

J3 =M3 + (1− ε3)J2.

Solving these equations simultaneously and sparing the gory details would

yield

J2 =
tE +M2 + (1− ε2)

r23
r22
M3

ε2 + ε3
r23
r22

− ε2ε3
r23
r22

,

J3 =
(1− ε3)tE + (1− ε3)M2 +

(
ε2 +

r23
r22

− ε2
r23
r22

)
M3

ε2 + ε3
r23
r22

− ε2ε3
r23
r22

.

The net heat flux between the atmosphere and the Earth is then by

Eq. (4.18),

Q̇ =
A3ε3
1− ε3

(
σT 4

3 − J3
)
=

A3ε3
1− ε3

· (ε3 − 1)tE + (ε3 − 1)M2 + ε2(1− ε3)σT
4
3

ε2 + ε3
r23
r22

− ε2ε3
r23
r22

=
A3ε3

(−tE −M2 + ε2σT
4
3

)
ε2 + ε3

r23
r22

− ε2ε3
r23
r22

.

Since Q̇ must be zero,

−tE −M2 + ε2σT
4
3 = 0.
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Substituting M2 = (ε2 + t)E (this was previously derived when computing

the temperature of the atmosphere),

σT 4
3 =

ε2 + 2t

ε2
E.

Substituting the expression for E would yield

T3 =
4

√
(ε2 + 2t)r21

4ε2R2
T1.

This temperature is 4

√
ε2+2t
ε2

> 1 times of the equilibrium temperature of

the Earth without an atmosphere — the model in this problem then implies

that the presence of an atmosphere warms the Earth.

13. Ring*

Since the ring undergoes isotropic expansion, the entire ring, including the

hole, is scaled radially by a certain factor. Therefore, the size of the hole

increases. An alternate perspective to this scaling is that we are enlarging

an image of the ring such that the hole becomes larger.

14. Spherical Balls**

An important observation is that the balls expand when heated. However,

the center of mass of the ball connected by a string drops while the center

of mass of the ball on the horizontal ground rises when the balls expand.

Thus there is positive work done on the ball by gravity in the former case

while there is negative work done on the ball by gravity in the latter case.

Let r be the initial radii of the spheres and Δr1 and Δr2 be the respective

changes in radii of the spheres due to thermal expansion. Applying the first

law of thermodynamics to both balls (we use the subscript 1 to denote the

ball hung by a string and 2 for the other ball),

Q = ΔU1 −Won1 = mcΔT1 −mgΔr1,

Q = ΔU2 −Won2 = mcΔT2 +mgΔr2,

where ΔT1 and ΔT2 are the changes in the temperatures of the balls. c is

the standard specific heat capacity of the balls which accounts for the slight

work done against the atmosphere due to thermal expansion of the balls
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when they are heated, in addition to their changes in internal energy. Lastly,

Δr = rαΔT

where α is the coefficient of linear expansion. Thus,

(mc−mgrα)ΔT1 = Q,

(mc+mgrα)ΔT2 = Q,

ΔT1 −ΔT2 =
Q

mc

(
1

1− grα
c

− 1

1 + grα
c

)
≈ 2Qgrα

mc2
,

where we have used the Maclaurin expansion ( 1
1+x = 1 − x + · · · ) and dis-

carded second order and above terms in α.

15. Latent Heat*

In the first case, the heat supplied to the system is entirely embodied in

the increase in potential energy of the molecules of the substance as they

transition from the liquid phase into the solid phase. Assuming that Δn

moles of liquid become gas,

ΔU = ΔnL

where ΔU is the increase in potential energy of the n moles of molecules. In

the second case, part of the heat supplied to the system is also manifested

as work performed by the expanding gas molecules.

Q = ΔU +Wby.

Since the gas is always at thermodynamic equilibrium, its pressure must be

constant so that the piston does not move. Stemming from this constant

pressure, the temperature of the gas must also be maintained at T in order

for it to attain equilibrium with the liquid state (remember that there is a

one-to-one mapping between equilibrium pressure and temperature along a

coexistence line). The first law of thermodynamics then yields

Q = ΔU + pΔV = ΔnL+ pΔV.

Furthermore, from the ideal gas law,

pV = nRT

pΔV = ΔnRT
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as p and T are constant. Then,

Q = Δn(L+RT ).

The latent heat of vaporization per mole of gas in this configuration is thus

L+RT .

16. Gas in Rocket*

After the system has equilibrated, the gas at the rear of the rocket (relative

to its direction of acceleration) must have the largest pressure prear while

the front of the rocket has the lowest pressure pfront as the force engendered

by the pressure at the back of any gas section exceeding the pressure at

its front causes that gas section to accelerate forwards at a at equilibrium.

As we will be comparing prear to ps, pfront is negligible when computing

the net force on the entire gas remaining in the vessel for the following rea-

son. The initial pressure p = ρiRT
μ � ps where ρi, T and μ are the initial

density, temperature and molar mass of the gas. After the system has equi-

librated, there will be a new density distribution ρ(x) of the ideal gas where

x is the x-coordinate along the cylindrical axis of the vessel. However, as

some gas molecules are condensed,
´ ρ(x)RT

μ dx <
´ ρiRT

μ dx where the inte-

gral is performed over the length of the cylindrical axis. Since ρ(x)RT
μ = p′(x)

where p′(x) is the pressure distribution after the system has equilibrated,

this further implies that
´
p′(x)dx <

´
pdx � ´ psdx. Since p′(x) is mono-

tonic and p′(x) at the rear end of the cylinder (prear) is possibly compa-

rable to ps, p
′(x) at the front end (pfront) must be much smaller than ps

to satisfy the above inequality. Therefore, only the rear pressure prear effec-

tively produces the force required to accelerate the remaining gas of mass

M ′ at a.

prear =
M ′a
A

.

If none of the gas condenses, prear must be smaller than the saturation

pressure ps while M
′ =M .

prear =
Ma

A
< ps.

Therefore, the gas does not condense if a < psA
M . If a does not satisfy this

bound, a dynamic equilibrium will be established between the liquid and

vapor phases of the substance. Then, prear must correspond to the saturation
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pressure ps.

prear =
M ′a
A

= ps,

M ′ =
psA

a
.

The number of moles condensed is thus

M −M ′ =M − psA

a
.

17. Melting Ice**

We must first do a preliminary check on whether all the ice melts. Assuming

that the ice does not completely melt, the final equilibrium temperature of

the system will be 0◦C. The amount of heat lost by the water is then

Qwat = mwatcΔT = 5 · 4200 · (0− 50) = −1050000J.

The amount of heat required for the ice to completely melt is

Qmelt = miceL = 1 · 333000 = 333000J.

Since |Qwater| > Qmelt, the ice completely melts. Now we can calculate the

final equilibrium temperature of the system, T , using the fact that

Qice +Qwater = 0

333000 + 4200 · T + 5 · 4200(T − 50) = 0

T = 28.452◦C = 301.602K.

The total change in entropy of the system is the sum of the changes in

entropy due to the melting of ice, heating of the melted ice and the cooling

of water respectively.

ΔStotal = ΔSmelt +ΔSmelted ice +ΔSwat

=

ˆ
melt

dQ

T
+

ˆ
melted ice

dQ

T
+

ˆ
wat

dQ

T

=
miceL

273
+

ˆ 301.602

273

micec

T
dT +

ˆ 301.602

323

mwatc

T
dT

=
333000

273
+ 4200 ln

301.602

273
+ 5 · 4200 ln 301.602

323

= 199JK−1.
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18. Boiling Point**

From balancing forces on individual sections of the atmosphere or from the

Boltzmann distribution, the pressure of an isothermal atmosphere of tem-

perature T and molar mass μ at an altitude z above the surface of the Earth

can be shown to be

p(z) = p0e
− µgz

RTa ,

where p0 is the pressure at the surface of the Earth. When water starts to

boil, the saturated vapor pressure must be equal to the external pressure

due to the atmosphere. We then need to determine the temperature corre-

sponding to p(z) on the coexistence line. Applying the Clausius–Clapeyron

equation and neglecting the specific volume of water,

dp

dT
=

L

Tvg
=
Lpμ

RT 2

where vg is the specific volume of the gas that can be expressed as RT
pμ via

the ideal gas law. Then,

ˆ p

p0

1

p
dp =

ˆ T

T0

Lμ

RT 2
dT

p = p
−Lµ

R

(
1
T
− 1

T0

)

0 .

Equating the saturation vapor pressure and the external atmospheric

pressure,

p0e
− µgz

RTa = p0e
−Lµ

R

(
1
T
− 1

T0

)
.

Solving for T ,

T =
LTaT0

gzT0 + LTa
.

19. Heating a Container**

The Clausius–Clapeyron equation yields the following case when the specific

volume of the gas vg is dominant.

dp

dT
=

L

Tvg
.
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By the ideal gas law,

pvg =
1

μ
RT

dp

dT
=
Lpμ

RT 2

=⇒ dp

p
=

Lμ

RT 2
dT.

We also obtain from the ideal gas law that

n =
pV

RT
.

Taking the total derivative of both sides,

dn =
dpV

RT
− pV

RT 2
dT

where V has been taken to be a constant as the volume of the gas does not

change significantly (as the volume of the liquid is negligible and the volume

of the container remains constant). Dividing the above by n = pV
RT ,

dn

n
=
dp

p
− dT

T
.

Substituting the previously derived expression for dp
p ,

dn

n
=

(
Lμ

RT 2
− 1

T

)
dT.

Since ΔT is small, the fractional change Δn
n can be approximated by substi-

tuting ΔT for dT and taking T to be the initial temperature in the above

equation.

Δn

n
=

(
Lμ

RT 2
− 1

T

)
ΔT.



November 13, 2018 7:7 Competitive Physics 9.61in x 6.69in b3255-ch05 page 261

Chapter 5

Electrostatics

This chapter will study stationary systems of charge particles, referred to

as electrostatic systems, and useful quantities associated with them such as

charge, electric fields and electric potential.

5.1 Electric Charges

It is observed that if an “electrical” object A attracts another “electrical”

object B and if another “electrical” object C attracts A, then C will defi-

nitely repel B. This resulted in the development of the concept of electric

charges and the existence of two classes of charges — namely, positive and

negative charges. It is then said that like charges repel while unlike charges

attract. Note that the way through which the signs of charges are assigned is

completely arbitrary. For all we know, the charges that are currently deemed

positive could have been defined as negative and vice-versa — the laws of

electromagnetism will work just as well.

Charges are measured in terms of the unit Coulombs (C) where one

Coulomb is defined as the amount of charge transported by one Ampere1

(1A) of current across a cross section in one second. One Coulomb of unbal-

anced charge is an extremely large amount of charge. To put things into pro-

portion, the surface charge density of the Earth’s surface (net charge per unit

area) is only of the order of nano-Coulombs per square meter (10−9Cm−2).

Finally, an important property of charges is that the net amount of charge

in a closed system is conserved. This does not necessarily mean that elec-

tric charges carried by subatomic particles cannot be created or destroyed.

Rather, it means that these particles are created or destroyed in a specific

ratio such that the net change in the total amount of charge is zero.

1The SI unit for current is the Ampere.

261
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5.2 Coulomb’s Law

Coulomb’s law quantifies the “electrical” force, F t1, on a point, test charge

qt due to another point charge q1.

F t1 =
1

4πε0

q1qt
r21t

r̂1t =
1

4πε0

q1qt
r31t

r1t. (5.1)

r1t is the vector pointing from q1 to qt and is equal to rt − r1 where rt
and r1 are the respective position vectors of qt and q1. ε0 is a constant

known as the permittivity of free space and has a numerical value of 8.854×
10−12m−3kg−1A2s4 in SI units. Firstly, observe that Coulomb’s law naturally

satisfies Newton’s third law as F t1 = −F 1t; this had better be the case.

Next, we see that the Coulomb force is, again, an inverse-square central force

similar to the gravitational force. A direct ramification is that the angular

momentum of the system of two charges is conserved about any point.

The total force on a test charge due to an array of charges is given by

the vector sum of the forces on that charge due to each individual charge by

the principle of superposition. The principle of superposition is by no means

trivial and should not be taken for granted as it cannot be derived from the

other axioms. It basically states the total effect due to multiple sources is

the sum of the effects produced by each individual source. The net Coulomb

force F t on a test charge qt placed in a system of N charges is

F t =
N∑
i=1

1

4πε0

qiqt
r2it

r̂it, (5.2)

where r̂it is the unit vector along the vector pointing from qi to qt. For

continuous charge distributions,

F t =

ˆ
1

4πε0

qt
r2

r̂dq, (5.3)

where r̂ is the unit vector along the vector pointing from an infinitesimal

charge element dq on the charge distribution to the test charge qt. The

integration is performed over the entire charge distribution.

Problem: In Fig. 5.1, two charges are hung from identical strings of length l

from the same point on the ceiling. They then attain static equilibrium when

the two strings are mutually perpendicular. If the charges have masses m1

and m2 respectively, determine the product of the magnitude of the charges,

divided by the product of their masses.

Label the charges from left to right as q1 and q2 respectively. Let the

string connecting q1 subtend an angle θ with the vertical. We balance the
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Figure 5.1: Hanging charges

forces on each charge, in the directions perpendicular to the string holding it

to avoid the need to consider the tensions in the strings. Since the distance

between the two charges is
√
2l,

m1g sin θ =
q1q2

4πε0 · 2l2 · sin 45◦,

m2g cos θ =
q1q2

4πε0 · 2l2 · cos 45◦.

Since sin2 θ + cos2 θ = 1,(
q1q2

8
√
2πε0gl2

)2( 1

m2
1

+
1

m2
2

)
= 1

q1q2
m1m2

=
8
√
2πε0gl

2√
m2

1 +m2
2

.

Problem: There are two fixed positive point charges of charges q1 and q2
with position vectors r1 and r2 respectively. Find the position vector, r3,

of the point at which a third charge q3 should be placed such that it will

be at equilibrium. For a particular value of q3, the entire system can remain

at equilibrium without being held by any external force. Determine this

particular value.

It is obvious that the three charges must be collinear, with the third

charge sandwiched between the others, for the third charge to be at equilib-

rium. The magnitude of the forces on charge q3 due to q1 and q2 are

F31 =
1

4πε0

q1q3
r213

,

F32 =
1

4πε0

q2q3
r223

,

where r13 and r23 are the distances between q1 and q3 and q2 and q3 respec-

tively. For the third charge to remain stationary,

F31 = F32 =⇒ r23
r13

=

√
q2
q1
.
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q3 is located at a point that divides the line joining q1 and q2 into two

segments with the above ratio. By the ratio theorem in vectors,

r3 =

√
q2r1 +

√
q1r2√

q1 +
√
q2

.

Proceeding with the second part of the problem, since we know the ratio

between r13 and r23, balancing forces on charge q1 yields

q1q3
4πε0r213

+
q1q2

4πε0(r13 + r23)2
= 0

q3 = − r213
(r13 + r12)2

q2 = − q1q2
(
√
q1 +

√
q2)2

.

We can check that this value of q3 results in no net force on charge q2 as

well. The simplest way of doing so is to observe that the above expression of

q3 is symmetric in q1 and q2 — implying that if we swapped the positions of

q1 and q2 such that q2 becomes the current q1, the force balance condition

on q2 still produces the above expression for q3.

5.3 Electric Field

In light of Coulomb’s law and the principle of superposition, it is convenient

to formulate a construct known as the electric field to describe a system of

charges. A field basically ascribes each point in space a local quantity. The

electric field, in this case, is a vector field which assigns each point in space

the force per unit charge that will be exerted on a charge that is placed at

that point. With this definition, the electric field at a point in space due to

a single stationary point charge q is

E =
1

4πε0

q

r2
r̂, (5.4)

where r is the vector pointing from q to the point of concern. Note that r is

neither the position vector of q nor that of the point of concern — it is the

vector separating them. The magnitude of the electric field, E, is known as

the electric field strength. Next, the electric field at a point in space due to

a system of charges is given by the principle of superposition as

E =
N∑
i=1

1

4πε0

qi
r2i

r̂i =

ˆ
1

4πε0r2
r̂ dq (5.5)

for a system of N discrete charges and a continuous charge distribution,

respectively. ri is the vector pointing from the ith charge to the point of
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concern while r in the integrand represents the vector pointing from the

infinitesimal charge dq under consideration to the point of concern. These

expressions again follow from the principle of superposition. Having defined

the electric field, the force on a point test charge qt placed at a point in an

electric field is then

Ft = qtE. (5.6)

The electric field is an extremely useful construct as it reveals the force per

unit charge on any charge placed at a point without further information of

the surrounding charge distributions. Two different charge distributions can

possibly produce the same electric field at a point in space and a charge at

that point will still respond in the same manner in both cases. Let us now

evaluate the electric fields at certain points in the following examples.

Problem: Find the electric field at the centroid of the equilateral triangle

in the given charge configuration in Fig. 5.2.

Figure 5.2: Charges arranged in an equilateral triangle

The electric field in the horizontal direction is zero due to symmetry. Since

the distance between a vertex and the centroid of an equilateral triangle is√
3
3 l, the electric field in the y-direction (defined to be positive upwards) is

given by

Ey = − 2q

4πε0

(√
3
3 l
)2 − q

4πε0

(√
3
3 l
)2 · sin 30◦ · 2 = − 9q

4πε0l2
.

Problem: Consider a rod of uniform linear charge density, λ. Find the

electric field at point P that is a perpendicular distance h away from the rod,

as shown in Fig. 5.3. The two anti-clockwise angles that the lines joining P

and the ends of the rod subtend with the vertical are θ0 and θ1, respectively.

We define the origin at the foot of the perpendicular from the point of

concern, P. Consider an infinitesimal length element dx on the rod with ends
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Figure 5.3: Rod

at x and x+ dx. Its contribution to the electric field at the point P is

dE =
dq

4πε0(x2 + h2)

⎛
⎜⎝− x√

x2 + h2
h√

x2 + h2

⎞
⎟⎠.

Thus, the electric field at point P can be obtained by integrating this expres-

sion over the whole rod. Using dq = λdx,

Ex =

ˆ h tan θ1

h tan θ0

− λx

4πε0(x2 + h2)
3
2

dx =

[
λ

4πε0
√
x2 + h2

]h tan θ1
h tan θ0

=
λ

4πε0h
(cos θ1 − cos θ0).

To integrate the expression for the electric field in the y-direction, polar coor-

dinates should be used. We can label each point on the rod with a coordinate

θ which is the anti-clockwise angle subtended by the vector pointing from P

to the particular point on the rod and the vertical. Then, the x-coordinate

of an infinitesimal segment can be expressed as

x = h tan θ

dx = h sec2 θ dθ,

Ey =

ˆ h tan θ1

h tan θ0

λ

4πε0(x2 + h2)
· h√

x2 + h2
dx

=

ˆ θ1

θ0

λ

4πε0h2 sec2 θ
· cos θ · h sec2 θ dθ
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=

[
λ

4πε0h
sin θ

]θ1
θ0

=
λ

4πε0h
(sin θ1 − sin θ0).

As the concept of an electric field is rather abstract, electric field lines —

which are generally continuous curves, except at certain singularities (such

as a point charge) — can be drawn to visualize the direction of the elec-

tric field at various locations. The direction of the electric field at a point

corresponds to the direction of the electric field line at that point. Like

any other field lines, electric field lines cannot cross each other as that

would imply that there are two possible directions for the electric fields

at a single point. Interestingly, electric field lines can only begin from pos-

itive charges and terminate2 at negative charges. The facts that positive

and negative charges are the sources and sinks of field lines are quite intu-

itive but our assertion that they are the only ones is rather astonishing.

The reader should ponder the reason behind this after he or she has learnt

Gauss’ law. Next, another intriguing property of electric field lines is that

they can never form closed loops — this is a direct corollary of the fact that

the line integral of an arbitrary electrostatic field over a closed loop is zero,

which we shall show later. If an electric field line in the shape of a closed loop

indeed exists, we can perform a line integral along this loop to yield a non-

zero result, contradicting the previous sacrosanct property of electrostatic

fields.

Note that it is generally difficult to infer the magnitude of the electric

field strength at a given point in space from looking at the field lines alone.

We can at most infer that the electric field is generally stronger or weaker

in a region by looking at the density of field lines cutting a given surface

located in that region. The following are some examples of the electric field

lines of isolated charges and pairs of charges in a single plane.

2If a field line reaches a point where E = 0 exactly, we do not say that the field line
is cut off as we can append it to a nearby point where the electric field is non-zero —
the existence of such a point is guaranteed by the fact that a field line can only end at a
negative charge. On another note, a field line can also extend indefinitely, such as in the
case of a system with solely positive charges, but whether we classify that as terminating
or not is a matter of semantics.
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As verified by the above diagrams, electric field lines only emanate from

positive charges and flow into negative charges. No closed loops are formed

either. Moreover, charges of larger magnitude have a larger density of field

lines surrounding them — indicating that they produce stronger electric

fields. Actually, the field lines of the two diagrams on the left involving

single charges are good indicators of the electric field strength as a function

of radial distance from a single charge. The density of field lines cutting

through an infinitesimal surface on a sphere of radius r centered about the

charge decreases with 1
r2 (note that the diagrams are really three-dimensional

such that the two left diagrams represent isotropic field lines in the radial

direction) — in accordance with Coulomb’s law.

Problem: Two charges q1 > 0 and q2 < 0 are located along the x-axis with

the charge q2 having the larger positive x-coordinate. A field line emanates

from q1 at an angle α with the positive x-axis. Determine if this field line

will terminate at charge q2. If so, determine the angle β that the field line

makes with the negative x-axis as it is received by q2.

Figure 5.4: Field lines and spherical cap

Firstly, suppose that a field line exits from q1 and enters q2 as shown

in Fig. 5.4 (the positive x-axis is taken to be rightwards). As this set-up

is symmetric about the x-axis, we can rotate the field line about the x-

axis for a complete revolution to generate other axial-symmetric field lines.

Notice that by doing so, we have enclosed a volume with these field lines.

Since field lines cannot cross, field lines emanating from q1 in its neighboring

region, bounded by this volume, cannot escape this volume. Furthermore,

since field lines cannot form closed loops and must terminate at a negative
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charge, all the previously mentioned field lines must eventually be received

by q2. Therefore, the number of field lines emanating from q1 and entering

q2 are identical within this volume. Now, we need to determine the total

fraction of field lines emitted by q1 that is captured in this region. Observe

that in the immediate vicinity of q1, the electric field of q2 is negligible as

compared to that of q1. Therefore, the electric field lines are isotropic about

the neighborhood of q1 (similar to the case where q1 is the only charge in the

system) — we then have to determine the proportion of the total number of

isotropic field lines that are bounded by a cone of half-angle α. This fraction

can be computed by dividing the surface area of the spherical cap, of a small

radius R, corresponding to the angle α by the total surface area of a sphere

of radius R, 4πR2. Since the surface area of a spherical cap is π(a2 + h2)

where a = R sinα is the radius of its base circle and h = R − R cosα is

the altitude between the vertex and the center of its base, the fraction of

the total number of field lines emitted by q1 that is captured within this

volume is

π
[
R2 sin2 α+ (R−R cosα)2

]
4πR2

=
1− cosα

2
= sin2

α

2
.

Applying a similar argument to q2, the fraction of the total number of field

lines that it receives, enclosed within this volume, is sin2 β2 . Since the number

of field lines emitted by a positive charge or received by a negative charge

is proportional to the magnitude of the charge, in order for the number of

field lines emerging from q1 and terminating at q2 to be equal within this

region,

q1 sin
2 α

2
= −q2 sin2 β

2

sin
β

2
=

√
−q1
q2

sin
α

2
.

We do not consider sin β
2 = −

√
q1
q2

sin α
2 as a field line can only propagate in

a single plane in this case, such that a field line emitted at positive α and

ending at negative β (or vice-versa) would have to cross the field line joining

the two charges (but field lines cannot intersect). Observe that a solution for

β only exists if
√

− q1
q2
| sin α

2 | < 1 else the field line would extend to infinity.

If this condition if fulfilled,

β = 2 sin−1

(√
−q1
q2

sin
α

2

)
.
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5.4 Gauss’ Law

To supersede the cumbersome integrations that have to be performed for

charge distributions, we can apply Gauss’ law, which is a mathematical

equivalent to Coulomb’s law, to efficiently calculate the electric field of sym-

metrical objects. Before Gauss’ law is analyzed, we first introduce a few

related quantities. As a recap, the area vector of an infinitesimal surface

with area dA is a vector pointing normally from the surface that possesses

magnitude dA. There are two possible choices for the direction of the area

vector and the exact choice is arbitrary if the entire surface, comprising all

the infinitesimal surfaces, is open (it does not enclose any volume). For closed

surfaces which enclose volume, the area vector of each infinitesimal surface

is defined to be outwards.

Figure 5.5: Infinitesimal surface

Referring to Fig. 5.5, the electric flux dΦ through an infinitesimal surface

of area dA is given by the dot product between the electric field at this

surface and its area vector dA. Note that the electric field is assumed to be

uniform throughout the infinitesimal surface due to its minuscule size.

dΦ = E · dA = EdA cos θ. (5.7)

The total flux through a closed surface S is

Φ =

‹
S
E · dA,

where we are integrating the electric flux contributions by infinitesimal areas

over the whole closed surface S. The loop on the integral represents the fact

that the integration is performed over a (imaginary) closed surface which

has no distinct boundaries and a definitive “inside” and “outside”.

Moving on, Gauss’ law states that the total electric flux cutting through

a closed surface S is directly proportional to the charge that the surface S

encloses, qenc. ‹
S
E · dA =

qenc
ε0

. (5.8)
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Figure 5.6: Spherical Gaussian surface

The closed surface S can be arbitrarily chosen and is known as a Gaussian

surface. A spherical Gaussian surface is depicted in Fig. 5.6. Since the

infinitesimal area vectors are defined to be pointing outwards, the electric

flux at an infinitesimal area is positive if electric field lines are crossing out

of the surface.

Proof: We first consider a single point charge q. The total electric flux

through a spherical Gaussian surface of radius r, centered at the charge q, is

E · 4πr2 = q

4πε0r2
· 4πr2 = q

ε0
,

as the electric field at each point on the spherical surface is radially out-

wards (normal to the infinitesimal surface at that point) and of uniform

magnitude q
4πε0r2

. Evidently, Gauss’ law is valid for a spherical Gaussian

surface encapsulating a single charge. Now, consider an arbitrary closed sur-

face encapsulating the charge and the projections of all infinitesimal area

elements on the surface of a sphere of radius r onto the arbitrary surface.

We first assume that the arbitrary surface has no folds such that each area

element of the sphere is mapped to a single area element on the arbitrary

surface.

Consider an area element on the sphere and its projection in Fig. 5.7.

Assume that the base of the projected area (the base makes an angle θ with

the projected area and is parallel to the original area element on the sphere)

is a distance R away from the charge. If the area of the element on the sphere

is dA, the area of the base is then dAR2

r2 by similarity arguments. Therefore,
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Figure 5.7: Projection of element on sphere onto arbitrary surface

the area of the projected area is dA′ = dA R2

r2 cos θ
. Next, the electric field

strength at the projected area is q
4πε0R2 . However, note that the electric field

subtends an angle θ with the area vector of the projected area as the electric

field is radially outwards. The electric flux through the projected area is then

dΦ =
q

4πε0R2
· dA R2

r2 cos θ
· cos θ = qdA

4πε0r2
,

which is equal to the electric flux cutting across the infinitesimal area dA on

the sphere. This argument can be applied to all area elements on the sphere

and their projections. Therefore, the electric flux across the arbitrary surface

is equal to that across the sphere which was previously derived to be q
ε0
. In

the case where the arbitrary surface has folds such that a certain projection

corresponds to multiple surfaces on the arbitrary surface, simply observe that

the electric field lines will be emitted from some of these surfaces (labeled

“out”) and received by some surfaces (labeled “in”) as shown in Fig. 5.8.

Figure 5.8: Electric field line cutting multiple surfaces

The electric flux through one “in” element exactly cancels one “out ele-

ment”, as we have proven that the magnitudes of the electric fluxes across
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all possible projections must be equal to the magnitude of the electric flux

across the original element on the sphere, and because these fluxes are of dif-

ferent signs. Observe that there will always only be a single net “out” surface

in every direction as the Gaussian surface encloses the charge. Therefore, the

electric flux through an arbitrary closed surface with folds, enclosing a single

point charge q, must still be q
ε0
.

Finally, we need to show that a charge outside of a Gaussian surface does

not result in a net electric flux through it.

Figure 5.9: Gaussian surface enclosing zero charge

In a similar vein, the projections of a sphere on to the Gaussian surface

can be considered and possible projection candidates can be labeled with

“in” and “out” in Fig. 5.9. There will always be the same number of elements

labeled “in” and elements labeled “out” in every direction as the charge is

outside of the Gaussian surface. Therefore, the net electric flux through a

Gaussian surface due to a charge outside is zero. We have officially shown

that the total electric flux across an arbitrary Gaussian surface enclosing a

single point charge q is q
ε0
, regardless of the charges outside the surface. Since

a general charge distribution can be seen as a collection of point charges, the

total electric flux across an arbitrary Gaussian surface enclosing a net charge

qenc is
qenc

ε0
, regardless of the charges outside the surface.

An intuitive understanding of Gauss’ law can be obtained by imagining

the isotropic emission of water (perhaps, in a region where there is no gravity)

from each charge particle enclosed in a Gaussian surface at a steady rate.

Consider a single point charge q for now. The water emerging from it at a

certain instance propagates as a spherical wavefront that travels at a constant

velocity (uniform across all charges) such that the surface density of water

decreases with 1
r2
, where r is the radial distance from the source. If we set

the rate of water flowing out of this source to be proportional to q, the

surface density of water at a point will be analogous to the electric field

strength at that point. Moreover, the direction of water flow (radial) is also

aligned with the direction of the electric field due to the charge. Evidently,
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the electric flux through an infinitesimal surface is then analogous to the

rate of water flowing through it. When we compute the total electric flux

crossing a Gaussian surface S, that encloses q, we are simply determining

the net rate of water flowing out of S which must equal the rate of water

leaking out of q, as the total volume of water that S can contain is fixed!

This fact is independent of the position of q in S or the shape of S. By

the same logic, if q is external to S, the net rate of water flowing out of

S must be zero. Considering the superposition of similar set-ups involving

different charges, the net rate of water flowing out of a Gaussian surface S

must be identical to the net rate of water emitted by the sources enclosed by

S. Since the counterpart of the former is the total electric flux Φ crossing S

while the latter is proportional to the charge qenc enclosed by S, Φ must be

proportional to qenc and is independent of the configuration of charges within

S or the shape of S (as long as it encapsulates the same amount of charge).

To summarize, Gauss’ law is basically stating that instead of summing the

rate of water flowing through small windows over an entire closed surface,

we can adopt an alternate perspective and determine the total rate of water

leaking out of the sources within the closed surface instead!

5.4.1 Applications of Gauss’ Law

Gauss’ law is extremely effective in determining the electric fields of certain

distributions. Generally, the electric field deviates from point to point which

causes the electric flux across a general surface to be tedious to determine.

However, for symmetrical objects, we can choose a convenient surface such

that the electric field strength is always constant throughout certain area

elements or such that the electric field strength at some area elements is

zero. Then, the electric field can be integrated trivially over the Gaussian

surface to obtain the electric flux. The application of Gauss’ law to symmetric

systems shall be illustrated through the following examples.

Problem: Find the electric field at a perpendicular distance r away from

an infinitely long line with a uniform linear charge density λ.

Figure 5.10: Infinite rod

We define a cylindrical Gaussian surface with an arbitrary length l as

shown in Fig. 5.10. The electric fluxes through bases 1 and 2 are zero as
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the electric field in the direction of the area vectors of the bases (along the

line) is zero due to symmetry (there is no reason to prefer left over right or

vice-versa). Furthermore, the electric field strength is uniform over curved

surface 3. The electric field strengths of points that are on the same circular

cross section are equal due to the axial symmetry of the line. Moreover, the

electric field of the points that are on different cross sections are the same as

the line is infinitely long and each cross section is the same in that respect.

Besides having a uniform magnitude, the electric fields on curved surface 3

are also directed radially so that they are perpendicular to the portion of

the surface they cut through by symmetry. By Gauss’ law,‹
E · dA = Φ1 +Φ2 +Φ3 =

qenc
ε0

0 + 0 + 2πrl ·E =
λl

ε0

E =
λ

2πε0r
,

as the charge enclosed by the cylindrical Gaussian surface is λl in this case.

E is the electric field strength at a perpendicular distance r from the line.

The electric field is directed radially outwards, in the direction perpendicular

to the line.

Problem: Find the electric field in all space due to an infinitely large sheet

of charge with a surface charge density σ, and negligible thickness.

Figure 5.11: Infinite plane

Similarly, we define a cylindrical Gaussian surface as illustrated in

Fig. 5.11 (actually any closed surface with a uniform cross sectional area
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will suffice). In this case, the electric flux through surface 3 is zero as the

electric field in the plane parallel to the sheet is zero due to symmetry. There

should only be an electric field perpendicular to the plane that is uniform

throughout all points that are the same perpendicular distance away from

the plane due to the infinite nature of the plane. In light of this, the electric

field strengths should be identical through bases 1 and 2 due to symmetry

if we define them to be at the same distance above and below the plane

(however, the electric fields are opposite in direction so that they are aligned

with the area vectors of the bases). Let E be the electric field strength at

the bases. By Gauss’ law,‹
E · dA = Φ1 +Φ2 +Φ3 =

qenc
ε0

EA+ EA+ 0 =
σA

ε0

E =
σ

2ε0
,

as the charge enclosed (the circle in the middle) by the proposed Gaussian

surface is σA. The electric field at every point in space points in the direction

normal to and emanating from the plane. If σ is positive, the electric field at

surface 1 will be directed upwards and the electric field at surface 2 will be

directed downwards. Observe that E is in fact independent of the length of

the Gaussian cylinder! This implies that the electric field is uniform in the

regions above and below the plane.

Problem: Find the electric field due to a spherical charge distribution of

radius R and uniform charge density ρ in all space. Consider both regions

within the sphere and outside the sphere.

The electric field of a sphere can only be in the radial direction, with

a uniform electric field strength across a concentric spherical surface, due

to the radial symmetry imposed by the sphere. Applying Gauss’ law to a

concentric spherical Gaussian surface of radius r ≥ R outside the sphere,

Er≥R · 4πr2 = qenc
ε0

,

where Er≥R is the electric field strength of a point on the Gaussian surface.

Then,

Er≥R =
qenc

4πε0r2
,

where qenc is the total charge of the sphere qenc =
4
3ρπR

3. It can be seen that

the electric field due to a spherical charge distribution outside the sphere is
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tantamount to that due to a concentrated point charge qenc at the center

of the sphere. Next, to determine the electric field within the sphere, apply

Gauss’ law to a concentric spherical Gaussian surface of radius r < R inside

the sphere.

Er<R · 4πr2 = qenc
ε0

.

This time, the charge enclosed is not the total charge of the spherical charge

distribution. qenc is the amount of charge captured by the Gaussian surface.

qenc =
4

3
ρπr3.

Then,

Er<R =
ρr

3ε0
.

Plotting the graph of the electric field strength E(r) against the radial dis-

tance r from the center, we will obtain a linear graph that increases from

E = 0 at r = 0 to E = ρR
3ε0

at r = R, after which it decays with 1
r2
.

A Neat “Trick” in Computing Electric Fields

Often times, we may be obsessed with the formula of the electric field or

the elegance of Gauss’ law and forget that the electric field at a point is

quintessentially the force per unit charge exerted on a charge placed there.

This physical meaning can in fact be leveraged to determine the electric

field at a point due to a charge distribution by placing an imaginary unit

charge there. Instead of computing the force exerted on the test charge by

the set-up, we can determine the negative of the force exerted on the set-up

by the test charge as a consequence of Newton’s third law — a feat that can

sometimes be simpler.

Problem: Determine the electric field at a point l
2 above the center of a

square with a uniform surface charge density σ and edge length l.

Referring to Fig. 5.12, we shall determine the magnitude of electric field

(the direction is obvious) at the required point by placing an imaginary unit

charge there and determining the magnitude of the force experienced by the

square due to this unit charge. The force experienced by an infinitesimal area

dA (with area vector pointing downwards) on the square is σEdA where E

is the electric field due to the unit charge at that area. Since the net force on

the plane can only be in the vertical direction, we can simply sum the vertical

components of the forces experienced by each infinitesimal area element over
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Figure 5.12: Square and imaginary charge

the entire square. This is equivalent to computing
˜
square σE cos θdA with

the angle θ defined in the figure above, over the entire square. Making the

astute observation that
˜
square σE cos θdA = σ

˜
squareE · dA where dA is

the area vector of the infinitesimal area element under consideration, the

last integral is simply the total electric flux due to the unit charge cutting

across the square! Now, imagine that the unit charge is located at the center

of a cube with edge length l. The total electric flux across the cube is 1
ε0

by Gauss’ law — implying that 1
6ε0

flux leaks out of each face of the cube

(which is exactly our current set-up)! Thus, the force that the imaginary

unit charge exerts on the square and the electric field at the required point

due to the square are σ
6ε0

downwards and upwards respectively.

Finally, it is not difficult to extend this argument to show that more

generally, the component of electric field at a location — in the direction

normal to a planar surface of uniform surface charge density σ — is simply

σ multiplied by the electric flux, due to an imaginary unit charge placed at

that particular location, cutting across the planar surface.

Earnshaw’s Theorem

Gauss’ law has direct ramifications on the stability of the equilibrium

established by an electrostatic system. The following statement is known

as Earnshaw’s Theorem.

Problem: Show that a collection of point charges cannot be maintained in

a stable equilibrium solely by their electrostatic interactions.

Firstly, we have to recall the meaning of a stable equilibrium— it requires

that once a particle is displaced from its equilibrium position, there is a cor-

recting force exerted on it that tends to return it to its equilibrium position.

In the current context, if a certain charge rests in a stable equilibrium state,

the electric field due to all other charges in the region around this equilibrium

position must point towards (if this particular charge is positive) and away
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from (if the charge is negative) the equilibrium position. However, applying

Gauss’ law to an infinitesimal surface (such as a small sphere) surrounding

the mentioned equilibrium position, the total electric flux through this sur-

face would be non-zero (as the fields at all points on the surface either all

point inwards or outwards) even though the enclosed charge is zero (note

that the charge in the equilibrium position does not count as we are looking

at the electric field due to all other charges) — leading to a contradiction.

Therefore, a stable equilibrium cannot exist in a system purely held by elec-

trostatic forces. Only an unstable equilibrium, along at least one direction,

or a neutral equilibrium can occur.

Some problems, such as the following example, exploit Earnshaw’s

Theorem in an elegant fashion.

Problem: Place a positive charge q at an arbitrary position within an arbi-

trary configuration of fixed positive charges. Now, string the charge q along

a wire and hold it at rest (it may be at rest even if you gently released it).

Show that you can always design a path for the wire such that the charge

can escape to infinity once you give it a small velocity along the wire, at its

initial position.

If a net electric field is present at the charge’s initial position, we are done

as we can just arrange for our wire to follow the electric field line (due to

the fixed positive charges) there, along the direction of the electric field.

Since there are no negative charges for the electric field line to terminate

at, it must extend to infinity. Moving on, we consider the case where the

charge’s initial position is an equilibrium state. Observe that only the fol-

lowing two scenarios can occur at an equilibrium position as a consequence

of Earnshaw’s Theorem: (1) an unstable equilibrium exists along at least one

direction which implies that a non-zero electric field exists at a neighboring

point. (2) a neutral equilibrium exists such that the electric field is zero at

all neighboring points. In light of this, we can construct an escape route for q

using the following algorithm with the initial state set at q’s initial location

and a fixed search direction emanating from q’s initial location (i.e. proposed

direction of initial velocity). Given a current state, the first step is to check

if situation (1) or (2) is met. If situation (1) is fulfilled, erase all previously

proposed wire segments and record the position of the point that we have

detected to possess a non-zero electric field. Direct the initial segment of the

wire from the initial position of q to this recorded position via a straight

line, after which the wire can be adjusted to follow the electric field line

crossing the recorded position indefinitely. Terminate the algorithm as we

have constructed an escape route. If situation (2) is met, construct a wire
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segment joining the current state to a new neighboring state along the fixed

search direction. Update the current state and repeat from the first step.

This algorithm will either stop — after encountering a state with scenario

(1) and constructing an escape route — or run indefinitely to build an infinite

straight wire that emanates from the initial position along the fixed search

direction. The second case is also an escape route as it only occurs when all

encountered states are neutral equilibria such that there is nothing to change

the initial velocity of q and to prevent it from escaping to infinity (e.g. when

q is placed in a region absent of other charges).

5.5 Line Integral of Electrostatic Field

Path Independence of the Line Integral of Electrostatic Field

Being a central force, the Coulomb force is conservative. We shall prove this

fact once and for all now by showing that the line integral of the electrostatic3

field
´ P2

P1
E · ds between two points P1 and P2 is path-independent as this

property will be used prodigiously. As a recap, a line integral means that we

integrate the dot product of the electric field E at a point along a predeter-

mined path with the infinitesimal displacement vector ds pointing from that

particular point to a neighboring point along the path, over the entire path.

Referring to Fig. 5.13, we first consider the system of an isolated station-

ary charge q and compute the line integrals of its electric field from a point

P1 to another point P2 along paths A and B. Defining the origin at q, P1

and P2 are at radial distances r1 and r2 from the origin, respectively.

We see that the line integral along path A can be easily computed as it

consists of purely radial and tangential displacements. The line integral of

the electric field in the tangential direction along path A is simply zero as the

electric field is always perpendicular to the displacement of the charge. The

line integral in the radial direction of path A is

ˆ r2

r1

Er · dr =
ˆ r2

r1

q

4πε0r2
dr =

q

4πε0

(
1

r1
− 1

r2

)
, (5.9)

which is the total line integral along path A. Now, consider an arbitrary

path such as path B. Regardless of the actual path taken, it must still pass

through a shell of radius r and thickness dr (for all r1 ≤ r ≤ r2) as shown

3This refers to the steady fields that do not change with time and are produced by
stationary charges. We will later discover that moving charges or rather, changing magnetic
fields, engender another form of electric field that is non-conservative.
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Figure 5.13: Two different paths

in the figure above. Let the path taken through the shell subtend an angle θ

with respect to the radial direction. The infinitesimal line integral due to

this path crossing this shell is

E · ds = Er · dr

cos θ
· cos θ = Erdr

as the length of the path inside the shell is dr
cos θ , but an additional factor

of cos θ is included in the dot product between the electric field (which is

radial) and the infinitesimal displacement. Observe that this is equal to the

line integral incurred by the displacement of the corresponding segment of

path A in the same shell. Adding the contributions from the segments in

all shells, the line integral over path B must be identical to that of path A,

given by the first expression. The last technicality is that the actual path

taken by the particle may cross a shell multiple times. However, it can also

be concluded from the above that the magnitudes of the line integral when

a path enters or leaves the shell are the same, but opposite in sign. Thus,

they cancel out — leaving only one “net path” crossing the shell. Since every

system of charges can be thought to consist of only point charges, the line

integral of an electrostatic field is always path-independent.

An extremely important corollary of the above result is that the closed

loop integral of an electric field is always equal to zero.

Consider the loop in Fig. 5.14, the line integral of the electric field along

path A is equal in magnitude to that along path B but of different signs.
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Figure 5.14: An arbitrary loop

Thus, ˛
E · ds = 0 (5.10)

along the loop.

Change in Electric Field across Thin Charged Surfaces

Leveraging Gauss’ law and the nullity of the closed loop integral of an electric

field, we can determine the relationship between the electric fields at different

sides of a charged boundary. For any infinitesimally thin surface of charge

with a surface charge density σ, we can draw a cylindrical Gaussian surface

of infinitesimal length (the two horizontal segments along this page) and

base area (perpendicular to this page), as shown in Fig. 5.15.

Figure 5.15: Side view of charged surface

With an infinitesimal length, the electric flux through the curved surface

of the cylindrical Gaussian surface is zero. The electric fields at the two

bases (on the left and right) are not necessarily the same but they do not

vary along their respective surfaces as the surfaces are assumed to be small.

Then, if we denote E1⊥ and E2⊥ as the electric field strengths normal to

the surface at the left and the right of the surface respectively (rightwards

is defined to be positive), we can apply Gauss’ law to determine the change

in the normal component of the electric field while noting that the enclosed
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charge is σdA, where dA is the cross sectional area of the Gaussian cylinder.

(E2⊥ − E1⊥)dA =
σdA

ε0

E2⊥ − E1⊥ =
σ

ε0
.

Next, to determine the change in components of electric field parallel to

the surface, draw a rectangular loop of width w (lying in the plane of the

surface) and infinitesimal length (normal to the surface). For the sake of

illustration, consider the cross section of the cylindrical Gaussian surface

that we had considered previously, depicted in the figure above, such that

the two vertical segments have length w but the two horizontal segments are

infinitesimal. The path integral of the electric field along this loop must be

zero by Eq. (5.10). Since the lengths are infinitesimal, the contributions to

the path integral along the two horizontal segments are negligible. Then,

(E2t − E1t)w = 0

E2t = E1t.

We have only shown that the component of the electric field along one partic-

ular line lying on the surface is continuous across the surface. By “rotating”

the loop and considering all other lines, we can show that the entire compo-

nent of electric field lying in the plane of the surface is continuous. Therefore,

the change in electric field across the surface is purely in the normal direction.

ΔE = (E2⊥ − E1⊥)n̂ =
σ

ε0
n̂ (5.11)

where ΔE represents the change in the electric field vector and n̂ is a unit

vector perpendicular to the plane and in the positive direction (rightwards

in this case).

Next, another interesting question to ask is that, given E1⊥ and E2⊥,
what is the normal component of force, per unit area, that the charged

surface experiences? This seems perplexing at first as the normal component

of the electric field is inherently discontinuous. However, the correct answer

is rather simple: we take the average of the two fields and multiply it by the

surface charge density. That said, the reasoning is rather subtle.

The important observation is that E1⊥ and E2⊥ include both the external

field and the field produced by the charged surface. The force that the surface

feels is only due to the external field. If we let the normal components of the
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fields of the surface and external entities be Es outwards and Eext rightwards,

E1⊥ = Eext − Es,

E2⊥ = Eext + Es.

The normal component of the force on the surface, per unit area, is thus

P = σEext =
σ(E1⊥ + E2⊥)

2
. (5.12)

This expression is sometimes known as the electrostatic pressure on a charged

surface.

Problem: A soap bubble with a total charge Q uniformly distributed over

its spherical surface is currently at equilibrium. If the pressure inside the

soap bubble is identical to that outside, determine its equilibrium radius

given that the surface tension of the bubble is γ.

Applying Gauss’ law to a spherical Gaussian surface inside and outside

the bubble, one can conclude that the electric field inside the bubble is zero

as there is no charge enclosed. The electric field immediately outside the

bubble is

E · 4πR2 =
Q

ε0

where R is the equilibrium radius of the bubble.

E =
Q

4πε0R2
.

Therefore, the pressure on the surface of the bubble is given by Eq. (5.12) as

P =
Q2

32π2ε0R4
.

Now, cut the bubble into two hemispheres. The electrostatic pressure tends

to push the two hemispheres apart while surface tension tends to keep them

together. The force on one hemisphere due to the electrostatic pressure is

the electrostatic pressure multiplied by the cross sectional area of the hemi-

sphere, P · πR2. More rigorously, one can integrate the component of force,

in the direction of the line joining the center to the vertex of a hemisphere

(direction of net force), due to the electrostatic pressure over infinitesimal

areas on the hemisphere, but one can also show that this is equivalent to tak-

ing the pressure multiplied by the area of the projection of the hemisphere
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onto its equatorial plane4 (which is the equatorial circle with area πR2). The

surface tension force on this hemisphere is 2πγR. Balancing the forces,

Q2

32π2ε0R4
· πR2 = 2πγR

R = 3

√
Q2

64π2ε0γ
.

Similar to how we investigated the pressure discontinuity across a spherical

bubble in the chapter on fluids, we can also solve this problem via the prin-

ciple of virtual work. However, we shall hold this off for now as a potential

energy, associated with the electrostatic interactions of a system, can in fact

be defined. Then, we can find the radius that extremizes the total poten-

tial energy (surface energy and electric potential energy) which is a shortcut

to applying the principle of virtual work. This notion of electric potential

energy and other related ideas will be explored in the next few sections.

5.6 Electric Potential Energy

Due to the conservative nature5 of electrostatic interactions, we can define a

potential energy for a charge under the sole influence of Coulomb forces or

equivalently, in an electrostatic field. The potential energy of a point charge,

qt, at a point in space, with position vector r, is defined as the work done

by an external force in bringing it from infinity to that point without a

change in kinetic energy. In this definition, we have adopted the convention

of defining the potential energy at infinity to be zero. This is often implicitly

assumed but does not have to be the case in general.6

U =Wext = −WCoulomb = −
ˆ r

∞
qtE · ds, (5.13)

where s is the position vector of the charge when it was in the midst of being

moved via a certain path from infinity to r. By definition of a conservative

force, the integral can be evaluated along any path from infinity to r as all

paths would yield the same result.

4See solution to Problem 20 of Chapter 5.
5We have already shown that the line integral of an electrostatic field is path-

independent.
6There are some cases where the zero reference point should be set somewhere else, lest

certain quantities diverge.
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Problem: Derive the potential energy of a point charge q placed at a dis-

tance r away from the center of a uniform spherical charge distribution of

total charge Q. q is outside of the sphere.

We have shown that the electric field due to a uniformly charged sphere

is radially outwards and of magnitude

E =
Q

4πε0s2

at a radial distance s from the center, for regions exterior to the sphere. We

can then find the electric potential energy of this charge by bringing it along

a path that lies strictly in the radial direction, with the origin defined at the

center of the sphere.

U = −
ˆ r

∞

qQ

4πε0s2
ŝ · ds = −

ˆ r

∞

qQ

4πε0s2
ds =

qQ

4πε0r
.

Note that the choice of a radial path (which doesn’t affect the value of U

which is path-independent) enables us to conclude that ŝ ·ds = ds— greatly

simplifying our calculations. The above expression is in fact identical to the

electric potential energy of a point charge q due to another point charge Q

at the center of the sphere, whose expression shall soon be derived. This

is intuitive as q cannot differentiate between the electric fields of a point

charge Q located at the center of the sphere and a uniformly charged sphere

of total charge Q as long as it remains outside the sphere. This is the beauty

of the formulation of an electric field as it is only a local property! Finally,

the discussion here also implies that the above expression is only valid when

the charge is outside of the sphere — the reader should try to find U for

regions within the sphere.

Moving on, Eq. (5.13) enables us to determine the potential energy of

a test charge in a steady electric field (i.e. all other charges must be fixed)

if we know the electric field in all space. More commonly, we only know

the charge distribution of the system — implying that we have to take an

additional intermediate step in determining the electric field everywhere to

calculate the potential energy of a charge. To circumvent this sinuous route,

we can instead directly determine the potential energy of a test charge from

the distribution of relevant charges. We first consider the case where the

external electric field on a test charge qt is solely due to a fixed point charge

q1 when their current separation is r1t. Since the line integral of the electric

field due to a single charge has been computed in the previous section, the

potential energy of qt is simply the negative of Eq. (5.9) (after substituting
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r2 → ∞ and r1 = r1t), multiplied by qt.

Ut1 =
qtq1

4πε0r1t
. (5.14)

The total electric potential energy of a single point test charge qt due to

N other discrete fixed point charges is then obtained by the principle of

superposition.

Ut =
N∑
i=1

qtqi
4πε0rit

(5.15)

where rit is the current distance between the ith charge qi and the test

charge qt.

Lastly, based on the definition of the electric potential energy, we can

obtain the net Coulomb force on a test charge qt due to the other fixed

charges by taking negative of the potential energy gradient if we know

the potential energy as a function of spatial coordinates. In the prevalent

Cartesian, spherical and cylindrical coordinates,

F (x, y, z) = −∂U
∂x

î− ∂U

∂y
ĵ − ∂U

∂z
k̂,

F (r, θ, φ) = −∂U
∂r

r̂ − ∂U

r∂θ
θ̂ − ∂U

r sin θ∂φ
φ̂,

F (r, θ, z) = −∂U
∂r

r̂ − ∂U

r∂θ
θ̂ − ∂U

∂z
ẑ.

In vector calculus notation, F = −∇U . As always, an easy way to remember

the gradient in a certain coordinate system is to note that the denominators

are the infinitesimal length segments in that coordinate system.

Problem: A positive point charge Q of mass m lies at the midpoint of

the line joining two fixed positive point charges, both of charge q. The two

charges q are a distance 2l apart. Find the angular frequency of small oscil-

lations of charge Q about its equilibrium position along the line joining the

charges via two methods — forces and potential energy. Thus, state whether

charge Q is at a stable equilibrium in the direction of the line joining them.

What happens if the charge had −Q charge instead?

We shall take rightwards to be positive in Fig. 5.16. Firstly, observe that

charge Q is at equilibrium only if it is at the midpoint of the line joining the

two other charges.
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Figure 5.16: 3 Charges

Method 1: Forces

Let the displacement of charge Q from its equilibrium position be ε. The force

on Q is

F =
qQ

4πε0(l + ε)2
− qQ

4πε0(l − ε)2

=
qQ

4πε0l2

(
1(

1 + ε
l

)2 − 1(
1− ε

l

)2
)

≈ qQ

4πε0l2

(
1− 2

ε

l
− 1− 2

ε

l

)

= − qQε

πε0l3
.

By Newton’s second law, F = mε̈.

ε̈ = − qQ

πmε0l3
ε.

This equation of motion indicates a simple harmonic motion of angular

frequency

ω =

√
qQ

πmε0l3
.

Method 2: Potential Energy

The potential energy of charge Q when it is at a distance r from the left

charge, along the horizontal, is

U =
qQ

4πε0r
+

qQ

4πε0(2l − r)
,

dU

dr
= − qQ

4πε0r2
+

qQ

4πε0(2l − r)2
,

d2U

dr2
=

qQ

2πε0

[
1

r3
+

1

(2l − r)3

]
.
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Since the charge is at equilibrium when r = l,

ω =

√
U ′′(l)
m

=

√
qQ

πmε0l3
.

Revisit the chapter on oscillations for a review of this potential energy

method if necessary. Charge Q is at a stable equilibrium along horizon-

tal direction, as any deviation of its position from the equilibrium position

tends to be corrected by a restoring force (evident from its oscillation). If the

charge had a negative charge, −Q, it will be at an unstable equilibrium along

the horizontal direction, as any deviation of its position from the equilibrium

position tends to be amplified by the net force due to the two other charges.

This can also be directly concluded from the fact that d2U
dr2 when r = l is neg-

ative if the charge were to be negative — meaning that the potential energy

of the negative charge at that equilibrium position is a local maximum in the

horizontal direction. Incidentally, observe that the charge at the center has

different stabilities of equilibrium in different directions — a charge that is

stable in the horizontal direction will be unstable in directions perpendicular

to the horizontal and vice versa (verifying Earnshaw’s Theorem).

5.7 Electric Potential

The electric potential of a point in space, with position vector r, is defined as

V = −
ˆ r

∞
E · ds (5.16)

which is the line integral of the electric field along a path from infinity to r.

Again, the convention of defining the zero reference point at infinity has

been adopted. s is the position vector of an intermediate point on the path.

Physically, the electric potential at a point in space represents the work done

per unit charge by an external force in bringing a charge from infinity to that

point, without a change in kinetic energy. The potential is usually measured

in Volts (V ) which is kgm2s−3A−1 in SI units or one Joule divided by one

Coulomb JC−1.

Problem: Determine the potential due to a spherical charge distribution,

of radius R and uniform charge density ρ, in all space.

Define the origin at the center of the sphere. We have shown that the

electric fields at a radial distance s from the center of the sphere, outside
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and inside the sphere, are

Es≥R =
qenc

4πε0s2
=

ρR3

3ε0s2
,

Es<R =
ρs

3ε0
.

Therefore, the potential at a point P with a radial distance r ≥ R, outside

the sphere, is

Vr≥R = −
ˆ r

∞

ρR3

3ε0s2
ŝ · ds

= −
ˆ r

∞

ρR3

3ε0s2
ds

=
ρR3

3ε0r

where we have once again integrated along a strictly radial path to establish

ŝ · ds = ds for the sake of convenience. The potential at a point P at a

radial distance r < R is the sum of the change in potential from infinity to

a radial distance R and that from a radial distance R to r. We have to split

the integration into these parts as the electric field is incongruous.

Vr<R = −
ˆ R

∞

ρR3

3ε0r2
dr −

ˆ r

R

ρr

3ε0
dr

=
ρR2

3ε0
− ρr2

6ε0
+
ρR2

6ε0

=
ρ(3R2 − r2)

6ε0

where we have deliberately and cautiously integrated along a path in the

radial direction again since the path integral should be independent of the

path taken. Similar to Eq. (5.13), Eq. (5.16) relates the electric potential to

the electric field. To directly determine the electric potential due to a charge

distribution, we can easily show that the potential at a point P at a distance

r from a single, isolated charge q is

V =
q

4πε0r
,

by dividing Eq. (5.14) by qt and substituting q for q1 and r for r1t, since V

is basically Ut1 divided by qt. The potential of a point P due to a system of



November 13, 2018 7:7 Competitive Physics 9.61in x 6.69in b3255-ch05 page 291

Electrostatics 291

N discrete point charges is then

V =

N∑
i=1

qi
4πε0ri

(5.17)

by the principle of superposition, where ri is the distance between the ith

charge, qi, and point P. For a continuous charge distribution, the potential

at a point P can be obtained by summing the contributions to the potential

by each infinitesimal charge.

V =

ˆ
1

4πε0r
dq (5.18)

where r is the distance between point P and the infinitesimal charge dq under

consideration.

Following from our definition of the potential, we can also rewrite

the following expressions. The potential energy of a test charge due to a

fixed system of charges that result in a potential V at the test charge’s loca-

tion is

U = −
ˆ r

∞
qE · ds = qV. (5.19)

With regard to the problem in the previous section on the electric potential

energy of a point charge q due to a fixed, uniform sphere of charge Q and

radius R, this implies that the electric potential energy of q at a radial

distance r < R from the center of the sphere is Vr<R in the previous problem,

multiplied by q ( qQ(3R2−r2)
8πε0R3 ).

Next, based on the definition of the electric potential, the electric field

at a point is the negative potential gradient at that point.

E = −∇V. (5.20)

In light of this, we now have an alternative method of determining the electric

field in all space. We can first calculate the electric potential everywhere from

the given charge distribution directly — a task that is often simpler due to

the scalar nature of the potential — and subsequently apply Eq. (5.20) to

obtain the electric field everywhere.

Another consequence of Eq. (5.20) is that electric field lines always point

from a region of higher electric potential to a region of lower electric poten-

tial. Furthermore, it may be useful to define equipotential lines and surfaces

which are basically contour plots delineating adjacent points of the same

electric potential. There is no component of the electric field along equipo-

tential lines and surfaces as there is no potential difference between points
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on them. Thus, the electric field of a point along an equipotential line or

surface is always perpendicular to the tangent of the equipotential line or

the equipotential surface at that particular point.

5.8 Potential Energy of a System

Electric Potential Energy of a System

Now that we have determined the electric potential energy of a point charge

due a distribution of fixed charges, we would like to find the electric poten-

tial energy of a system of charges that are all unfettered. We have shown in

the chapter on energy that the potential energy of a system of N particles

undergoing central force interactions is simply the sum of the potential ener-

gies due to the interactions between each pair of particles, with no repeats

due to the permutations of a pair.

Usys =
∑
i<j

Uij

where Uij is the potential energy associated with the interactions between

the ith and jth particles. Its value is given by the potential energy of one of

those particles, given that the other particle is fixed. Applying the above to

N charges with the ith charge having charge qi,

Uij =
qiqj
4πrij

where rij is the distance between the ith and jth charges. Therefore,

Usys =
∑
i<j

qiqj
4πrij

. (5.21)

Now, we present another perspective to the above expression. The electric

potential energy of a system is also the work done by an external force

in assembling it and is the energy stored in the system of charges. Let us

imagine assembling the system by bringing individual point charges into the

system one at a time, while holding the other charges that are already in the

system fixed. We begin with an empty system.

1st Charge: The work done by an external force in bringing this charge to

its final position is 0 as the system is initially empty and there is no Coulomb

force on this charge.
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2nd Charge: There is a Coulomb force on q2 due to q1. Thus, the work

done by an external force in bringing q2 to its final position is

W2 =
q1q2

4πε0r12
.

3rd Charge: There are Coulomb forces on q3 due to q1 and q2. Thus, the

work done by an external force is

W3 =
q1q3

4πε0r13
+

q2q3
4πε0r23

.

ith Charge: There are Coulomb forces on qi due to q1, q2 ... qi−1. Thus, the

work done by an external force is

Wi =

i−1∑
j=1

qiqj
4πε0rji

.

Thus, we see that the total work done in assembling a system of N charges,

in this particular way, is simply the sum of the potential energy contributions

between all pairs of charges with no repeats. Since the potential energy of a

system should be independent of the process through which the charges got

there, this must be the potential energy of the system.

Usys =
∑
i<j

qiqj
4πrij

.

If we include the repeats, we can write the total potential energy of the

system as

Usys =
1

2

∑
i,j i �=j

qiqj
4πε0rij

=
1

2

N∑
i=1

qi
∑
j �=i

qj
4πε0rij

=
1

2

N∑
i=1

qiVi, (5.22)

where Vi is the potential at the position of the ith charge due to all other

charges. In the case of continuous charge distributions, an analogous version

of the above is

Usys =
1

2

ˆ
V dq (5.23)

where V is the potential at the position of an infinitesimal charge dq due to

all other charges. The integration is performed over the entire charge distri-

bution. Since the contribution of an infinitesimal surface or volume charge

to the potential at its own location is negligible,7 V can in fact be taken to

7The electric potential is proportional to charge and inversely proportional to distance.
Meanwhile, surface and volume charges are proportional to the square and cube of their
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be the potential due to the entire charge distribution! The above expression

is hence extremely useful in the case of continuous charge distributions.

Now, the reader may be confused by the fact that the electric potential

energy of a charge q at a position with external potential V was asserted in

the previous section to be qV , yet there is an additional factor of 1
2 here for

the potential energy of a system. Why can’t we simply argue that Usys =´
V dq since the potential energy of a charge dq under a steady external

potential V is V dq? The difference here is that qV is the formula for the

potential energy of q, given that all other charges are fixed, but in this

section, we are computing the potential energy of a system of charges that

are all free to move. If we claim that U =
´
V dq (i.e. sum the potential

energy of each charge, given that all other charges are fixed) instead of

U = 1
2

´
V dq, we have double-counted8 the potential energy associated with

each pair of charges. This is similar to the chapter on energy where we

discussed the total energy of two masses connected by a spring with spring

constant k and a current extension x. The elastic potential energy of each

mass, given that the other mass is fixed, is 1
2kx

2 but we cannot add these

individual energies together to argue that the elastic potential energy of the

system of two masses is kx2. It is obvious that the elastic potential energy of

the combined system is still 1
2kx

2 in this case, as we can visualize that the

spring is only stretched by that x amount. In the case of electric potential

energy, we cannot directly perceive the manifestation of the potential energy

as a physical change in the system, but the fallacy of double-counting still

exists.

Problem: Find the energy stored by the system of charges in Fig. 5.2.

Usys = −2× 2q2

4πε0l2
+

q2

4πε0l2
= − 3q2

4πε0l2
.

Problem: A soap bubble with a total charge Q uniformly distributed over

its spherical surface is currently at equilibrium. If the pressure inside the

soap bubble is identical to that outside, determine its equilibrium radius,

given that the surface tension of the bubble is γ, by considering the total

potential energy of the bubble.

length dimensions respectively. Therefore, the contributions of surface and volume charges
to the potentials at their own locations are proportional to their length dimension and
squared length dimension respectively — yielding an insignificant result when their length
dimensions are negligible.

8This double-counting is easy to see in the discrete case, as we will be computing Usys =∑
i�=j

qiqj
4πrij

= 2
∑

i<j

qiqj
4πrij

instead of the correct Usys =
∑

i<j

qiqj
4πrij

.
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Let the radius of the bubble be a variable r. The total potential energy

comprises the surface energy, which is Usurface = 4πγr2, and the electric

potential energy of the soap bubble, which is essentially a spherical shell of

charge Q. Applying Gauss’ law to a concentric, spherical Gaussian surface

outside of a spherical shell, one can show that as a consequence of radial

symmetry, the spherical shell is akin to a charge Q placed at its center in

the region outside of the shell. Therefore, the potential V due to the shell at

the surface of the shell is akin to that at a distance r from a point charge Q.

V =
Q

4πε0r
.

Applying Eq. (5.23) over the surface of the shell while noting that V is

uniform over it, the electric potential energy of the bubble is

Uelec =
1

2
· Q

4πε0r
·Q =

Q2

8πε0r
.

The total potential energy of the bubble is thus

Utot = Usurface + Uelec = 4πγr2 +
Q2

8πε0r
.

The equilibrium radius r = R extremizes Utot by the principle of virtual

work as all forces on the bubble are conservative.

dUtot
dr

∣∣
r=R

= 8πγR− Q2

8πε0R2
= 0

=⇒ R = 3

√
Q2

64π2ε0γ
.

Incidentally, an apparent paradox, that can deepen our understanding of the

principle of virtual work, can be constructed from this problem. Suppose that

we now constrain the bubble to have a fixed uniform surface charge density

σ, instead of a fixed total charge Q; intuition should hint that the equilib-

rium radius can be obtained from substituting Q = 4πσR2 from the start

and repeating the above derivations as nothing in the set-up has essentially

changed (we have merely replaced a word for another). However, one will

find that the approach based on balancing forces (shown previously) and the

approach here yield different answers! Why is this so?

It turns out that the answer based on balancing forces will be correct

if we simply repeat both procedures. You will actually obtain a negative

equilibrium radius, which is absurd, from the principle of virtual work. The

problem with applying the principle of virtual work in this context lies in
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the origin of the change in electric potential energy. In the original problem,

the change solely arose from the interactions between charges on the bubble.

However, in the modified problem, the change arises from both the inter-

actions between charges already on the bubble and the work done by an

external force in packing more charge on the bubble (as the total amount of

charge now varies). Only the first portion is relevant in inducing forces on

the charges already on the bubble (electrostatic pressure) and it is hence the

factor that affects whether the bubble is currently in equilibrium. To rectify

this loophole, we can either subtract the work done by an external force

in adding more charge in applying the principle of virtual work, or better

yet, directly apply the principle of virtual work with a fixed amount of total

charge Q equal to that at the equilibrium radius. The latter approach works

because whether the bubble remains in equilibrium should only depend on

the current configuration of charges, which produces the forces on it at this

instance, and not the future configuration. After all, how would the bubble

know if we are going to add some charge or not? It would only dare to think

that it carries a constant amount of charge!

Problem: Find the energy stored in a uniform, spherical charge distribution

of radius R and total charge Q. Do this by both applying Eq. (5.23) and

assembling the charges.

Let ρ = Q
4
3
πR3 be the uniform volume charge density of the sphere.

We have previously shown that the potential inside a uniformly charged

sphere is

V =
ρ(3R2 − r2)

6ε0
.

Applying Eq. (5.23),

Usys =
1

2

ˆ R

0

ˆ π

0

ˆ 2π

0

ρ2(3R2 − r2)

6ε0
· r2 sin θdφdθdr

=
1

2

ˆ R

0

(
2πρ2R2r2

ε0
− 2πρ2r4

3ε0

)
dr

=
1

2

(
2πρ2R5

3ε0
− 2πρ2R5

15ε0

)

=
4πρ2R5

15ε0

=
3Q2

20πε0R
.
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Next, we can consider assembling the sphere by repeatedly bringing in spher-

ical shells of thickness dr and radius r to an already assembled sphere of

radius r until r eventually increases to R. We have derived that the electric

potential energy of a point charge, dq, at a radius r (outside) from the center

of a spherical charge distribution of charge Q0 is

dU =
Q0

4πε0r
dq.

Applied to the current context, Q0 is due to the already established spherical

distribution of radius r, as we bring in the next shell of charge.

Q0 = ρ
4

3
πr3.

The infinitesimal external work done in bringing dq charge to the surface of

the already assembled sphere of radius r is then

dU =
ρr2

3ε0
dq.

When assembling a given shell of charge of thickness dr, the external work

done in bringing each infinitesimal charge is the same, as seen from the

above expression. Thus, we can just integrate the above expression by sum-

ming up the contributions due to each spherical shell. We can directly write

dq = ρ4πr2dr.

Usys =

ˆ R

0

4πρ2

3ε0
r4dr =

4πρ2R5

15ε0
=

3Q2

20πε0R
.

Energy Density of an Electric Field

An alternate perspective to the electric potential energy of a system can be

embraced by associating an energy density function with the electric field.

It is convenient to invent the existence of such a construct as it is intuitive

to think that the work done by an external force to assemble the system

should be “stored” somewhere, which in this case, is the electric field. The

energy associated with an infinitesimal volume, dV , with an electric field E

is in fact (we will state this without proof)

dU =
1

2
ε0E

2dV

where E2 can be computed as E · E. The total energy associated with an

electric field is then

U =

ˆ
allspace

1

2
ε0E

2dV, (5.24)
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where the integral is performed over all space. Ultimately, note that the

above is equivalent to the work done approach and is in fact derived

from it.

That said, a major pitfall lurks in this formulation — it leads to singulari-

ties in a system of point charges as the electric field diverges at the positions

of the point charges. This is because, this method assumes that there is

some energy required to assemble the point charge itself. It is technically

correct as it takes an infinite amount of energy to pack non-zero charge

into zero volume, but this is not particularly edifying. Thus, in such cases,

this method is not favored and the work done approach should be applied

instead.

Problem: Find the energy stored in a uniform, spherical charge distribution

of radius R and total charge Q by considering the energy density of the

electric field.

We know that the electric field strengths at a radial distance r outside

and inside the sphere are

Er≥R =
Q

4πε0r2
,

Er<R =
ρr

3ε0
,

where ρ is the charge density of the sphere. Then, the total energy associated

with the electric field can be integrated over spherical shells spanning all

space as each infinitesimal volume element on a shell possesses the same

amount of energy.

U =

ˆ R

0

1

2
ε0E

2
r<RdV +

ˆ ∞

R

1

2
ε0E

2
r≥RdV

=

ˆ R

0

1

2
ε0

(
ρr

3ε0

)2

4πr2dr +

ˆ ∞

R

1

2
ε0

(
Q

4πε0r2

)2

4πr2dr

=

[
2πρ2r5

45ε0

]R
0

+

[
− Q2

8πε0r

]∞
R

=
3Q2

20πε0R
,

where we have used the fact that Q = 4
3πρR

3.
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Electric Potential Energy of a System of Charges

in Equilibrium

The electric potential energy of a system of charges in equilibrium actu-

ally takes on a special value. For example, we can compute the total elec-

tric potential of the system in the second part of the second problem in

Section 5.2 as

q1q2
4πε0r12

+
q1q3

4πε0r13
+

q2q3
4πε0r23

=
q1q2

4πε0(r13 + r12)

− q21q2
4πε0(

√
q1 +

√
q2)2r13

− q1q
2
2

4πε0(
√
q1 +

√
q2)2r23

= 0

since q3 = − q1q2
(
√
q1+

√
q2)2

and r23
r13

=
√

q2
q1
. Therefore, we may surmise that

the total electric potential energy of a general system of charges, held in

equilibrium solely by their electrostatic interactions, is zero.

To prove this, we can show that the total work done by an external force

in assembling the system is zero or equivalently, that the total work done by

an external force in disassembling the system (i.e. bringing all charges back

to infinity) is zero. Constructing a single method of doing so would prove

our claim as the total potential energy of a system must be independent of

how we constructed the system. To this end, exploiting the inverse-square

nature of the Coulomb force, observe that if we scale the relative distances

between all charges in a system by a factor k, the Coulomb force between

each pair of charges will decrease by a factor of 1
k2 . This implies that if the

system was originally in equilibrium such that the net force on each charge is

zero, the system will still be in equilibrium after the scaling as the net force

on each charge is simply scaled by a factor of 1
k2

but 0
k2

is still 0! Therefore,

we can disintegrate the system without performing any external work by

progressively expanding the system by a small scale factor until all relative

distances tend to infinity!

Observe that the inverse-square nature of the Coulomb force was not

crucial in our derivation — any force between two particles that depended

on the distance between them to a certain power would work. Furthermore,

by making the astute observation that the gravitational force is also an

inverse-square law such that the net electrostatic and gravitational forces

on a charge in a system governed solely by electrostatic and gravitational
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interactions are scaled by the same amount when the relative distances in

the system are scaled, we can strengthen our theorem to state that

Theorem: The total electric and gravitational potential energy of a general

system of particles, held in equilibrium solely by their electrostatic and

gravitational interactions, is zero.

That said, the reverse of the statement is not true — a system of particles

with zero total potential energy is not necessarily in equilibrium. However,

this theorem can be applied to swiftly identify equilibrium configurations

of a system when we are guaranteed that they exist or when we can easily

verify if they are indeed equilibrium states.

Problem: Determine the charge Q that needs to be placed at the center

of four charges q that form the four vertices of a square, to keep the entire

system in equilibrium.

Let l be the edge length of the square. Instead of balancing forces, we

can apply the previous theorem and assert that if an equilibrium can indeed

be established, the total potential energy of the four charges q and Q must

be zero. This is less tedious as we do not need to consider vectors.

4 · q2

4πε0l
+ 2 · q2

4πε0 ·
√
2l

+ 4 · qQ

4πε0 · l√
2

= 0

Q = −2
√
2 + 1

4
q.
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Problems

Discrete Charges

1. Two Charges*

Two point charges, which are not necessarily of the same charge, are placed

along the positive x-axis. The electric potential is found to tend to positive

infinity when approaching x = 0. Next, it is known that the electric potential

is zero at two points on the positive x-axis, where x0 is the larger x-coordinate

of the two. Lastly, the electric potential at x = αx0 is a local minimum along

the x-direction where α is a positive constant. What can you say about

the signs and relative magnitude of the charges? Determine the distance d

between the charges.

2. Triangle of Charges*

Three identical charges of mass m and charge q are initially positioned such

that they form the vertices of an equilateral triangle with sides l0. If they

were initially stationary, determine the velocities of the charges when their

relative separation becomes l afterwards.

3. Exploding Charge**

A negative point charge −q of mass m is currently orbiting a fixed, posi-

tive charge Q at a radius of rotation r0. Now, the orbiting charge suddenly

disintegrates such that it ejects half of its mass in the radial direction at a

negligible velocity, relative to the rest of the charge. However, the leftover

mass still retains the entire charge −q. Determine the minimum distance

between the leftover charge and Q, r, in the motion thereafter while neglect-

ing any gravitational effects.

Charge Distributions

4. Cube Potential*

A cube of length l possesses a uniform volume charge density ρ. Find the

ratio of the electric potential at one of its vertices to that at its center. Hint:

Use scaling arguments.
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5. Flux at Corner of Cube*

A point charge q is placed at one of the vertices of an imaginary cubic

Gaussian surface. Find the electric flux through one of the faces of the cube

that is non-zero.

6. Flux Through Spherical Cap*

A charge q is placed off-center in an imaginary sphere. Determine the

total electric flux cutting the spherical cap (in bold) depicted in the fig-

ure below, that is characterized by the distances a and h, for h = 0. Next,

solve for the electric flux across the spherical cap for general a and h and

check that your result yields the right answer for the previous limiting

case.

7. Force on Cube Face*

The six faces of an insulating cube of edge length l are coated with a uniform

surface charge density σ. Determine the force experienced by one face of the

cube.

8. Electric Field of Equilateral Triangle*

Determine the electric field at a point P located at a height l
2
√
6
above the

centroid of an equilateral triangle with edge length l and uniform surface

charge density σ.

9. Chessboard*

Every black tile of an insulating chessboard of dimensions l × l is painted

with a uniform surface charge density σ while every white tile is entirely

neutral. Determine the electric field at a point l
2 above the center of the

chessboard without any integration.
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10. Finite Line Charge Revisited*

Prove that the direction of the electric field at an arbitrary point P due to a

finite line charge, with uniform linear charge density λ and ends at A and B,

always bisects ∠APB. Furthermore, show that the magnitude of the electric

field at P is

E =
λ

2πε0h
sinα,

where h is the perpendicular distance between P and the line and α =
1
2∠APB. Even though we have previously derived the electric field of a line

charge, do not overlook this part but rather, search for a different method

that directly proves the above properties. Next, determine the electric field

vector at (a, a) in the xy-plane due to two line charges, with uniform linear

charge density λ, that lie from (a, 0) to (+∞, 0) and from (0, a) to (0,+∞).

11. Hydrogen Atom*

A hydrogen atom is made up of a proton and an electron. The proton may

be regarded as a point charge q at r = 0, the center of the atom. Meanwhile,

the motion of the electron causes its charge to be “smeared out” into a

spherically symmetric distribution around the proton, such that the electron

is equivalent to a charge density

ρ(r) = − q

πa30
e
− 2r

a0 ,

where a0 is a constant known as the Bohr radius and r is the radial distance

from the center. Note that e is Euler’s number and not the charge of the

electron.

(a) Find the total amount of the hydrogen atom’s charge that is enclosed

within a sphere of radius r, centered about the proton. Check your

answer for the limit r → ∞ and explain why it makes sense.
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(b) Find the expression for the electric field strength E as a function of r.

(c) Find the expression for the electric potential V as a function of r.

12. Field Line of Two Opposite Charges**

Two charges q > 0 and −q are located along the x-axis at (−d, 0, 0) and

(d, 0, 0). Determine the radial distance from the origin that a field line ema-

nating from q at an angle α with respect to the positive x-axis intersects

with the yz-plane.

13. Average Values**

(a) Consider the isolated system of a single point charge q. Determine the

average electric field vector over the surface of an imaginary sphere,

centered about an arbitrary point and possessing an arbitrary radius r,

that encloses the charge q.

(b) Using the same system as above, determine the average electric field

vector over the surface of an imaginary sphere, centered about an arbi-

trary point and possessing an arbitrary radius r, that does not enclose

the charge q. Let the vector pointing from q to the center of the sphere

be R.

(c) Show that for an arbitrary system of point charges, the average potential

over the surface of an imaginary sphere, centered about an arbitrary

point and possessing an arbitrary radius r, that does not enclose any

charge is identical to the potential at the center of the sphere; Vavg =

Vcenter. Explain why this proves Earnshaw’s Theorem.

(d) More generally, show that for an arbitrary system of point charges,

the average potential over the surface of an imaginary sphere, cen-

tered about an arbitrary point and possessing an arbitrary radius r,

is Vavg = Vcenter +
qenc

4πε0r
where Vcenter is the potential at the center of

the sphere and qenc is the total charge enclosed by the sphere.

14. Charged Disk**

Determine the electric field at a point of height h above the center of a thin,

circular disk that has a uniform surface charge density σ and radius R. The

point of concern is along the axis of the disk.

In light of the above result, determine the electric field, due to the trun-

cated cone with a uniform volume charge density ρ shown in the figure on

the next page, at the vertex of the original cone.
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15. Infinite Plane with Hole**

A hole of radius R is carved out of a thin infinite plane with a positive surface

charge density σ that is uniform. Place a charge q at the center of the hole.

Neglecting all gravitational effects, show that the center of the hole corre-

sponds to an equilibrium position. Determine the stability of the equilibrium

of charge q with mass m when it is slightly displaced in the direction normal

to the plane (you have to consider different values of q). If the equilibrium is

stable, determine the angular frequency of small oscillations that q exhibits.

You may find the result of the previous problem to be useful.

16. Cylinder**

The cylindrical axis of a cylinder with length l and radius R is aligned with

the z-axis. The centers of the bases of the cylinder are at z = 0 and z = l.

If the cylinder has a uniform charge density ρ, determine the electric field

everywhere along the cylindrical axis, both inside and outside of the cylinder.

17. Sphere with Cavity**

A solid sphere of radius R is made up of an insulating material and has a

volume charge density ρ. A spherical cavity of radius a is removed from the

sphere. The center of the cavity is at a position d with respect to the center

of the sphere. Determine the electric field everywhere within the cavity.

18. Two Rods**

Two identical thin rods of length l have equal uniform linear charge density

λ. They both lie along the x-axis with their centers separated by a distance

d > l. Determine the magnitude of the Coulomb force exerted on the right

rod by the left rod at this instance. Check if your answer returns the correct

limit when d
 l.
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19. Parallel Square Plate Capacitor**

A square conducting plate of side length 2a, centered about the origin in the

xy-plane, is charged with a uniform surface charge density σ.

(a) Prove that following integral where z is independent of x and y:ˆ a

0

ˆ a

0

dxdy

(x2 + y2 + z2)
3
2

=
1

z
tan−1 a2

z
√
2a2 + z2

.

(b) Determine the electric field E at (0, 0, z) due to this surface charge

distribution. Find the limits where z → 0+ and z → 0− and explain

why they make sense.

Now, in addition to the previous charged square plate, there is another square

plate of the same size, parallel to the xy-plane and centered at (0, 0, d). This

additional plate is uniformly charged with a surface charge density −σ.
(c) Determine the electric field at (0, 0, z) for all z due to the uniform charge

distributions on both plates (we assume, albeit incorrectly, that they stay

uniform in the presence of each other).

(d) Assuming d << a, find the asymptotic solution to the previous field

for all z. As an aside, the charge distributions on both plates indeed

remain uniform in this limit as the plates are effectively infinitely large

as compared to the separation between them.

(e) Based on your previous answer, determine the potential difference V

between the two plates. The capacitance of the two plates is defined as

C =

∣∣∣∣QV
∣∣∣∣

whereQ is the total charge on either plate. Find C and state the variables

it depends on.

20. Electric Field due to Spherical Sections**

An insulating sphere of radius R is coated with a uniform surface charge

density σ on its exterior surface. Suppose that we cut off a spherical cap

corresponding to a half-angle α from a certain axis (i.e. the cap has base

radius R sinα) and remove the rest of the sphere. Determine the electric field

due to the cap at the center of the original sphere. Thus, state the electric

field at the center of an insulating hemisphere with surface charge density

σ coated over its curved surface. Finally, using this result for a hemisphere,

determine the electric field at the center of the original sphere if a spherical
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wedge of half-angle α (a slice of watermelon) is extracted from the sphere

and the rest of the sphere is removed instead.

21. Equilateral Triangle**

Three line charges, each of length L, are arranged in the form of an equilateral

triangle. The line charges carry uniform charge densities 2λ, λ and λ.

(a) Determine the electric field at the centroid of the triangle.

(b) Determine the electric potential at the centroid of the triangle.

(c) Find a point inside the triangle where the electric field is zero.

22. Potential at Rim of Disk**

Determine the electric potential at the rim of an insulating disk of radius R

and uniform surface charge density σ. Hint: adopt polar coordinates about a

point on the rim for the integration. In light of your result, derive the electric

potential energy stored in the disk.

23. Potential at Vertex of Square**

Firstly, determine the potential at the vertex which is sandwiched between

the two equal edges (which subtend an angle 2α) of an isosceles triangle

with uniform surface charge density σ, if the height of the triangle from this

vertex is h. Using this result, determine the potential at the center and thus

the potential of a corner of a square with edge length l and a uniform surface

charge density σ.

24. Force on Hemispheres**

Consider a charged sphere of radius R whose northern and southern hemi-

spheres carry volume charge densities ρ1 and ρ2 respectively. Determine the

force between these hemispheres.

25. Two Hemispherical Shells***

Determine the force between two uniform and concentric hemispherical shells

of radii R, r < R and charges Q, q respectively. The common center and the

apexes of the shells are collinear.
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Solutions

1. Two Charges*

Since the potential can attain a value of zero, the two charges must be

of opposite signs. This is due to the fact that a negative charge will lead

to a negative potential at all points while a positive charge will result in

the converse. Since the electric potential tends to positive infinity as one

approaches x = 0, the positive charge must be positioned at x = 0. Let this

charge be q1 and the other negative charge be −q2 at x-coordinate x = d.

The two points on the positive x-axis which correspond to zero potential are

located between q1 and −q2 and on the right of −q2 (x0 > d). Since a zero

potential point can occur on the right of −q2 such that the distance between

this point and q1 is larger than that to −q2, q1 > q2. Enforcing the potential

at x = x0 to be zero,

q1
x0

− q2
x0 − d

= 0

where we have utilized x0 > d. Furthermore, since the potential at x = αx0
is a minimum along the x-direction, the electric field in the x-direction at

this point must be zero as Ex = −∂V
∂x and ∂V

∂x = 0 at this minimum.

q1
α2x20

− q2
(αx0 − d)2

= 0.

In writing the above, we have asserted that the minimum lies outside of the

region between the charges. Otherwise, the negative sign in the equation

above would be a positive sign — resulting in no solutions for d (the field

between two opposite charges cannot be zero). Solving,

d = α(2 − α)x0.

2. Triangle of Charges*

The total energy of the system is conserved. The total energy is the potential

energy of the initial configuration.

E =
3q2

4πε0l0
.

The total energy of the final configuration is

3q2

4πε0l
+

3

2
mv2

where we have exploited the symmetry of the system to conclude that their

relative separations must be identical for all pairs and that their speeds must
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be equal. Since energy must be conserved,

3q2

4πε0l
+

3

2
mv2 =

3q2

4πε0l0

v =

√
q2

2πε0

(
1

l0
− 1

l

)
.

3. Exploding Charge**

Let the initial speed of the charge undergoing circular motion be v. Since

the Coulomb force on −q must provide the centripetal force in sustaining its

circular motion,

qQ

4πε0r
2
0

=
mv2

r0

v =

√
qQ

4πmε0r0
.

This must also be speed (purely tangential) of the leftover mass immediately

after the explosion, by the conservation of momentum, as m
2 is ejected in the

radial direction relative to the leftover mass at negligible velocity. The total

mechanical energy of the leftover mass is

E =
1

2
· m
2

· v2 − qQ

4πε0r0
= − 3qQ

16πε0r0
.

The total angular momentum of the leftover mass, with respect to Q, is

L =
mr0v

2
.

The total mechanical energy and angular momentum of the leftover mass are

conserved. When the leftover mass reaches the point of minimum distance, it

must have no radial velocity. Therefore, we let its purely tangential velocity

be vt. By the conservation of angular momentum and energy,

r0v = rvt

mv2t
4

− qQ

4πε0r
= − 3qQ

16πε0r0
.

Eliminating vt in the above set of equations would yield

3r2 − 4r0r + r20 = 0

r =
4±√

16− 12

6
r0.
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The minimum distance is obtained by taking the expression with the

negative sign.

rmin =
r0
3
.

4. Cube Potential**

Observe that the electric potential is proportional to charge and inversely

proportional to a length dimension. The potential at the center of a cube of

side length 2l is then 4 times the potential at the center of a cube of side

length l as its volume and thus charge are larger by a factor of 8 while its

length is augmented by a factor of 2. Furthermore, the potential at the center

of a cube of side length 2l is equal to 8 times the potential at the corner of

a cube of side length l by the principle of superposition (as the large cube

is made up of 8 smaller cubes). Equating these expressions for the potential

at the center of a cube of side length 2l, one can see that the ratio of the

potential at the center of a cube of length l to that at the corner is 2 : 1.

5. Flux at Corner of Cube*

Let the original cube under consideration have side length l. Piece eight of

such cubes together to form a larger cube of side length 2l with the charge

q at its center. The total electric flux cutting through the large cube is q
ε0

by Gauss’ law. By symmetry, the electric flux across a single face of a cube

of length l (with non-zero flux) is q
24ε0

as there are 24 such faces on the

larger cube of length 2l. Another (slightly dubious) method is to visualize

the point charge as a small sphere, of which only 1
8 lies inside the original

cube. Since the charge “enclosed” by the original cube is q
8 and there are

three symmetrical faces with non-zero flux, the flux across a single face with

non-zero flux is q
24ε0

.

6. Flux Through Spherical Cap*

When h = 0, the charge can be symmetrically enclosed by two identical

spherical caps. The electric flux through a single spherical cap is then given

by Gauss’ law as q
2ε0

. In the general case, the crucial observation is that any

arbitrary surface with the same circular boundary as the spherical cap must

possess the same magnitude of electric flux, as long as the arbitrary surface

and the spherical cap, glued together, do not enclose the charge. This is a

direct consequence of Gauss’ law applied to the closed surface formed by

combining the arbitrary surface and the spherical cap. If there is no charge
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enclosed, the total electric flux cutting through the closed surface must be

zero — implying that the electric fluxes across the two surfaces must be

equal in magnitude and opposite in direction.

The electric flux through the desired spherical cap is then identical to

that through a spherical cap of radius a, centered about the charge. Then, we

simply have to determine the proportion of the sphere of radius a, centered

about the charge, that this spherical cap occupies — this can be done by

determining the surface area of the curved surface of the spherical cap. The

surface area of a spherical cap with radius R and altitude H is 2πRH.

Therefore, the surface area of this cap with radius a and altitude a − h is

2πa(a− h). Dividing this by the surface area of a complete sphere of radius

a, 4πa2, the proportion of the sphere that the spherical cap occupies is
1−h

a
2 .

The total electric flux cutting through the desired spherical cap is then this

fraction multiplied by the total flux emitted by the charge, q
ε0
.

(
1− h

a

)
q

2ε0

which correctly becomes q
2ε0

in the limiting case where h = 0.

7. Force on Cube Face*

Let the electric field at the surface of one face, due to the five other faces,

be E. Due to symmetry, the net force experienced by the particular face

can only be normal to it. The normal component of force on an infinitesimal

surface element on that particular face with area vector dA (pointing out-

wards) is σE · dA where E is the electric field due to the five other faces at

the infinitesimal element. The total force experienced by the face is then

F = σ

¨
E · dA = σΦ

where the integral is performed over the entire face. The integral is simply

equal to the electric flux due to the five other faces cutting across this par-

ticular face. The electric flux crossing this particular face due to the entire

cube is one sixth of the electric flux of the entire cube, 1
6 · 6σl2

ε0
= σl2

ε0
, out-

wards of the face. Meanwhile, the electric flux emanating outwards from this

particular face, due to the charges on the face itself, is σl2

2ε0
, as half of its total

flux is emitted on each side of the face. The outwards electric flux Φ crossing
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this particular face due to the other five faces is then

Φ =
σl2

ε0
− σl2

2ε0
=
σl2

2ε0
.

The force experienced by this face is thus

F =
σ2l2

2ε0

and is directed in the outwards direction, normal to the face.

8. Electric Field of Equilateral Triangle*

Place an imaginary unit charge at point P. The electric field due to the

equilateral triangle at point P is the force on this unit charge exerted by

it and is equal to the negative of the force exerted by the unit charge on

the equilateral triangle. Similar to the fourth problem in Section 5.4.1, the

normal component of the force (which is the only component present due to

the symmetrical nature of the equilateral triangle) exerted by the unit charge

on the equilateral triangle is equal to σ multiplied by the electric flux, due to

the unit charge, cutting across the equilateral triangle. Now, observe that the

imaginary unit charge can be enclosed by four of such equilateral triangles,

which form a tetrahedron. Then, the electric flux due to the unit charge

crossing one face of the tetrahedron is 1
4 of the total electric flux that it

emits (which is 1
ε0

by Gauss’ law). Therefore, the magnitude of the force on

the equilateral triangle due to the unit charge, and hence the electric field

strength at point P due to the equilateral triangle, is σ
4ε0

. The electric field

is directed normally outwards from the centroid of the equilateral triangle

towards point P.

9. Chessboard*

Since the chessboard is symmetrical about both diagonals, the electric field

at points directly above its center can only be normal to the plane of the

chessboard. Now, observe that if we rotate the chessboard by 90◦ and super-

pose the original chessboard, we obtain a square plate of edge length l that

is completely covered by a uniform surface charge density σ. We have deter-

mined that the electric field of such a set-up at a point l
2 above its center is

σ
6ε0

in the final example of Section 5.4.1. The electric field at that point due

to the chessboard is thus half of this value

E =
σ

12ε0

and is normally outwards from the board.
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10. Finite Line Charge Revisited*

Referring to the definition of the angle θ in Fig. 5.3, the magnitude of the

electric field at P due to an infinitesimal segment between θ and θ + dθ can

be computed as follows.

dE =
λdx

4πε0r2
,

x = h tan θ =⇒ dx = h sec2 θdθ,

dE =
λ

4πε0
h2

cos2 θ

· h sec2 θdθ = λ

4πε0h
dθ.

That is, the magnitude of the electric field does not depend on the angular

coordinate θ, but only the angular “width” dθ of the segment.

Figure 5.17: Electric fields due to two segments which subtend equal angles from angle
bisector

Consider two infinitesimal line segments that subtend angle φ with the

angle bisector OP and possess equal angular width dφ (this also ensures

that they have equal angular widths in terms of θ as both φ and θ are

measured about P) in Fig. 5.17. The electric fields at P due to the right and

left segments are dE1 and dE2 respectively. Since the magnitudes of these

vectors are equal, there is no contribution to the electric field perpendicular

to the angle bisector due to this pair of segments. Applying this argument

to all pairs for 0 < φ ≤ α, the net electric field at P due to the line charge

must bisect ∠APB. To determine the magnitude of the net electric field,

observe that one pair of segments corresponding to angle φ contributes to a

value λ cosφdφ
2πε0h

to the component of electric field parallel to the angle bisector.

Integrating φ from 0 to α,

E =
λ

2πε0h

ˆ α

0
cosφdφ =

λ

2πε0h
sinα.
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For the next question, notice that if we apply the above result to a semi-

infinite line charge, the electric field vector at a point — at which a line

joining this point to the finite end of the line charge is perpendicular to

the line charge — subtends an angle 45◦ with the direction along the line

charge. Therefore, the net electric field at (a, a) due to the two semi-infinite

line charges in the problem will be zero as their individual electric fields

nullify each other there.

11. Hydrogen Atom*

(a) Integrating over spherical shells of infinitesimal thickness dr, the total

amount of charge within a sphere of radius r (remember to include the

proton) is

Q = q +

ˆ r

0
− q

πa30
e
− 2r

a0 · 4πr2dr

= q

(
1− 4

a30

ˆ r

0
r2e

− 2r
a0 dr

)

= q

(
1 +

2

a20

[
r2e

− 2r
a0 − 2

ˆ r

0
re

− 2r
a0 dr

])

= q

(
1 +

2

a20
r2e

− 2r
a0 +

2

a0

[
re

− 2r
a0 −

ˆ r

0
e
− 2r

a0 dr

])

= q

(
1 +

2

a20
r2e

− 2r
a0 +

2

a0
re

− 2r
a0 + e

− 2r
a0 − 1

)

= q

(
1 +

2

a20
r2 +

2

a0
r

)
e
− 2r

a0 .

As r → ∞, Q → 0 which makes sense as the hydrogen atom is neutral

overall.

(b) Exploiting the spherical symmetry of this charge distribution, Gauss’

law gives

E · 4πr2 = Q

ε0

E =
q

4πε0

(
1

r2
+

2

a20
+

2

a0r

)
e
− 2r

a0 .
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(c) The electric potential is

V = −
ˆ r

∞
E · dr = −

ˆ r

∞
Edr

V = − q

4πε0

ˆ r

∞

(
1

r2
+

2

a20
+

2

a0r

)
e
− 2r

a0 dr.

To evaluate this, observe that by performing integration-by-parts,

ˆ r

∞

1

r2
e
− 2r

α0 dr = −1

r
e
− 2r

α0 −
ˆ r

∞

2

α0r
e
− 2r

α0 dr.

Therefore,

V = − q

4πε0
· −1

r
e
− 2r

α0 − q

4πε0

ˆ r

∞

2

a20
e
− 2r

α0 dr =
q

4πε0

(
1

a0
+

1

r

)
e
− 2r

α0 .

12. Field Line of Two Opposite Charges**

Trace a field line that emanates from q at an angle α with the positive

x-axis — suppose that it intersects the yz-plane at a radial distance R from

the origin. Since this set-up is symmetric about the x-axis, we can rotate

this field line about the x-axis for a complete revolution to generate other

axial-symmetric field lines. This set of field lines and the circular base (of

radius R) spanned by their intersections with the yz-plane form a closed

surface. Applying Gauss’s law to this closed surface, the relevant electric flux

Φ only stems from the circular base as the electric field is always tangential

along the other curved surface (by definition of an electric field line). The

x-component of the electric field due to this set-up at x = 0 and a radial

distance r in the yz-plane is

Ex =
qd

2πε0(r2 + d2)
3
2

.

Therefore, the electric flux through this Gaussian surface (obtained by inte-

grating over circular shells of perimeter 2πr and thicknes dr) is

Φ =

ˆ R

0

qd

2πε0(r2 + d2)
3
2

· 2πrdr = qd

ε0

(
1

d
− 1√

R2 + d2

)
.

Now, the fraction captured in a cone with half-angle α, out of the total elec-

tric flux emitted by q (which is q
ε0

by Gauss’ law), was previously calculated
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in Section 5.1 as sin2 α2 . Therefore, the above flux must be equal to

Φ =
q

ε0
· sin2 α

2
.

Solving for R,

R = d

√
sec4

α

2
− 1.

13. Average Values**

(a) Distribute a charge Q evenly over the surface of the imaginary sphere.

The average electric field due to q over the imaginary spherical surface is

simply the force exerted by q on this spherical shell of charge Q, divided by

Q. This is equal to the negative of the force exerted by Q on q, divided by

Q, by Newton’s third law. However, by applying Gauss’ law to a concentric

spherical Gaussian surface within the spherical shell of charge Q, we know

that it generates zero electric field within itself. Therefore, the force exerted

by Q on q must be zero — implying that the average electric field over the

imaginary spherical surface is Eavg = 0.

(b) Repeating the same process as above, we compute the force exerted

by Q on q. Applying Gauss’ law to a concentric spherical Gaussian surface

outside of the spherical shell of chargeQ, the electric field due toQ at a radial

distance R > r from the center of the shell is Q
4πε0R2 (akin to a point charge

Q placed at the center). Therefore, the force exerted by Q on q, divided by

Q, is − q
4πε0R2 R̂ where R̂ is the unit vector that points from q to the center of

the imaginary sphere. The average electric field due to q over the imaginary

spherical surface is the negative of this and is equal to q
4πε0R2 R̂.

(c) Similar to the previous sections, distribute a charge Q evenly over the

surface of the imaginary sphere. Consider the special case where there is

a single charge q outside the imaginary sphere. The average potential due

to q over the spherical surface is simply the electric potential energy of

the spherical shell of charge Q when q is fixed, divided by Q. The elec-

tric potential energy of the spherical shell of charge Q when q is fixed is

equal to the electric potential energy of q when the spherical shell is fixed.

This is because for any two point charges qi and qj, the electric potential

energy of qi when qj is fixed is
qiqj

4πε0rij
where rij is the distance separating

them — this is evidently equal to the electric potential energy of qj when

qi is fixed. The electric potential energy of q when the spherical shell of

charge Q is fixed is basically qQ
4πε0R

, where R is the distance between q and



November 13, 2018 7:7 Competitive Physics 9.61in x 6.69in b3255-ch05 page 317

Electrostatics 317

the center of the shell, as the shell is essentially a point charge Q located

at its center, for regions outside of the shell. The average potential due to

q over the imaginary spherical surface is thus q
4πε0R

which is equal to the

potential engendered by it at the center of the imaginary sphere. Therefore,

Vavg = Vcenter for a single charge q. By the principle of superposition, this

must also be the case for an arbitrary distribution of charges outside of the

imaginary sphere. This result proves Earnshaw’s Theorem as it shows that

a potential maximum or minimum cannot be located at a point in space

with no net charge. Suppose that a maximum existed there — the average

potential of its neighbours (over a spherical surface with an infinitesimal

radius centered about the point of concern) will then be smaller than the

potential at that point (the center of the sphere), contradicting our recently

established theorem. A similar logic holds for the existence of a minimum.

Since a maximum or minimum cannot be located at a particular point in free

space, there is at least one neighboring point with a lower potential than that

particular point (which produces an unstable equilibrium in that direction

for a positive charge placed at that particular point) and one with a higher

potential than that particular point (which produces an unstable equilib-

rium for a negative charge) since the electric field is the negative potential

gradient.

(d) In a manner analogous to the previous part, distribute a charge Q evenly

over the surface of the imaginary sphere of radius r and consider the special

case where a single charge q is enclosed in an arbitrary location within the

imaginary sphere. The electric potential energy of q when the spherical shell

Q is fixed is simply q multiplied by the potential due to Q at the location

of q (within the shell) which is simply the potential at the surface of the

shell since the electric field within the shell is zero. The latter is Q
4πε0r

since

a spherical shell is akin to a point charge Q placed at its center for regions

outside of it. The average potential due to q over the spherical surface can

then be computed as q
4πε0r

by dividing the electric potential energy of q

when the spherical shell Q is fixed, by Q. Proceeding with a general charge

distribution involving an arbitrary configuration of charges outside of the

imaginary sphere and qenc amount of charge enclosed within it, the qenc
charge contributes a value of qenc

4πε0r
to the average potential over the spherical

surface by the principle of superposition. Combining this with the result of

the previous part — which states that the charge configuration outside of the

sphere contributes a value of Vcenter to the average potential — the average

potential over the imaginary spherical surface is Vavg = Vcenter +
qenc

4πε0r
.



November 13, 2018 7:7 Competitive Physics 9.61in x 6.69in b3255-ch05 page 318

318 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

14. Charged Disk**

We will consider the disk in polar coordinates along the plane of disk. Define

the origin at the center of the disk and the z-axis to be normal to the disk.

Consider an infinitesimal area element on the disk at a radial distance r and

polar angle θ with sides rdθ and dr. The distance between this element and

P is r′ given by

r′2 = h2 + r2.

Therefore, the magnitude of the electric field at P due to this element is

dq

4πε0r′2
=

σrdrdθ

4πε0(h2 + r2)
.

Due to the symmetry of the disk, the electric field at P can only be in the

z-direction. Therefore, we simply need to integrate the z-component of the

electric field at P due to all infinitesimal elements over the entire disk. Thus,

the electric field at P is

Ez =

ˆ R

0

ˆ 2π

0

σrdθdr

4πε0(h2 + r2)
· h√

h2 + r2

=

ˆ R

0

σhrdr

2ε0 (h2 + r2)
3
2

=

[
− σh

2ε0
√
h2 + r2

]R
0

=
σ

2ε0
− σh

2
√
h2 +R2

.

In the next problem, slice the truncated cone into disks of infinitesimal thick-

ness in the direction perpendicular to the axis of the cone. Now, we argue

that these disks must make the same contribution to the electric field at the

vertex of the original cone. Let the perpendicular distances between two of

such disks to the vertex be h1 and h2. Observe that the electric field at the

vertex due to one disk must be proportional to its charge and inversely pro-

portional to the squared distance between it and the vertex. As compared

to the first disk, the distance between the second disk and the vertex is h2
h1

times that of the first disk. However, its charge is also larger by a factor

of
h22
h21

due to the differences in area. The two effects cancel out — causing

the contributions by the two disks to be equal. Therefore, the electric field
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due to the entire truncated cone is equivalent to the disk at the top, with a

surface charge density of ρl. The electric field at the vertex is then

Ez =
ρl

2ε0
− ρlh

2
√
h2 +R2

.

15. Infinite Plane with Hole**

We have proven that the electric field due to an infinite plane of charge

density σ is σ
2ε0

everywhere, directed outwards from the plane, and that

the electric field at a height h above the center of a circular disk of charge

density σ is σ
2ε0

− σh
2
√
h2+R2

, directed outwards from the disk. Therefore,

the electric field at a height h above the center of the hole in the infinite

plane is

E(h) =
σ

2ε0
−
(
σ

2ε0
− σh

2
√
h2 +R2

)
=

σh

2
√
h2 +R2

and is directed normally outwards from the center of the hole. When h = 0,

E(0) = 0 which shows that the center of the hole corresponds to an equilib-

rium position. Furthermore, since E(h) is directed normally outwards, the

equilibrium for q > 0 is unstable (as the Coulomb force tends to push it

further away from the hole) while the equilibrium for q < 0 is stable (as the

Coulomb force tends to correct its deviation from the hole). For small values

of h << R, the electric field becomes

E(h) =
σh

2R
.

Therefore, Newton’s law yields, for the charge q < 0,

mḧ =
qσh

2R

=⇒ ḧ = − −qσ
2Rm

h,

where −q is a positive quantity. The above equation of motion describes a

simple harmonic motion with angular frequency

ω =

√ −qσ
2Rm

.

16. Cylinder**

We will determine the electric field at a point P with coordinates (0, 0, h)

by integrating the contributions due to each infinitesimal element in
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cylindrical coordinates over the entire cylinder. Consider an infinitesi-

mal element at coordinates (r, φ, z). It has volume rdφdrdz and thus

has charge ρrdφdrdz. The electric field strength at point P due to this

element is

dq

4πε0[r2 + (h− z)2]
=

ρrdφdrdz

4πε0[r2 + (h− z)2]
.

However, by symmetrical arguments, only the z-component of this electric

field will survive after an integration over the entire cylinder. Therefore, we

just have to take the z-component of the above which is

ρrdφdrdz

4πε0[r2 + (h− z)2]
· h− z√

r2 + (h− z)2
.

Integrating the above over the entire cylinder,

ˆ l

0

ˆ R

0

ˆ 2π

0

ρr(h− z)

[r2 + (h− z)2]
3
2

dθdrdz

=

ˆ l

0

ˆ R

0

2πρr(h− z)

[r2 + (h− z)2]
3
2

drdz

=

ˆ l

0

[
− 2πρ(h− z)√

r2 + (h− z)2

]R
0

dz

=

ˆ l

0

(
2πρ(h− z)√

(h− z)2
− 2πρ(h − z)√

R2 + (h− z)2

)
dz

where we have adopted Gaussian units
(

1
4πε0

= 1
)

for the sake of conve-

nience.

At this point we cannot rashly conclude whether
√

(h− z)2 = h − z or

z − h and must instead consider the relative values of z and h. If h ≥ l (i.e.

the point P is above the cylinder),
√

(h− z)2 = h− z for the entire regime

of integration.

Eh≥l =
ˆ l

0

(
2πρ− 2πρ(h − z)√

R2 + (h− z)2

)
dz

= 2πρl + 2πρ
√
R2 + (h− l)2 − 2πρ

√
R2 + h2.
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If h ≤ 0 (i.e. the point P is below the cylinder),
√

(h− z)2 = z − h for the

entire regime of integration.

Eh≤0 =

ˆ l

0

(
−2πρ− 2πρ(h − z)√

R2 + (h− z)2

)
dz

= −2πρl + 2πρ
√
R2 + (h− l)2 − 2πρ

√
R2 + h2.

Now if 0 < h < l (i.e. the point P is within the cylinder),
√

(h− z)2 = h− z

for 0 ≤ z ≤ h and
√

(h− z)2 = z− h for h ≤ z ≤ l. Then, we have to divide

the first term in the integral into two regimes of integration.

E0<h<l =

ˆ h

0
2πρdz +

ˆ l

h
−2πρdz +

ˆ l

0
− 2πρ(h− z)√

R2 + (h− z)2
dz

= 2πρ(2h − l) + 2πρ
√
R2 + (h− l)2 − 2πρ

√
R2 + h2.

17. Sphere with Cavity**

Recall that the electric field within a sphere with a uniform charge density

ρ at a radial vector r from the center was derived to be

E =
ρ

3ε0
r.

Moving back to the original question, we can first fill up the cavity with the

same uniform charge density ρ and then superpose another sphere of density

−ρ, corresponding to the original cavity, to remove this additional charge.

Now, let d be the vector from the center of the large sphere to the center of

the cavity, r be the vector from the center of the large sphere to the point

in the cavity at which the electric field is of concern and R be the vector

from the center of the cavity to the point of concern. Then, the electric

field at the point of concern is the superposition of the fields due to the two

spheres.

E =
ρ

3ε0
(r −R) =

ρd

3ε0
.

This implies that the electric field is uniform within the cavity. Note that

this expression is only valid within the cavity as the electric field used in this

derivation was computed inside a spherical charge distribution.
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18. Two Rods**

Define the origin such that the two rods span from x = 0 to x = l and x = d

to x = l + d. We first determine the electric field at points along the x-axis

due to the rod between x = 0 and x = l. The electric field at a point along

the x-axis at x-coordinate y > l is obtained by integrating the contributions

due to infinitesimal segments between coordinates x and x+ dx from x = 0

to x = l.

E(y) =

ˆ l

0

λdx

4πε0(x− y)2

=

[
− λ

4πε0(x− y)

]l
0

=
λ

4πε0(y − l)
− λ

4πε0y
.

Now, we consider the effects of this field on the second rod. The force on a

segment of the second rod between x-coordinates y and y + dy is

dqE(y) = λE(y)dy.

We integrate this force over the entire second rod which ranges from y = d

to y = d+ l to obtain the total force on the second rod due to the first rod.

ˆ l+d

d
λE(y)dy =

ˆ l+d

d

(
λ2

4πε0(y − l)
− λ2

4πε0y

)
dy

=
λ2

4πε0
ln

d

d− l
− λ2

4πε0
ln
l + d

d

=
λ2

4πε0
ln

d2

d2 − l2
.

When d 
 l, the two rods are effectively two point charges λl separated by

a distance d. Therefore, we expect the force between them to be λ2l2

4πε0d2
. This

is indeed the case as

λ2

4πε0
ln

d2

d2 − l2
= − λ2

4πε0
ln

(
1− l2

d2

)
≈ − λ2

4πε0
· − l2

d2
=

λ2l2

4πε0d2
,

where we have used the first order Maclaurin expansion ln(1 + x) ≈ x.
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19. Parallel Square Plate Capacitor**

(a) Let x =
√
y2 + z2 tan θ and dx =

√
y2 + z2 sec2 θdθ.

ˆ a

0

ˆ a

0

dxdy

(x2 + y2 + z2)
3
2

=

ˆ a

0

ˆ tan−1 a√
y2+z2

0

cos θdθdy

y2 + z2

=

ˆ a

0

a

(y2 + z2)
√
y2 + a2 + z2

dy.

Let y =
√
a2 + z2 tan φ and dy =

√
a2 + z2 sec2 φdφ.

ˆ a

0

a

(y2 + z2)
√
y2 + a2 + z2

dy

=

ˆ tan−1 a√
a2+z2

0

a

(z2 sec2 φ+ a2 tan2 φ)
√
a2 + z2 secφ

·
√
a2 + z2 sec2 φdφ

=

ˆ tan−1 a√
a2+z2

0

a cosφ

(z2 + a2 sin2 φ)
dφ

=

ˆ a2√
2a2+z2

0

du

(z2 + u2)

where u = a sinφ. Using the standard result
´

du
z2+u2

= 1
z tan

−1 u
z + c, The

integral becomes

ˆ a

0

ˆ a

0

dxdy

(x2 + y2 + z2)
3
2

=
1

z
tan−1 a2

z
√
2a2 + z2

.

(b) Due to the symmetry of the square plate about the x and y-directions,

the electric field at (0, 0, z) should only be in the z-direction.

Ez =

ˆ a

−a

ˆ a

−a

σz

4πε0(x2 + yz + z2)
3
2

dxdy =
σz

πε0

ˆ a

0

ˆ a

0

dxdy

(x2 + y2 + z2)
3
2

E =
σ

πε0
tan−1

(
a2

z
√
2a2 + z2

)
k̂.
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When z → 0+, tan−1( a2

z
√
2a2+z2

) → π
2 .

E =
σ

πε0
· π
2
=

σ

2ε0
k̂.

When z → 0−, tan−1( a2

z
√
2a2+z2

) → −π
2 .

E = − σ

2ε0
k̂.

These values make sense as the only infinitesimal area on the plate that

contributes to a z-component of electric field at (0, 0, 0+) or (0, 0, 0−) is the
infinitesimal area at (0, 0, 0). The electric fields of the other infinitesimal

patches are along the plane of the plate. Therefore, the net electric fields in

such limits are simply those of a small area with a surface charge density

σ — σ
2ε0

emanating outwards from the area.

(c) The resultant electric field due to the two plates is

E =
σ

πε0
tan−1

(
a2

z
√
2a2 + z2

)
k̂− σ

πε0
tan−1

(
a2

(z − d)
√

2a2 + (z − d)2

)
k̂.

(d) Since d << a, d << z for regions outside the plates.

E =
σ

πε0
tan−1

(
a2

z
√
2a2 + z2

)
k̂− σ

πε0
tan−1

(
a2

(z
√
2a2 + z2

)
k̂ = 0

outside the plates. Between the two plates, z < d so the electric field is better

expressed as

E =
σ

πε0
tan−1

(
a2

z
√
2a2 + z2

)
k̂+

σ

πε0
tan−1

(
a2

(d− z)
√

2a2 + (d− z)2

)
k̂.

Since z < d in between the two plates, z << a and d− z << a. Thus,

E =
σ

πε0
· π
2
k̂+

σ

πε0
· π
2
k̂ =

σ

ε0
k̂.

(e) The potential difference between the two plates is

V = −
ˆ bottom plate

top plate
E · dr =

ˆ d

0

σ

ε0
dz =

σd

ε0
.

(f) Based on the previous result,

C =

∣∣∣∣4σa2V

∣∣∣∣ = ε0(4a
2)

d
.
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The capacitance only depends on the dimensions of the plates (e.g. 4a2

is the area of a plate and d is the separation between the plates). It is

independent of the total charge on each plate and the potential difference

between them.

20. Electric Field due to Spherical Sections**

To determine the component of electric field at the center of the original

sphere along an arbitrary z-direction, due to the charges distributed over

the curved surface of a spherical section, place an imaginary unit charge at

the center. The required quantity is simply the negative of the z-component

of the force that this unit charge exerts on the spherical section. Observe

that since the unit charge is located at the center, the force that it exerts on

each infinitesimal surface element on the spherical section is equal and radial

in direction, the unit charge effectively engenders a pressure p = σ
4πε0R2 over

the surface of the spherical section, where R is the radius of the sphere such

that 1
4πε0R2 is the electric field due to the unit charge at the surface of the

sphere.

Figure 5.18: Force on an infinitesimal area

Now, consider the force that the unit charge exerts on an infinitesimal

area located at an angular coordinate θ from the positive z-axis in Fig. 5.18.

The z-component of this force is pdA cos θ but dA cos θ is simply the pro-

jection of the infinitesimal area onto the equatorial plane perpendicular to

the z-axis! Therefore, the total z-component of the force exerted by the unit

charge on the surface of a spherical section is p multiplied by the projection

of the surface onto the equatorial plane.

For a spherical cap, define the positive z-axis to point from the center of

the sphere to its vertex. The projection of the spherical cap onto the equa-

torial plane perpendicular to the z-axis (the xy-plane) is simply a circle of

radius a, where a = R sinα is the base radius of the spherical cap. Therefore,

the z-component of the force that the unit charge exerts on the cap (which
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actually constitutes the net force due to symmetry) is

Fz = p · πR2 sin2 α =
σ sin2 α

4ε0
,

which implies that the electric field at the center of the sphere due to the

spherical cap is σ sin2 α
4ε0

in the negative z-direction. The electric field due to a

hemispherical surface charge is then obtained from substituting α = π
2 into

the above expression.

Ehemi =
σ

4ε0
.

To determine the electric field at the center due to a spherical wedge, notice

that a hemisphere can be formed by congealing two spherical wedges of

half-angles α and π
2 − α, as shown in Fig. 5.19.

Figure 5.19: Electric field due to hemisphere composed of two wedges

The electric fields produced by each spherical wedge must be along its

line of symmetry. Therefore, the individual electric fields of the two wedges

at the center must be mutually perpendicular. Since, their vector sum yields

the electric field due to a hemisphere, the electric field strength at the center

due to the wedge of half-angle α must be

Ewedge1 = Ehemi sinα =
σ sinα

4ε0

and is directed along the symmetrical axis of the wedge, towards the center.

21. Equilateral Triangle**

(a) Applying the result that we have previously derived for a finite line

charge, the electric field due to a line charge of length L and charge density

λ along a symmetry axis perpendicular to the line is given by

λL

4πε0r
√

L2

4 + r2
,

where r is the perpendicular distance between the point of concern on the

symmetry axis and the center of the line. Returning to the original problem,
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suppose that the 2λ line charge is oriented along the y-axis (centered about

the origin) while the other two rods are in the positive x-region. Since this

set-up is symmetric about the x-axis, the net electric field at the centroid is

solely along the x-direction. Noting that the perpendicular distance between

an edge of the triangle and its centroid is
√
3L
6 , the electric field at the

centroid is

E =
2λL

4πε0 ·
√
3L
6

√
L2

4 + L2

12

− 2 · λL

4πε0 ·
√
3L
6

√
L2

4 + L2

12

cos 60◦ =
3λ

2πε0L
.

(b) Performing the negative line integral of the electric field along the sym-

metry axis perpendicular to the line charge from infinity to r, the electric

potential at a point on the symmetry axis a perpendicular distance r from

the line charge is

V = −
ˆ r

∞

λL

4πε0r
√

L2

4 + r2
dr.

Adopting the substitution r = L
2 tan θ and dr = L

2 sec2 θdθ,

V = −
ˆ tan−1 2r

L

π
2

λL

4πε0 · L2 tan θ · L2 sec θ
· L
2
sec2 θdθ

= −
ˆ tan−1 2r

L

π
2

λ

2πε0 sin θ
dθ

=

[
λ

2πε0
ln | csc θ + cot θ|

]tan−1 2r
L

π
2

=
λ

2πε0
ln

(√
1 +

L2

4r2
+
L

2r

)
.

Therefore, the net potential at the centroid due to the three line charges is

V = 4 · λ

2πε0
ln

(√
1 +

L2

4 · L2

12

+
L

2 ·
√
3L
6

)
=

2λ

πε0
ln(2 +

√
3).

(c) Recall from Problem 10 of this chapter that the electric field at an arbi-

trary point P due to a finite line charge with uniform linear charge density

λ bisects the angle formed by joining the ends of the line charge to P. It is
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of magnitude

E =
λ

2πε0h
sin θ,

where θ is half of the angle formed by joining the ends of the line charge to

P and h is the perpendicular distance between P and the line charge. It is

natural to check if the net electric field is zero at a point on the symmetry

axis of the charge distribution.

Figure 5.20: Point corresponding to angle α

Referring to Fig. 5.20, for the electric field at a point corresponding to

angle α to be zero,

2λ

2πε0 · L cosα
2 sinα

sinα = 2 · λ

2πε0 · L sin(α−30◦)
2 sinα

sin
α

2
cos

α

2

=⇒ sin2 α

cosα
=

sin2 α

2 sin(α − 30◦)
,

cosα = 2 sin(α− 30◦) =
√
3 sinα− cosα

=⇒ cotα =

√
3

2
.

Observe that the perpendicular distance between the 2λ line charge and this

point is

x =
L

2
cotα =

√
3L

4
,

which is exactly halfway along the perpendicular bisector of the 2λ line

charge. Another perspective is as follows: suppose we center our origin at

the midpoint of the perpendicular bisector of the 2λ line charge.

Observe that the perpendicular distances to the 2λ and λ line charges are

x =
√
3L
4 and x

2 =
√
3L
8 in Fig. 5.21. Recall that in our solution to Problem 5,

we showed that a segment along a line charge with uniform linear charge
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Figure 5.21: Segment with angular width dφ

density λ that spans an angular width dφ produces an electric field at the

origin of magnitude

dE =
λ

4πε0h
dφ

where h is the perpendicular distance between the line charge and the origin.

Most notably, this value is independent of the angular coordinate φ of the

infinitesimal segment. Therefore, the electric field strengths of all infinitesi-

mal segments with angular width dφ on the three line charges at the origin

are identical (for the 2λ line, the doubling of charge density is perfectly can-

celed by the doubling of the perpendicular distance from the origin). As the

angular coordinates of the infinitesimal segments on the three line charges

span all 2π radians, the net electric field at the origin is the superposition

of a vector of constant magnitude rotated over 2π radians — resulting in

zero net electric field at the origin. Incidentally, this analysis also paves a

way to extend our analysis for the general case where one side of the triangle

is now k times the linear charge densities of the other sides (k > 0 so the

signs of the charges are identical). We simply have to find the point whose

perpendicular distance x to this particular side is k times the perpendicular

distance to the other two sides.

x(√
3L
2 − x

)
· sin 30◦

= k

x =

√
3k

2(k + 2)
L.

Finally, one can even apply this procedure to a general triangle formed with

sides of equal linear charge densities. The point with zero net electric field

is in fact the incenter of the triangle (the center of an inscribed circle) as

the perpendicular distances between the incenter and the three sides of the

triangle are identical (since they are equal to the radius of the inscribed

circle).
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22. Potential at Rim of Disk**

We will determine the potential at the top of the disk as shown in

Fig. 5.22, by adopting polar coordinates about this point (defined as the

origin).

Figure 5.22: Polar coordinates about point on rim

Define θ as the anti-clockwise angle between the position vector of a point

on the disk and the vertical and r as the radial distance from the origin.

Observe that since a triangle with a diameter as its hypotenuse inscribed in

a circle has a right-angle, r ranges from r = 0 to r = 2R cos θ across the

disk for a given θ. An infinitesimal rectangle of sides rdθ and dr at (r, θ)

contributes a potential σrdθdr4πε0r
= σ

4πε0
drdθ at the origin. Integrating over the

entire disk, the potential at the origin is

V =

ˆ π
2

−π
2

ˆ 2R cos θ

0

σ

4πε0
drdθ

=

ˆ π
2

−π
2

σR

2πε0
cos θdθ

=
σR

πε0
.

As a word of precaution, we cannot adopt limits of integration, similar to

those used in this problem, for any general distribution. This is because the

limits of integration may not be exact. For example, in this problem, there is

an excess portion when considering an infinitesimal rectangle near the edge of

the disk (shown in the figure above), as the perpendicular direction to a line
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joining the origin to an edge is not aligned with the tangent of the circle there.

This did not invalidate our answer as such deviations contribute to negligible

potential at the origin — however, this is not always true. For example,

suppose that we applied a similar method to compute the potential at an

arbitrary point P within a charged ring (one-dimensional distribution). The

above method would suggest that each segment of the ring, between angular

coordinates θ and θ + dθ about the origin at P, contributes to the same

amount to the potential at P as the length, and hence charge, of a segment

is proportional to its radial distance from P such that the charge over radial

distance is uniform across all segments. This ludicrous answer stems from

the fact that the inaccuracy in representing a ring in polar coordinates about

P is no longer negligible (because the charge of an infinitesimal segment is

proportional to a single infinitesimal length as opposed to the product of

two infinitesimal lengths in a disk).

Moving on, to determine the electric potential energy stored in the disk,

we can compute the external work done in assembling the disk by bringing in

progressively larger circular shells of radius r and thickness dr from infinity,

beginning from r = 0 to r = R. Since the potential at the rim of a disk

of radius r is σr
πε0

, the external work done in bringing a shell of radius r

and thickness dr (the next layer) to an already assembled disk of radius

r is

dW =
σr

πε0
· 2πrdr = 2σr2

ε0
dr.

The total external work done in assembling the disk this way, which is the

stored potential energy, is then

W =

ˆ R

0

2σr2

ε0
dr =

2σR3

3ε0
.

23. Potential at Vertex of Square**

Adopt polar coordinates (similar to the previous problem) about the tip of

the triangle of concern, as shown in Fig. 5.23.

Let θ denote the anti-clockwise angular coordinate of a point on the

triangle from the vertical and r denote its radial distance from the origin.

For a given θ, r ranges from r = 0 to r = h
cos θ along the triangle. Since

the contribution to the potential at the origin (the tip of concern) due to

an infinitesimal rectangle of sides rdθ and dr at (r, θ) is σdrdθ
4πε0

, the total
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Figure 5.23: Polar coordinates about tip

potential at the tip is

V =

ˆ α

−α

ˆ h
cos θ

0

σ

4πε0
drdθ

=

ˆ α

−α
σh

4πε0 cos θ
dθ

=
σh

2πε0
ln(secα+ tanα).

With regard to the second part of the problem, we first compute the potential

at the center of a square of edge length l and uniform surface charge den-

sity σ. Since the square is composed of four isosceles triangles with height l
2

and α = π
4 , the potential at its center is given by the principle of superposi-

tion as

Vcenter = 4 · σl

4πε0
ln(

√
2 + 1) =

σl

πε0
ln(

√
2 + 1).

To determine the potential at a corner, we can use scaling arguments. Firstly,

the potential at the center of a square of edge length 2l and the same charge

density σ must be twice that of a square of edge length l since its charge is

larger by a factor of four while its length dimension is increased by a factor

of two (the potential is proportional to charge over a length dimension).

Next, the potential at the center of a square of edge length 2l is composed

of the potentials of four squares of edge length l at a corner. Therefore, the

potential at the corner of a square of length l must be half of that at its

center.

Vcorner =
Vcenter

2
=

σl

2πε0
ln(

√
2 + 1).
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24. Force on Hemispheres**

Firstly, consider the special case where the sphere has a uniform charge

density ρ1. The electric field at a radius r from the center of the sphere, due

to the entire sphere of charge, is

E =
ρ1r

3ε0

by Gauss’ law. Though this electric field is due to both hemispheres, we can

simply integrate this electric field over the charge of one hemisphere since

a hemisphere evidently cannot exert a net force on itself. Define the z-axis

(in spherical coordinates) to pass through the vertex of the hemisphere that

we are considering. The magnitude of the force on an infinitesimal volume

element dV = r2 sin θdφdθdr at coordinates (r, φ, θ) in spherical coordinates

about the center of the sphere is

dq ·E = ρ1 · ρ1r
3ε0

· r2 sin θdφdθdr = ρ21r
3 sin θ

3ε0
dφdθdr.

The net force on this hemisphere should only be in the z-direction. Therefore,

we can simply integrate the z-component of the force on each infinitesimal

volume element. Multiplying the previous expression by cos θ (to retrieve the

z-component) and integrating over the entire hemisphere,

F =

ˆ R

0

ˆ π
2

0

ˆ 2π

0

ρ21r
3 sin θ cos θ

3ε0
dφdθdr

=

ˆ R

0

ˆ π
2

0

2πρ21r
3 sin θ cos θ

3ε0
dθdr

=

ˆ R

0

ˆ π
2

0

πρ21r
3 sin 2θ

3ε0
dθdr

=

ˆ R

0

[
−πρ

2
1r

3

6ε0
cos 2θ

]π
2

0

dr

=

ˆ R

0

πρ21r
3

3ε0
dr

=
πρ21R

4

12ε0
.

We claim that in the original situation where the southern hemisphere has

charge density ρ2 instead, the force is simply scaled by a factor of ρ2
ρ1
. The

net force between the northern and southern hemispheres is the sum of
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the forces between a charge on the northern hemisphere and a charge on

the southern hemisphere, performed over all possible pairs. Therefore, if

we scale each charge on the southern hemisphere shell by a factor of ρ2
ρ1

while preserving all relative distances in the system, the force between the

hemispheres should be scaled by a factor of ρ2
ρ1

since the force between two

charges is proportional to the product of their charges. Therefore, the force

between the two hemispheres given in the problem is

F =
πρ1ρ2R

4

12ε0
.

25. Two Hemispherical Shells***

Firstly, observe that there are actually two possible configurations where

the common center and the apexes of the shells are collinear. Let the forces

between the shells when they lie on the same and different sides of the

common center be F1 and F2 respectively. Now, consider the special case

where q = Q and duplicate the set-up to form two complete spherical shells

depicted in Fig. 5.24.

Figure 5.24: Forces on hemispherical shells

If we let FhR and Fhr be the forces between the hemispherical shells of

radii R and r respectively, the forces on each hemispherical shell are labeled

above. All forces must be directed along the horizontal direction due to the

symmetry of the shells. Firstly, observe that since the outer spherical shell

produces no net electric field inside itself, the net force that one inner hemi-

spherical shell experiences must be only due to the other inner hemispherical

shell and is hence Fhr. From this, we directly obtain

F1 = F2,

which shows that there was in fact no ambiguity in our question (even though

we are considering the special case for now, the above two forces will be
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scaled by the same amount when the inner hemispherical shell has charge q

instead). Next, the discrepancy between FhR and the net force experienced

by an outer hemispherical shell must be due to the electric field produced

by the inner spherical shell, which has a value of Q
2πε0R2 at the surface of the

outer spherical shell. This electric field produces an electrostatic pressure of
Q

2πε0R2 · Q
2πR2 = Q2

4π2ε0R4 on an outer hemispherical shell, where Q
2πR2 is its

uniform surface charge density. This pressure results in a horizontal force of
Q2

4π2ε0R4 · πR2 = Q2

4πε0R2 on an outer hemispherical shell. Thus,

F1 + F2 =
Q2

4πε0R2
.

Combining the two equations,

F1 = F2 =
Q2

8πε0R2
.

To revert to the original situation where the inner hemispherical shell carries

charge q, simply observe that the force between two charges is proportional

to the product of the two charges. The net force between the outer and

inner hemispherical shells is the sum of the forces between a charge on the

outer shell and a charge on the inner shell, performed over all possible pairs.

Therefore, if we scale each charge on the inner shell by a factor of q
Q while

preserving all relative distances in the system, the force between the hemi-

spherical shells should be scaled by a factor of q
Q as well. Therefore, returning

to the configuration given in the problem,

F1 = F2 =
Qq

8πε0R2
.

This result is surprising in that not only are the forces in the two possible

configurations equal, their magnitudes are independent of the radius r of the

inner hemispherical shell!
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Chapter 6

Conductors and Dielectrics

The previous chapter analyzed configurations of charges in vacuum.

Proceeding with our study of electrostatics, this chapter will explore how

the laws of electrostatics can be applied to conducting and dielectric media.

6.1 Properties of Conductors

Conductors are generally a difficult class of problems to study. Charge car-

riers, such as ions and electrons, are free to move within a conductor. Con-

sequently, when a conductor is placed in the presence of an external electric

field, the charge carriers will redistribute themselves. The redistribution of

these charge carriers in the conductor will then produce their own electric

fields which then, again, affect the positions of the charge carriers. Ulti-

mately, we will need to know the positions of the charge carriers to deter-

mine the net electric field everywhere, but we also need to know the net

electric field in order to identify the positions of the mobile charges within

the conductor — rendering this problem seemingly intractable.

Important Properties

Thankfully, we have the following properties of conductors which slightly

simplify such problems. When the charges of a conductor, that are under

the sole influence of electrostatic forces, have attained equilibrium,

(1) The net electric field E = 0 everywhere inside a conductor. Note that

the net electric field E comprises both the external field and the field

due to the conductor.

(2) The net charge density, ρ, inside a conductor is zero. ρ = 0. Thus, any

net charge on a conductor resides on its surface.

(3) At any point immediately outside the conductor, the electric field E is

perpendicular to the surface of the conductor there.

337
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(4) The surface of a conductor is an equipotential surface. Since E = 0

inside the conductor by property 1, the electric potentials of the surface

and of regions inside the conductor are the same as the line integral of

the electric field between any two points of the conductor is zero. Then,

the potential is uniform over the entirety of the conductor and is equal

to some value φ (we shall use φ to denote the potential of a conductor

instead of V , which will be used more generally).

Even when there are external charges, the charge carriers in the conduc-

tor will always redistribute themselves until the four conditions above are

satisfied. Of course, this is assuming that the charge carriers do not experi-

ence any other non-electrostatic force, such as gravity (which is negligible).

In this chapter, conductors are assumed to be ideal such that their charges

instantaneously redistribute themselves to attain equilibrium. Furthermore,

it is usually implicitly assumed that an electrostatic situation is achievable

such that charges of conductors are perpetually in equilibrium.

Proof:

(1) If E �= 0 inside a conductor, charge carriers will continue to move and

thus contradict the premise that a static situation has been reached.

This occurs even if there is already no net charge density everywhere in

the conductor as the positive and negative charges in a conductor will

diverge in different directions. Thus, the net electric field E = 0 inside

a conductor.

(2) Drawing an infinitesimal Gaussian surface around a point inside the

conductor, the electric flux through this surface is zero as E = 0 inside

a conductor. Thus, the charge density ρ = 0 at that point by Gauss’

law. Repeating this procedure for all points within a conductor, ρ = 0

at all points inside a conductor (but not necessarily at the surface as a

portion of the Gaussian surface would lie outside the conductor).

(3) Similar to (1), if a tangential component of electric field exists imme-

diately outside the surface of a conductor, surface charges will begin

to move tangentially, in contravention of the electrostatic assumption.

Therefore, the electric field immediately beyond the surface of a conduc-

tor can only be perpendicular to it. Note that a perpendicular component

of electric field is permissible since the conductor is usually assumed to

be surrounded by a perfectly insulating material (e.g. vacuum) such that

no charge flows normally to it.

(4) Since the tangential component of the electric field is zero at the surface

of a conductor, the surface of a conductor must be an equipotential
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surface as a line integral of the electric field in the tangential direction

yields zero. Let the electric potential of the surface be φ0. Then, the

electric potential of the entire region inside the conductor is also φ0 as

E = 0 inside a conductor.

Problem: Two conducting spheres of radii r and 3r that are infinitely far

apart possess charges q and 2q initially. Their surfaces are then connected

by a conducting wire. When the system has reached an equilibrium, find the

final charge on each sphere.

Since the two conducting spheres are far away such that they are essen-

tially individual isolated systems, the charges on each sphere will be uni-

formly distributed over its surface (recall that there must be no net charge

anywhere inside a conductor by property 2). Since a uniform shell of charge

is identical to a point charge, commensurate with the total charge carried by

the shell, placed at its center for regions outside of the shell, the potential

at the surface of a uniform shell of radius R and total charge Q is equal to

the potential of a point located at a distance R from a point charge Q.

φ =
Q

4πε0R
.

When the system eventually reaches its final equilibrium state, the electric

potential at the surfaces of both conducting spheres must be the same by

property 4 as the wire is a conductor. If we let the final charge on the

sphere of radius r be x, the final charge on the other sphere is 3q− x by the

conservation of charge. Equating the two electric potentials,

x

4πε0r
=

3q − x

4πε0 · 3r

x =
3

4
q

3q − x =
9

4
q.

Surface Charge and Pressure on a Conductor

Suppose that we know the electric field strength E directly outside an

infinitesimal surface of a conductor at equilibrium (E must only have a

normal component). Then, applying Eq. (5.11) which governs the change in

electric field across an interface, yields the surface density σ of the infinites-

imal surface.

σ = ε0E (6.1)
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since the electric field strength inside a conductor at equilibrium is zero.

The electrostatic pressure on the surface of a conductor is then given by

Eq. (5.12) as

P =
σ(E + 0)

2
=

σ2

2ε0
=

1

2
ε0E

2. (6.2)

The last expression bears a stark resemblance to the energy density asso-

ciated with an electrostatic field, but this is merely a natural consequence.

Suppose that an infinitesimal surface dA, at which the surface electric field

was originally E, was pushed outwards by the electrostatic pressure for a

distance dx such that the volume that the conductor occupies increases by

dV . The work done by the conductor is PdV and must be equal to the

decrease in potential energy of the conductor. The latter is just 1
2ε0E

2dV as

the electric field E, which was originally present in the volume dV , vanishes

after the conductor expands (remember that the electric field must be zero

within a conductor). Equating the two, P = 1
2ε0E

2.

6.2 The Uniqueness Theorems

It is beneficial to ponder the clues that one requires to uniquely define a

potential function or electric field in a region of space. The rationale behind

this is that if we are able to identify such conditions, we can guess a potential

function or electric field that satisfies them and conclude that we have the

right answer (since the answer is unique), instead of tackling the seemingly

intractable problems with conductors head-on. In other words, we are looking

for an avenue that enables us to solve a problem through trial-and-error.

A uniqueness theorem specifies the required constraints that guarantee a

unique solution to the potential function or electric field in a volume, given

that the electric field is consistent with the charge distribution inside the

region of interest (i.e. Gauss’ law holds for the proposed potential function

or electric field). The pivotal components, that our ensuing development of

two uniqueness theorems is predicated upon, are the following two theorems.

Theorem: In a region of space free of net charges, the electric potential has

no local maximum or minimum. Then, maxima and minima can only exist

at the boundaries of this region.

This theorem is basically another way of expressing Earnshaw’s Theorem.

If a local maximum or minimum exists respectively, a negative or positive test

charge placed there will lie in a state of stable equilibrium (as the electric field

is the negative potential gradient). Therefore, Earnshaw’s Theorem forbids
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the existence of local maxima and minima inside a region empty of charges.

The converse is also easy to prove as the lack of local maxima or minima

precludes the existence of a stable equilibrium. This theorem is therefore

equivalent to Earnshaw’s Theorem.

The second important theorem is known as Green’s reciprocity theorem.

Theorem: Let the volume charge densities and potential functions of two

arbitrary, separate charge distributions (that do not even need to lie in

the same region and may come from two completely different problems) be

ρ1(x, y, z), ρ2(x, y, z) and V1(x, y, z), V2(x, y, z), under the same coordinate

system. Then,

˚
ρ1V2dΩ1 =

˚
ρ2V1dΩ2 (6.3)

where dΩ1 and dΩ2 represent infinitesimal volume elements in the first and

second set-ups respectively. The integrals are performed over the entirety of

the charge distributions of the first and second configurations.

Proof: The proof of this seemingly complex theorem is remarkably simple!

Suppose that we place the two charge distributions in the same region. Then,˝
ρ1V2dΩ1 is the total electric potential energy of the charges in the first

set-up due to those in the second set-up, when the charges in the second set-

up are fixed. Note that
˝

ρ1V2dΩ1 does not include the potential energy

due to the internal interactions between the constituents of the first set-up.

Similarly,
˝

ρ2V1dΩ2 is the total electric potential energy of the charges in

the second set-up due to those in the first set-up, when the charges in the

first set-up are fixed. These two expressions must obviously be equal as the

potential energy of a charge qi located at a distance rij away from another

fixed charge qj is
qiqj

4πε0rij
— this is identical to the potential energy of qj

when qi is fixed as well, since the expression is symmetric in qi and qj .

Below is a trivial application of Green’s reciprocity theorem that yields

an astonishing result!

Problem: Suppose we have two arbitrary conductors that are initially neu-

tral, placed at arbitrary locations. If we put q amount of charge on conductor

1, the potential of conductor 2 is φ21. If we instead put q amount of charge

on conductor 2, the potential of conductor 1 is φ12. Show that φ12 = φ21.

Let the set-ups 1 and 2, that we will apply Green’s reciprocity theorem to,

be those when q amount of charge resides on conductors 1 and 2 respectively

(while the other neutral conductor is also present). Since the potential of a

conductor is uniform throughout it, applying Green’s reciprocity theorem to
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these set-ups implies that

qφ12 = qφ21

as
˝

ρ1V2dΩ1 produces qφ12 over the volume of conductor 1 in set-up 1

and zero over the volume of conductor 2 in set-up 1 due to its neutrality.

A similar logic holds for set-up 2. Thus,

φ12 = φ21.

This result is truly astounding as we have not specified anything about the

shapes or locations of the conductors! Returning to our main topic, we have

the following two uniqueness theorems.

6.2.1 First Uniqueness Theorem

Theorem: Specifying the potential at the boundaries of a volume Ω and

the charge density ρ(x, y, z) inside Ω uniquely determines the electric field

E(x, y, z) and potential V (x, y, z) inside Ω. Certain boundaries can also be

taken to be at infinity where the potential is 0 by definition.

Proof: To start off, we identify the imposed constraints on the potential

function V (x, y, z) (we only consider the potential function for now as the

electric field can be later computed as E = −∇V ) in the volume Ω. Let the

imposed potential at the boundaries of Ω be Vb(x, y, z). Firstly, the electric

field associated with V (x, y, z) must be consistent with ρ(x, y, z) (i.e. Gauss’

law is valid for all possible Gaussian surfaces within Ω). Next, V (x, y, z)

must correspond to the potential Vb(x, y, z) at the boundaries of Ω. Now,

suppose that V (x, y, z) is not unique under such circumstances such that

another function V ′(x, y, z) also satisfies the above constraints.

Observe that −V ′(x, y, z) must be a valid solution1 in the volume Ω with

charge density −ρ(x, y, z) and boundary potential −Vb(x, y, z). Superposing
the set-ups involving V (x, y, z) and −V ′(x, y, z), V (x, y, z)−V ′(x, y, z) must

be a valid solution in the volume Ω with zero charge density everywhere

and a uniform zero potential at its boundaries. Since the boundaries of the

volume Ω have zero potential and since the only maxima and minima can

be located at the boundaries of Ω by the previous theorem (there is now no

net charge inside Ω after the superposition), the potential inside Ω must be

1We can only claim that it is a solution but not the solution.
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zero everywhere. Therefore,

V (x, y, z) − V ′(x, y, z) = 0

V (x, y, z) = V ′(x, y, z)

which shows that the solution V (x, y, z), and thus the electric field −∇V
associated with it, is unique.

Corollary: In a region, devoid of net charges, whose boundaries have a

uniform potential V0, the electric field is zero everywhere inside the region.

The potential function V = V0 everywhere within the region satisfies the

boundary condition and is consistent with Gauss’ law (as there is no net

charge everywhere). Therefore, this must be the correct solution as guaran-

teed by the first uniqueness theorem. This uniform potential function then

implies that the electric field is zero everywhere in the region.

6.2.2 Second Uniqueness Theorem

Theorem: In a volume Ω surrounded by conductors, specifying the total

charges (and not the distribution of charges) on the conductors, and the

charge density ρ(x, y, z) inside Ω uniquely determines the electric field

E(x, y, z) (and not necessarily the potential) inside Ω. The outer bound-

ary of Ω can be taken to be infinity (where the total charge is zero) if Ω

is not enclosed by a conductor. That said, even though the potentials of

the conductors are not specified, the conductors must still be individually

equipotential.

Proof: Suppose that we have a solution for the electric field E(x, y, z). Let

there be N boundary conductors and let the total charge on the ith conduc-

tor be specified as Qi. The imposed conditions are the facts that E(x, y, z)

must satisfy Gauss’ law applied to any Gaussian surface surrounding the

charge distribution ρ(x, y, z) in Ω, produce the correct total charge on each

conductor Qi (when Gauss’ law is applied to the surface of each conductor)

and be normal to the surfaces of the conductors (by property 3 of con-

ductors). Due to the last requirement, the potential of the ith conductor,

associated with the solution E(x, y, z), must be some φi uniform across the

entire conductor.

Now, suppose that another electric field E′(x, y, z) satisfies the afore

constraints and produces a uniform potential φ′i on the ith conductor. Note

that φ′i is not necessarily equal to φi as the imposed condition only requires

the conductors to be separately equipotential (the potential on each con-

ductor is not specified such that any uniform potential would do). Then,
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−E′(x, y, z) would be a valid solution for the electric field inside Ω with

charge density −ρ(x, y, z), when the ith conductor possesses total charge

−Qi. The field −E′(x, y, z) also causes the ith conductor to have poten-

tial −φ′i. Superposing this with the original set-up, E(x, y, z) − E′(x, y, z)
must be a valid solution for the electric field inside Ω with zero net charge

density everywhere and when the conductors each carry zero total charge.

Note that each conductor may not be neutral at all points on its surface as

σ = ε0(E −E′) and the whole point of our exercise is to accommodate the

possibility of E(x, y, z) �= E′(x, y, z). However, each conductor must still be

neutral overall as E(x, y, z) and E′(x, y, z) produce the same total charge on

each conductor by proposition. Due to this superposition, the ith conductor

now has a uniform potential φi − φ′i.
We shall now prove that φi−φ′i = 0 for all conductors by applying Green’s

reciprocity theorem to two wisely-concocted set-ups. Set-up 1 shall be the

superposed set-up highlighted in the previous paragraph. As for set-up 2, we

choose the configuration of the same N conductors when the jth conductor

has a certain non-zero total charge q′′j and when all other conductors have

zero total charge. Applying Green’s reciprocity theorem to these set-ups, the

left-hand side yields

˚
ρ1V2dΩ1 = 0.

The reason behind this is that when performing the above integral over the

ith conductor, its contribution to the final result is simply its total charge

in set-up 1 multiplied by its potential in set-up 2 since the potential of a

conductor must be uniform (such that the integral becomes trivial). Since the

total charges of all conductors are zero in set-up 1, the above integral must

yield zero. Now, we proceed with the right-hand side of Green’s reciprocity

theorem.

˚
ρ2V1dΩ2 = q′′j (φj − φ′j).

The only contribution to the above integral is the jth conductor as all other

conductors have zero total charge in set-up 2. Since the jth conductor has

total charge q′′j in set-up 2 and potential φj −φ′j in set-up 1, its contribution

is q′′j (φj − φ′j). Equating the two sides of Green’s reciprocity theorem, we

must have

φj − φ′j = 0,
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as q′′j �= 0. Repeating this argument for all conductors, we must have

φi − φ′i = 0 for all 1 ≤ i ≤ N . This result dictates that for the super-

posed set-up, the boundary of Ω has zero potential while Ω contains no net

charge everywhere. Applying the previous corollary established from the first

uniqueness theorem (or the fact that the potential maxima and minima can

only occur at the boundaries of a region free of net charges), the electric field

in the superposed set-up must be zero everywhere! That is,

E(x, y, z) = E′(x, y, z).

Now, in our above proof, we implicitly adopted the convention that the zero

reference point for the potential function is set at infinity (this was assumed

in the derivation of Green’s reciprocity theorem). However, the above result

E(x, y, z) = E′(x, y, z) should be valid even when the zero reference point is

defined at some other location, such that the potential at infinity becomes

some constant V0, as adding a constant value V0 to the potential everywhere

will not change the potential gradient and hence the electric field. Therefore,

in the general case of an arbitrary zero reference point, it is the electric field

in Ω that is uniquely defined and not the potential function. However, once a

zero reference point has been decided, the potential function will be uniquely

defined too.

An Example Application of the Uniqueness Theorems

To catch a glimpse of the potency of these uniqueness theorems, consider a

system comprising a spherical conductor with an arbitrary cavity in it. The

conductor is neutral and electrically isolated. Inside the cavity lies a fixed

charge q which is not necessarily at the center of the sphere, O. We would

like to find the electric field at a point P that is a radius r from the center

of the sphere, outside the sphere.

q is assumed to be positive in Fig. 6.1 for illustration purposes, but it

can be either positive or negative in the general case. Because of the charge

q in the cavity, we would intuitively expect a net charge2 of the opposite

sign to be attracted to the inner surface of the conductor. We can prove

that a total charge of −q resides on the inner surface of the conductor by

drawing a Gaussian surface as shown above in the dotted lines. The electric

flux through it is zero as E = 0 inside a conductor. Thus, the total charge

2We cannot say anything about the charge distribution on the inner surface (e.g. whether
the surface charge density is negative everywhere) but we would anticipate that the total
charge on the inner surface is of opposite sign.
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Figure 6.1: Spherical conductor with cavity

enclosed by the Gaussian surface must be zero — implying that −q net

charge resides on the inner surface. As the conductor is neutral, there must

be q amount of net charge deposited at the outer surface of the sphere by

the conservation of charge.

We now claim that this q amount of net charge must be evenly distributed

over the outer surface and shall prove this by construction. Suppose that we

remove this q amount of net charge on the exterior surface and allow the sys-

tem to equilibrate. In the new equilibrium state, the electric field must still

be zero inside the conductor. −q net charge resides on the inner surface while

the outer surface is neutral overall. We further assert that the electric field is

also zero everywhere outside the conductor. Well, this satisfies the boundary

condition that the total charge on the outer surface of the conductor is zero

and that the outer surface is equipotential. Therefore, this must be the cor-

rect electric field by the second uniqueness theorem! Applying Eq. (6.1) to the

electric field at the outer surface, we conclude that not only must the outer

surface be neutral overall, all points on the outer surface must be neutral!

Following from this, we can now slowly return the q amount of charge that

we had extracted, in small amounts at a time. Since these charges experience

no net electric field, due to the charge q in the cavity and the −q net charge

residing on the inner surface, they will distribute themselves in a spherically

symmetric manner. Another way of reaching this conclusion is to assert

that this distribution (superposed on the previously neutral outer surface)

satisfies the boundary condition that the outer surface is equipotential and

has total charge q, after which the second uniqueness theorem and Eq. (6.1)

can be applied again.

Since the charges on the inner surface and the cavity produce no net

electric field outside of the cavity, the electric field outside the conductor is
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only due to the uniformly distributed charge q on the exterior surface of the

conductor. This is effectively the electric field of a uniform spherical shell,

centered about O and with charge q, which is

E =
q

4πε0r2

at a radial distance r from O, by Gauss’ law. Therefore, the electric field

at point P due to the entire set-up is given by the above expression and is

directed radially outwards from the center of the spherical conductor, O.

To recapitulate, notice that in this particular case, the −q charge on the

inner surface redistributes itself such that the net effect of the fields due to

the induced charge −q and the enclosed charge q (this does not include the

field due to the charges on the outer surface) cancel everywhere beyond the

inner surface! Furthermore, the distribution of the total charge q on the outer

surface is independent of what is going on inside the conductor! Overall, the

electric field due to this set-up is equivalent to the electric field due to a

concrete conducting sphere of charge q, in the region beyond the cavity!

6.2.3 Electrostatic Shielding

The above results lead us to very general conclusions. In the most general

configuration, a conductor can have an arbitrary number of cavities that

each enclose an arbitrary charge distribution. The conductor may be electri-

cally isolated (similar to the previous problem) or maintained at a constant

potential relative to infinity. Moreover, certain fixed external charges can

also be placed outside of the conductor. Even under such broad circum-

stances, we claim that for a cavity C in a conductor which encloses a certain

amount of total charge q, the combined electric field generated by the induced

charges3−q on the surface of the cavity and the enclosed charges is zero in

the region outside of the cavity. We can prove this by construction.

Electrically Isolated Conductor

For an electrically isolated conductor, suppose that we remove the induced

and enclosed charges (of total charges −q and q) in cavity C and patch up

cavity C with conducting material while maintaining the charges at the sur-

faces of the rest of the conductor (there could be other cavities as well) and

the fixed external charges. Then, the remaining charges will redistribute

3Its total charge must be −q by Gauss’ law applied to a Gaussian surface straddling the
cavity.
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themselves until the electric fields inside the original conductor and the

region where cavity C was originally located are zero. However, the total

charges induced on the other cavities and the exterior surface of the con-

ductor must remain the same (by Gauss’ law applied to a surface straddling

each of the cavities, and the conservation of charge4 for the exterior surface).

Now, consider an isolated, separate set-up consisting of a thin conduct-

ing shell of the shape of cavity C, with a net charge −q, that encloses the q
amount of charge afore, with the same distribution. By Gauss’ law, for the

electric field within this shell to be zero, the inner surface must carry −q
amount of charge while the outer surface is neutral. Then, the electric field

in the region outside this shell is also zero by the second uniqueness theo-

rem as a null electric field satisfies the boundary conditions that the total

charge on the outer surface is zero and that the outer surface is equipotential

(this is essentially the same argument as the previous problem). Finally, the

superposition of these two set-ups (after carving cavity C again) guarantees

that the electric field in the conductor is zero everywhere in the original con-

ductor such that all boundaries of the conductor are equipotential and carry

the correct amount of charge. The second uniqueness theorem then guar-

antees that this superposition produces the correct electric field everywhere

(inside cavity C, in the other cavities, inside the conductor and outside the

conductor). Applying Eq. (6.1) to cavity C, the correct charge distribution

induced on cavity C must be the charge distribution on the inner surface of

the second set-up that we had considered! This is because the electric field

in the interior of cavity C is only due to the second set-up, even after the

superposition, as the first set-up produces no net electric field in cavity C

(as we had patched it up).

Therefore, the enclosed and induced charges of an arbitrary cavity pro-

duce no net electric field outside the cavity (since the second set-up didn’t).

Furthermore, the distribution of induced charges on the surface of the cav-

ity is independent of whatever is outside of the cavity — it is given by the

second set-up which evidently does not consider charges beyond the cavity.

In a certain sense, the exterior of the cavity is “shielded” from the interior

while the interior is also “shielded” from the external surroundings.

Conductor Maintained at Constant Potential

For a conductor maintained at a constant potential φ0 relative to infinity,

suppose that we remove the induced and enclosed charges of cavity C while

4In applying the conservation of charge, note that the net charge of the conductor
increases by q after we remove the induced charge −q in this process.
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maintaining the potential of the rest of the conductor (there could be other

cavities as well) and retaining the fixed external charges. Then, the remaining

charges in the conductor will redistribute themselves and possibly flow out

of the conductor to infinity until the potential is φ0 everywhere within the

conductor. We do not patch cavity C as it could change5 the total amount

of charge stored in this case (as charges may now flow into the conductor).

However, this does not change the fact that this first set-up produces zero

net electric field inside cavity C as a consequence of the corollary established

from the first uniqueness theorem (cavity C has a uniform potential φ0 in

this first set-up and encloses zero net charge everywhere as we had removed

all of it).

Next, consider a separate set-up identical to the second set-up in the pre-

vious section. Since there is no electric field outside of the shell, the poten-

tial everywhere outside of the shell, due to the shell, is zero. Therefore, the

superposition of the two mentioned set-ups produce potential φ0 everywhere

within the conductor, outside the cavity C. This satisfies the boundary con-

dition that the potential is φ0 over all surfaces of the conductor — implying

that this superposition must yield the correct potential and electric field

everywhere (inside cavity C, in the other cavities, inside the conductor and

outside the conductor) by the first uniqueness theorem.

Similar to the previous scenario, the electric field within cavity C is only

due to the second set-up — implying that the distribution of the induced

charges on cavity C is also given by the second set-up (independent of the

charges exterior to C). Consequently, the induced and enclosed charges of an

arbitrary cavity must produce zero net electric field outside the cavity (like

the second set-up).

Exterior Surface of the Conductor

With these facts in mind, what can we say about the distribution of charges

on the exterior surface (the surface that is not a cavity) of both an electrically

isolated conductor and one maintained at a constant potential relative to

infinity?

For an electrically isolated conductor, suppose that the entire conductor

possesses a total charge Qtot and encloses Q amount of total charge, dispersed

over an arbitrary number of cavities. A total of −Q amount of charge will

5Intuitively, a conductor of a larger volume should be able to contain more charge for the
same potential as it can spread the charges stored by a smaller conductor into the excess
volume and hence reduce the overall potential — allowing for more charges to flow in.
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be induced on the surfaces of the cavities which leaves Qtot+Q amount of

charge for the exterior surface. As the electric field produced by the charges

enclosed in the cavities and the induced charges is zero, the distribution of

the Qtot +Q amount of charge on the exterior surface is independent of the

positions of the charges inside the cavities and the shapes and sizes of the

cavities. The distribution is equivalent to that due to a concrete conduc-

tor with no cavities that carries Qtot + Q amount of charge on its surface.

Therefore, the distribution of charges on the exterior surface, compounded

with the external charges, also leads to zero electric field inside the volume

bounded by the exterior surface (including the cavities) by themselves. The

exterior surface would think that the conductor is filled up while the Qtot+Q

charges, that it carries, redistribute themselves. This redistribution occurs

until these charges produce an electric field that cancels the electric field due

to the external charges outside of the conductor, everywhere in the volume

bounded by the exterior surface.

Similarly, for a conductor maintained at a constant potential φ0, the

amount and distribution of charges on the exterior surface are independent

of the cavities and the charges enclosed by them, as the induced and enclosed

charges of the cavities produce zero electric field outside them (and thus no

contribution to potential). The charge distribution on the exterior surface is

equivalent to that due to a concrete conductor with no cavities that is main-

tained at φ0 in the same external environment. Therefore, the distribution

of charges on the exterior surface, compounded with the external charges,

also leads to zero electric field inside the volume bounded by the exterior

surface (including the cavities) by themselves. The charges on the exterior

surface will vary in amount and location until the conductor acquires a uni-

form potential φ0, while taking into account the influence of the external

charges.

Properties of Electrostatic Shielding

We summarize the important results above as follows:

(1) The total induced charges on the surface of a cavity is the negative of the

charge that it encloses by Gauss’ law. The total charge on the exterior

surface of a conductor can then be determined by the conservation of

charge if the conductor is electrically isolated.

(2) The enclosed and induced charges in a cavity produce no net electric

field outside the cavity.

(3) The distribution of induced charges on the surface of the cavity is inde-

pendent of the charges outside the cavity.
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(4) The combination of the charges on the exterior surface of a conductor

and the external charges produces zero net electric field within the region

bounded by the exterior surface, including the cavities.

(5) The distribution of the exterior charges of a conductor is independent of

the positions of the charges inside the cavities and the sizes and shapes

of the cavities. It is only dependent on the external charge distribution

outside the conductor.

(6) As a corollary of Property 2 and 4, the electric field in a cavity is solely

caused by the induced and enclosed charges of that particular cavity.

(7) As a corollary of Property 2, the potential of a conductor is only caused

by and dependent on the charges on the exterior surface and the charges

external to the conductor.

(8) As a corollary of Property 4, the potential difference, between a point in

a cavity and the conductor that contains it, is only due to the induced

and enclosed charges of that particular cavity.

These concepts are intricately weaved into the following problem.

Problem: In Fig. 6.2, Q amount of total charge is placed into arbitrary cav-

ities inside an electrically isolated, neutral spherical conductor of radius R.

It is known that a particular cavity is spherical with a radius r and that its

center is a distance d away from the center of the conductor. A point charge

q1 lies at the center of this cavity. If an external charge Q′ lies at a distance

l from the center of the sphere, determine the electric potential at the point

charge q1 due to all other charges at equilibrium. All enclosed charges and

Q′ are fixed and the center O of the conductor is not enclosed by a cavity.

Figure 6.2: Spherical conductor with arbitrary cavities
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A total charge −Q is induced on the cavities — implying that a total

charge Q resides on the exterior surface of the conductor. Similarly, −q1
charge is induced on the surface of the particular cavity highlighted in the

problem. The potential at q1 is the sum of the potential of the conductor and

the potential difference between the center of the cavity and the conductor,

both due to all charges besides q1.

The former can be computed by applying Property 7. Though we do not

know the exact distribution of Q over the exterior surface of the conductor,

we can consider the potential that they induce at the center O of the sphere.

Since all charges on the exterior surface are equidistant from the center,

they contribute Q
4πε0R

to the potential at O. This, in combination, with the

potential caused by Q′ causes the potential at O to be

φcond =
Q

4πε0R
+

Q′

4πε0l
.

This is the potential of the entire conductor as the conductor must be equipo-

tential at equilibrium. That said, this is the potential of the conductor due to

all charges, including q1 — we have to subtract this contribution. Consider

the potential at the surface of the particular cavity that encloses q1. The

contribution to the potential on this surface due to q1 is q1
4πε0r

. Therefore,

the potential on this surface due to all other charges is

V =
Q

4πε0R
+

Q′

4πε0l
− q1

4πε0r
.

Moving on, by Property 8, the potential difference between the center of the

cavity and the conductor due to all charges besides q1 is simply that due to

the induced charges on the surface of that cavity. By Property 3, the −q1
charges on the surface should be uniformly distributed — they then result

in zero electric field within the cavity and thus zero potential difference. As

such, we conclude that the potential at q1 due to all other charges is

V =
Q

4πε0R
+

Q′

4πε0l
− q1

4πε0r
.

6.2.4 Direct Construction of Solutions

The uniqueness theorems also enable us to directly construct a solution which

satisfies the prescribed boundary conditions, after which we can claim with

confidence that this must be the only and correct solution. A classic example

of this approach is provided below.

Problem: Determine the charge distribution on a thin conducting disk of

radius R that possesses a total charge Q.
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Firstly, we have to identify the appropriate boundary conditions and

choose the corresponding uniqueness theorem to apply. In this case, we can

exploit the fact — that the volume outside the disk is bounded by a con-

ductor (the disk) of total charge Q and infinity — to subsequently use the

second uniqueness theorem. Now, we simply have to construct an electric

field outside the disk that causes the disk to be equipotential (i.e. no com-

ponent of electric field in the plane of the disk) and possess total charge Q.

To this end, let us first consider a spherical shell of radius R and uniform

surface charge density σ0 =
Q

4πε0R2 .

Figure 6.3: Infinitesimal areas at angle θ from z-axis

Consider spherical coordinates about an arbitrary point P with an arbi-

trarily defined z-axis. Notice that the electric fields due to two infinitesimal

areas (in the same plane) between angles θ and θ + dθ anti-clockwise from

the positive and negative z-axes nullify each other. For example, consider

the two infinitesimal areas dA1 and dA2 with distances r1 and r2 from P,

as labeled in Fig. 6.3. The electric fields due to these areas are opposite in

direction and are of magnitudes σ0dA1

4πε0r21
and σ0dA2

4πε0r22
. Since dA1

dA2
=

r21
r22
, these

electric fields cancel out. This argument works for all infinitesimal areas on

the spherical shell about P and for all possible point P’s within the shell —

this is a geometric argument of why the electric field within a spherical shell

should be zero.

Now, consider the projection of areas dA1 and dA2 onto the equato-

rial plane (which we define as the disk) perpendicular to the z-axis while

maintaining their charges σ0dA1 and σ0dA2. Observe that these projections

must also produce zero electric field at P along the line joining them (and

hence zero component in the equatorial plane) as the charges that they carry

are still proportional to the squares of the projected distances dA1
dA2

=
x21
x22
.

Repeating this argument for all pairs of such areas on the spherical shell,

the component of the electric field at P in the equatorial plane must be
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zero. Since point P was chosen randomly, the electric field due to the charge

distribution obtained from the projection of the spherical shell onto the disk

ensures that the disk is equipotential and results in the right amount of

charge on the disk. Note that even though we performed the above argu-

ments with diametrically opposite areas, the upper hemisphere is projected

onto the upper surface of the disk and vice-versa for the lower hemisphere

(the above argument would still work if we consider corresponding areas

on the same hemisphere). Now, the second uniqueness theorem guarantees

that the electric field produced by this configuration is correct. Applying

Eq. (6.1), we can also assert that the charge distribution obtained from this

projection, which we shall now determine, is correct. Redefine the origin at

the center of the sphere and the z-axis to be perpendicular to the disk. Let

θ denote the angular coordinate that an area on the spherical shell makes

with the z-axis such that areas axially symmetric about the z-axis have the

same θ coordinate. When an infinitesimal area at coordinate θ is projected

onto the plane, the corresponding area on the plane is scaled by a factor of

cos θ but it carries the same charge. Therefore, the charge density on one

surface of the disk, at a radial distance r from its center, is

σ(r) =
σ0
cos θ

=
Q

4πR2
· R√

R2 − r2
=

Q

4πR
√
R2 − r2

,

which is valid for both upper and lower surfaces of the disk.

6.2.5 Image Charges

As a consequence of the uniqueness theorems, we can conjure an elegant

method that drastically simplifies set-ups with conductors whose charge dis-

tributions are tedious to determine. Specifically, we can invent imaginary

charges such that the electric field or potential of the system comprising the

original charges and these image charges fulfils the boundary conditions in

a region of interest imposed by the original system. This is known as the

method of image charges. By an appropriate uniqueness theorem, the elec-

tric field or potential of the original system in the chosen regions are identical

to that due to the new system that includes the image charges (since the

solution is unique)! Note that image charges cannot be inside the region of

interest as their presence will change the charge density inside the region

that we wish to apply the uniqueness theorems to. The following common

examples will elucidate this technique.

Problem: A point charge q lies at a height h above an infinitely large,

grounded conducting plane in Fig. 6.4. Find the electric field at the surface
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of the plane and the potential in the region above the plane. Then, determine

the surface charge density of the conducting plane, the total induced charge

residing on the plane and the potential energy stored in this system.

Figure 6.4: Charge above grounded conducting plate

This problem seems impossible to solve as it is difficult to directly deter-

mine the charge distribution on the surface of the conducting plane. However,

the method of image charges can be applied. We define the z-axis to be posi-

tive vertically upwards and choose the volume z ≥ 0 as our region of interest.

The boundary conditions for the first uniqueness theorem include the facts

that the electric potentials at the entire surface of the plane and infinity are

zero. We observe that these boundary conditions are easily satisfied if we

imagine a mirror charge of charge −q at a distance 2h directly below the

original charge. This reduces the original system to the “equivalent” system

in Fig. 6.5, for the regime z ≥ 0.

Figure 6.5: Equivalent system with image charge

The electric field and potential in the regime z ≥ 0 can then be computed.

The electric potential at a point (x, y, z) with z ≥ 0 is then

V =
q

4πε0

(
1√

x2 + yz + (z − h)2
− 1√

x2 + yz + (z + h)2

)
.

We emphasize that this is invalid for the region z ≤ 0 as we can only apply

the uniqueness theorem to z ≥ 0 (where the image charge is absent). The
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electric field at the upper surface of the conductor is

Ez(x, y) = 2 · −q
4πε0(x2 + y2 + h2)

· h√
x2 + y2 + h2

= − qh

2πε0(x2 + y2 + h2)
3
2

,

which means that the charge density σ(x, y) of the induced charges on the

upper surface of the conductor is

σ(x, y) = ε0Ez = − qh

2π(x2 + y2 + h2)
3
2

by Eq. (6.1). The total charge Q on the plane should be −q by intuition

as all of the field lines emitted by q should reach the upper surface of the

infinite plane. This can be proven rigorously by integrating the surface charge

density over the entire upper surface. The integral can be performed easily

in polar coordinates, centered about the origin O, such that x2 + y2 = r2

where r is the radial distance from O.

Q =

ˆ ∞

0

ˆ 2π

0
σrdθdr = −

ˆ ∞

0

qhr

(r2 + h2)
3
2

dr =

[
qh√
r2 + h2

]∞
0

= −q.

The potential energy of this system is trickier. One may be tempted to

directly say that the potential energy of this system is that between a pair

of charges q and −q separated by a distance 2h. This yields

Usys = − q2

8πε0h

which is wrong. The correct answer is in fact half of the above. It is best to

compute this by directly integrating the work done by an external force on

charge q in bringing it from infinity to its current position, without a change

in kinetic energy. Assuming that the conducting plane has reached steady

state at each juncture, the image charge is at a z-coordinate −z when the

real charge is at coordinate z. The electrostatic force on charge q due to the

induced charges in the conductor is

Felec = − q2

16πε0z2
.

Therefore, the work done by an external force in bringing q from infinity to

its current position, along a path aligned with the z-axis, without a change
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in kinetic energy is

Wext = −Welec =

ˆ h

∞

q2

16πε0z2
dz = − q2

16πε0h
.

This method also reveals the flaw in the previous reasoning. When the real

charge is brought closer to the plane, the image charge also moves closer

to the plane, but for free. It is analogous to how work must be done on

you to move you closer to the mirror but your image in a real-life mirror

moves at no expense of energy. However, the previous reasoning assumed

that work is also performed by an external agent in moving the image charge

to its final location — a phenomenon which is not true, as the physical

charges are already present on the surface of the conductor and redistribute

themselves spontaneously. An alternative perspective to this factor of half

can be obtained by applying the method of image charges to the region z ≤ 0.

The boundary conditions are simply that the potential is zero at z = 0 and

infinity. These can be readily satisfied by introducing an image charge −q
to nullify the original charge q such that the electric field is zero in z ≤ 0.

This must be the correct solution by the first uniqueness theorem. Then the

factor of half can be reasoned from the energy density of the electric field.

When we say that the potential energy is that between a pair of charges q

and −q separated by a distance 2h, we are assuming that the electric field

spans both z ≥ 0 and z ≤ 0. However, in reality, the electric field is present

in z ≥ 0 and zero in z ≤ 0 — leading to a factor of half. Incidentally, the

zero electric field in z ≤ 0 also implies that the surface charge density on the

lower surface of the plane is zero everywhere.

Problem: A charge q1 is held at a distance r from the center of a grounded

conducting spherical shell of radius R. Find the potential in the region exte-

rior to the conducting shell.

The appropriate image charge system here is not as obvious. However, it

never hurts to guess. If we coincidentally find a valid solution, it must be the

unique solution, assuming that we can apply a uniqueness theorem. Firstly,

we choose the region of interest to be the entire space, excluding the shell.

The boundary conditions are that the potentials at the shell and infinity

must be zero. It is then intuitive to guess an image charge along the line

joining the center of the shell to q1, exemplified by Fig. 6.6, as the system

is symmetric about this axis. Let the image charge have charge q2 and be

located at a distance a away from the center of the shell, in the direction

towards q1.
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Figure 6.6: Image charge in the sphere

For the new system, which includes the image charge, to satisfy the con-

straint that the surface of the shell is at zero potential, the new system must

first satisfy the condition that the potential at points P1 and P2 are zero.

This will enable us to easily determine q2 and a. Considering the electric

potential at point P1,

q2
R+ a

+
q1

R+ r
= 0.

Considering that at P2,

q2
R− a

+
q1

r −R
= 0.

Solving,

q2 = −R
r
q1, (6.4)

a =
R2

r
. (6.5)

Now we need to verify if these particular values of q2 and a satisfy the

boundary condition at all points on the surface of the shell. If this is true,

our initial guess regarding the geometry and orientation of the image charge

must be correct. Define the origin O at the center of the shell and consider

a point (x, y, z) on the surface of the shell. Its electric potential is given by

V = −R
r
q1 · 1

4πε0

√
x2 +

(
y − R2

r

)2
+ z2

+ q1 · 1

4πε0
√
x2 + (y − r)2 + z2
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= − q1R

4πε0r
√
R2 − 2R2

r y + R4

r2

+
q1

4πε0
√
R2 − 2ry + r2

= − q1

4πε0
√
R2 − 2ry + r2

+
q1

4πε0
√
R2 − 2ry + r2

= 0

where we have used the fact that x2 + y2 + z2 = R2. Thus, our guess was in

fact correct! The potential of a point (x, y, z) outside of the shell is then

V = − · q1R

4πε0r
√
x2 + (y − R2

r )2 + z2
+

q1

4πε0
√
x2 + (y − r)2 + z2

.

Note that this expression is again invalid in the region containing the mirror

charge (inside the shell).

There are myriad other variations of such problems involving image

charges. The only limit is our own imagination! Consider the following as

another example.

Problem: A grounded infinite conducting plane has a hemispherical bulge

of radius R, which is also made of conducting material, as shown in Fig. 6.7.

A charge q is placed a distance r > R above the center of the hemisphere.

Determine the force that q experiences.

Figure 6.7: Infinite plane with bulge

In this case, we have to conjure an image charge configuration that pro-

duces zero potential on the infinite plane with the bulge, in combination with

the original charge q. Suppose that we simply put an image charge −R
r q at

a distance R2

r above the center of the hemisphere. The hemispherical surface
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now has zero potential but the infinite plane does not. To rectify this loop-

hole, we further “reflect” the original charge q and image charge −R
r q about

the infinite conducting plane to form two more image charges −q and R
r q at

distances r and R2

r below the center of the hemisphere. Then, all boundary

conditions are fulfilled and the electric field due to this configuration above

the plane must be correct. The force on the original charge q (defined to be

positive towards the plane) is

F =
q · Rr q

4πε0

(
r − R2

r

)2 +
q2

4πε0(2r)2
− q · Rr q

4πε0

(
r + R2

r

)2
=

q2R3r

2πε0(r4 −R4)
+

q2

16πε0r2
.

6.3 Capacitors

For a single, isolated conductor, its uniform potential relative to infinity is

proportional to the total charge residing on its surface. If the surface charge

distribution on a conductor is doubled everywhere, the electric field due to

the conductor will double in the region outside itself. Note that the addi-

tional charges will not redistribute themselves, as twice the original elec-

tric field satisfies the boundary conditions required to apply the second

uniqueness theorem and must hence be the correct electric field. Since the

electric field is doubled everywhere, the potential of the conductor is also

doubled. An argument in the reverse direction can also be made to con-

clude that if the potential of the conductor is doubled, the total charge that

it carries is also doubled. It is therefore natural to define a characteristic

of a conductor that is independent of the total charge that it stores and

its potential. This description is known as the capacitance and is defined

as the total charge residing on a conductor per unit potential (relative to

infinity).

C =
q

φ
(6.6)

where q is the total charge carried by the conductor and φ is its potential

relative to infinity. Capacitance is an intrinsic quantity that is only dependent

on the geometry of the conductor and not its total charge or potential. The

capacitance is often measured in Farads (F ) where one farad is one Coulomb

over one Volt (qV −1).

Problem: Determine the capacitance of a metal sphere of radius R.
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To compute the capacitance of a set-up, we inject q amount of charge

to the conductor and find its resultant potential φ relative to infinity.

Afterwards, we can calculate the capacitance C as q
φ . In this case, when

q amount of charge is added to the metal sphere, it is distributed evenly

over its surface due to symmetry. Since the electric field of a spherical shell

of charge q is identical to that of a point charge q placed at its center

for regions outside of the shell, the potential at the surface of the metal

sphere is the potential of a point located a distance R away from a point

charge q.

φ =
q

4πε0R
.

The capacitance of the metal sphere is thus

C =
q

φ
= 4πε0R

which, as expected, is independent of q and φ.

Now, this notion of capacitance can be extended to a system of two

conductors — known as a capacitor. A capacitor is a component that stores

charge and electric potential energy when a potential difference is applied

across two ends. Conversely, a capacitor with stored charge can also act as

a battery that produces a potential difference.

For the rest of the chapter, we will assume that the two conductors in

a capacitor have equal amounts of charge of opposite signs. Firstly, this is

often what occurs in reality (some charge from one initially neutral conduc-

tor is transferred to another via a circuit). Secondly, we will often consider

capacitors where a conductor A encloses another conductor B (i.e. B lies in

a cavity of A). Suppose that the conductor B has a total charge q, −q net

charge must be induced on the inner surface of conductor A by Gauss’ law.

Even if some net charge Q resides on the exterior surface of conductor A, it

does not generate a potential difference between two points within conduc-

tor A as a consequence of electrostatic shielding (Property 4). Therefore, the

potential difference between conductor B and the inner surface of conductor

A is only dependent on the charge stored on either surface (which must be

equal in magnitude). In light of the above discussion, when we refer to the

charge of a capacitor, we actually mean the magnitude of charge on either

of the surfaces of the conductors that are adjacent.

Now, the definition of the capacitance C of a system of two conductors

is the amount of charge stored per unit potential difference between their
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adjacent surfaces and is a positive quantity.

C =
∣∣∣ q

ΔV

∣∣∣ . (6.7)

Note that since conductors at equilibrium are guaranteed to be equipotential,

the potential difference can be evaluated unambiguously across any pair of

points, each lying on a conductor in the capacitor system. The capacitance

measures the ability of a system to store charge and thus electric potential

energy. It is emphasized once again that the capacitance is solely an intrinsic

geometric quantity of the capacitor.

The most pervasive capacitor would be the parallel-plate capacitor illus-

trated in Fig. 6.8. Two large plates of area A are separated with a small

distance d in between them. Since the plate separation d is small, we can

regard the plates as infinite planes and assume that there are no fringe effects

(effects at the ends of the plates which cause the electric field to bend instead

of following a straight path from one plate to another).

Figure 6.8: Side view of a parallel-plate capacitor

To determine the capacitance of the parallel-plate system, place q charge

on one plate and −q charge on the other. The distribution of charges should

be uniform throughout each of the plates due to the “infinite nature” of the

plane. The plates then carry uniform surface charge densities σ = q
A and

−σ = − q
A . Each of the plates is basically equivalent to the infinite plane of

charge in Section 5.4.1. By Gauss’ law, the electric field due to one plate in

the region between the plates is

2Eplate ·A =
σA

ε0

Eplate =
σ

2ε0

where σ is the surface charge density on one plate. Thus, the total electric

field in the region between the two plates is a uniform value

E = 2Eplate =
σ

ε0
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as the electric fields of individual plates are mutually reinforced. In regions

outside of the gap, the electric field is zero as the effects of the two plates

nullify each other. Incidentally, this uniform field also implies that the outer

surfaces of the two plates are entirely neutral by Eq. (6.1) when the two

plates carry equal magnitudes of opposite charges. The charge distribution

when this condition is not satisfied is the subject of Problem 2 in this chapter.

Moving on, the potential difference between the two plates is

|ΔV | = Ed =
σd

ε0
.

Thus, the capacitance of the system is

C =
∣∣∣ q

ΔV

∣∣∣ = σA
σd
ε0

= ε0
A

d
. (6.8)

Problem: Find the capacitance per unit length of a system comprising a

long conducting cylinder of radius r1 and length L � r1 surrounded by a

concentric long cylindrical shell of radius r2 and equal length, depicted in

Fig. 6.9.

Figure 6.9: Top view of system

Let the cylinder possess charge q which is distributed uniformly across

its curved surface due to its axial symmetry and infinite nature. Then, we

can draw a concentric cylindrical Gaussian surface of an arbitrary length l

and an arbitrary radius r, r1 ≤ r ≤ r2, around the cylinder. Let the linear

charge density of the cylinder be λ = q
L . By Gauss’ law, the electric field at

a radius r from the central axis of the system is

E · 2πrl = λl

ε0

=⇒ E =
λ

2πε0r
.
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The potential difference between the shell and the cylinder is then

ΔV = −
ˆ r1

r2

λ

2πε0r
dr =

[
− λ

2πε0
ln r

]r1
r2

=
λ

2πε0
ln
r2
r1
.

The capacitance per unit length of this system is thus

C

L
=

∣∣∣∣ λΔV
∣∣∣∣ = 2πε0

ln r2
r1

.

Energy Stored in a Capacitor

Work is required to move a charge from one conductor to another against

a potential difference. This work is often indirectly supplied by an electro-

motive force. The work done by an external force in moving an infinitesimal

charge, dq, across a potential difference ΔV is

dWext = dqΔV.

Thus, if we define the potential energy of a system of two neutral conduc-

tors as zero, the potential energy of a system with charges q and −q on

the conductors is equal to the work done by an external force in moving q

amount of charge from one conductor to another. Interspersing this transfer

of charge over many intervals such that an infinitesimal amount of charge dq

is transferred during each event,

U =Wext =

ˆ q

0
ΔV dq =

ˆ q

0

q

C
dq =

1

2

q2

C
=

1

2
qΔV =

1

2
CΔV 2 (6.9)

where we have used the fact that the potential difference between two con-

ductors is ΔV = q
C , where C is the capacitance between them. The final three

expressions yield equivalent formulae for the energy stored in a capacitor.

Equivalent Capacitance

Capacitors in Series

The equivalent capacitance of N capacitors in series is

1

Ceq
=

N∑
i=1

1

Ci
. (6.10)
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Capacitors in Parallel

The equivalent capacitance of N capacitors in parallel is

Ceq =

N∑
i=1

Ci. (6.11)

These can be proven via the facts that the charges on the capacitors must

be identical for initially neutral capacitors in series and that the potential

differences must be identical for capacitors in parallel.

Breakdown Potential and Electric Field

As a form of non-ideal behavior, the originally insulating material between

the two conductors in a capacitor may actually become conductive when the

electric field at any point in the medium is large enough to ionize its atoms.

The capacitor then fails as it is unable to store charge when given a potential

difference, since charges begin to flow from one conductor to the other via

the conducting medium — discharging the capacitor in the process. This is

analogous to how lightning strikes when the potential difference between a

cloud and the ground is large enough.

The minimum electric field at any point within an insulating material,

for which it becomes conductive, is known as the breakdown electric field

Eb. Since the electric field produced by a capacitor is proportional to the

potential difference between its two constituent conductors, an analogous

quantity known as the breakdown potential Vb is defined as the minimum

potential difference between the two conductors for the capacitor to fail.

An interesting question to ask is that if N initially neutral capacitors,

with the ith capacitor having capacitance Ci and breakdown potential Vbi,

are connected in parallel and series respectively, what is the maximum exter-

nal potential Vmax that can be applied between the ends of this array of

capacitors such that no capacitor fails?

The answer is trivial in the case of parallel connections as the potential

difference across each capacitor is simply the external potential V . Therefore,

Vmax = min
1≤i≤N

Vbi. (6.12)

Given an increasing external potential, the capacitor with the minimum Vbi
breaks down first. In the case of series connections, the common charge q

stored by each capacitor when an external potential V is applied to the ends
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of the array is

q = V Ceq =
V∑

1≤j≤N
1
Cj

.

The potential difference across the ith capacitor is thus

q

Ci
=

V

Ci
∑

1≤j≤N
1
Cj

.

The required external potential for the ith capacitor to break down is

V = VbiCi
∑

1≤j≤N

1

Cj
.

Thus,

Vmax = min
1≤i≤N

⎛
⎝VbiCi ∑

1≤j≤N

1

Cj

⎞
⎠ =

∑
1≤j≤N

1

Cj
· min
1≤i≤N

(VbiCi). (6.13)

Given an increasing external potential, the capacitor with the minimum

VbiCi breaks down first. In the special case where Vbi = Vb for all 1 ≤ i ≤ N ,

Vmax = Vb
∑

1≤j≤N

1

Cj
· min
1≤i≤N

Ci.

Problem: In the circuit shown in Fig. 6.10, capacitors (which are depicted

by two identical, parallel lines) C1 = 4.00μF, C2 = 12.00μF, C3 = 5.00μF,

C4 = 6.00μF are initially neutral and an external potential difference is

applied across terminals a and b. If the breakdown potential of each capacitor

is 12V, determine the maximum charge residing on each capacitor for which

no capacitor fails.

Figure 6.10: Circuit of capacitors

Applying the formulae that we have just derived, the maximum external

potential across the branch containing C1 and C2 is

12

(
1

4
+

1

12

)
·min(4, 12) = 16V.
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Since the branch containing C1 and C2 and the branch containing C3 are

connected in parallel, the maximum external potential across branch ac is

min(16, 12) = 12V.

Now, the equivalent capacitance of branch ac is

C1C2

C1 + C2
+ C3 = 8μF.

Therefore, the capacitors in branch ac are equivalent to a capacitor 8μF with

a breakdown potential 12V. As branches ac and cb and connected in series,

the maximum external potential across ab is

Vmax = 12

(
1

8
+

1

6

)
·min(8, 6) = 21V.

Because the charge residing on each capacitor increases monotonically with

the external potential difference applied between terminals a and b, the

maximum charge stored by each capacitor occurs when Vab = Vmax. At this

juncture, since C4 breaks down first, the potential difference across branch cb

must be equal to its maximum external potential difference (the breakdown

potential of C4).

Vcb = 12V.

The maximum charge stored by C4 is

q4 = C4Vcb = 72μC.

The potential difference across branch bc is

Vcb = Vmax − Vcb = 9V.

The maximum charge stored by C3 is

q3 = C3Vab = 45μC.

The maximum charge stored by C1 and C2 is

q1 = q2 =
C1C2

C1 + C2
Vab = 27μC.

Another way of seeing this is that since the system comprising the right

plates of C2, C3 and C4 is electrically isolated, its total charge — which was

originally zero — must be conserved. Therefore,

q2 + q3 = q4 =⇒ q1 = q2 = q4 − q3 = 27μC.
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6.3.1 An Elegant Method for Determining Total Charges

A common class of conductor problems entails determining the total charge

that resides on each conductor (and not the charge distributions) in the

presence of external charges. Surprisingly, such problems can be solved with

rather elementary methods. One crucial idea in such problems is to exploit

scaling arguments and the principle of superposition to construct fictitious

capacitors.

Problem: Two parallel, thin and grounded infinite conducting plates are

separated by a perpendicular distance d. A charge q is sandwiched between

the two plates and is located at a perpendicular distance x < d from one

plate. Determine the total charges induced on the two plates.

Firstly, observe that if we scale the charge q by a factor of k, the total

charges induced on each of the two plates will also be scaled by a factor k.

This implies that if we spread the charge q such that it becomes a uniform

infinite plane of total charge q, located at the same perpendicular distance

from the plates, the total charges induced on each of the two plates will

remain the same, as the infinite plane of charge can be seen as the super-

position of many infinitesimal charges dq which each induce dq
q of the total

charges, caused by the original charge q, on the two plates.6 The distribu-

tions of charges on the plates in these set-ups will be different but the total

charges must be identical. In fact, in the set-up that we have constructed,

charges should be evenly distributed over each plate due to the infinite nature

of the set-up. Now, let the total charge induced on the plate located at a

perpendicular distance d from the plane of charge be q1 and that on the

other plate be q2. Firstly, we can draw a Gaussian cylinder straddling the

two conducting plates and the plane of charge sandwiched between them,

with its axis perpendicular to the plates. The electric field in this set-up is

solely normal to the plates such that electric flux cutting the curved surface

of this Gaussian cylinder is zero — resulting in a net electric flux of zero, as

the electric field at its ends are also zero since they are located inside the

conducting plates. This implies that

q1 + q2 + q = 0 =⇒ q1 + q2 = −q,
as the charge enclosed by the Gaussian cylinder must be zero by Gauss’ law.

Now, this infinite plane of charge q can be seen as two planes of charges

6That the charge distribution induced by the array of infinitesimal charges is the super-
position of the individual charge distributions induced by each infinitesimal charge is guar-
anteed by the first uniqueness theorem.
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−q1 and −q2. Then, the entire set-up becomes two parallel-plate capacitors

storing charges q1 and −q2 that are connected in series. Let the capaci-

tance of the respective plates be C1 and C2 respectively. Observe that since

both conducting planes are grounded, there must be no potential difference

between the exterior ends of the two capacitors. That is,

q1
C1

− q2
C2

= 0.

Furthermore, we know that the capacitance of a parallel-plate capacitor is

inversely proportional to the plate separation such that C1
C2

= d−x
x .

q1
d− x

=
q2
x
.

Solving for q1 and q2,

q1 = −
(
1− x

d

)
q,

q2 = −x
d
q.

Actually, another way of solving such problems involves a clever application

of Green’s reciprocity theorem. Define the plate that is a distance x away

from q as plate 1 and the other plate as plate 2. We can carefully concoct

two set-ups to apply Green’s reciprocity theorem to. We will choose set-up

1 as the system mentioned in the problem. For set-up 2, we can consider the

case where the plate 1 has potential φ0 while plate 2 is grounded (i.e. has

potential 0) — there is no longer a charge q between the plates. In set-up 2,

the potential at a perpendicular distance x from plate 1 is evidently d−x
d φ0.

The charges on these two plates in set-up 2 are unknown but this does

not hinder the application of Green’s reciprocity theorem as the potentials

of both plates in set-up 1 are zero anyway. Applying Green’s reciprocity

theorem to these set-ups,

˚
ρ1V2dΩ1 =

˚
ρ2V1dΩ2.

The left-hand side is q1φ0+
d−x
d qφ0 where the contributions stem from plate

1 and the charge q in set-up 1 (even though plate 2 also possesses a charge q2
in set-up 1, its potential is zero in set-up 2 as we had deliberately designed it

to be so). The right-hand side is zero as the potentials of the two grounded
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plates in set-up 1 are zero.

q1φ0 +
d− x

d
qφ0 = 0.

We directly obtain

q1 = −
(
1− x

d

)
q.

Considering a separate set-up 2 where the potentials of plates 1 and 2 are

now reversed, we can similarly show that

q2 = −x
d
q.

6.4 Electric Fields in Matter

The electric fields in the previous sections only propagate in vacuum which

is characterized by a permittivity ε0. This section will analyze electric fields

in matter which is a more realistic situation.

6.4.1 Electric Dipoles

A physical dipole is a pair of opposite charges of the same magnitude that

somehow has a fixed separation d. For a dipole with a common charge mag-

nitude q, we can define the dipole moment as

p = qd, (6.14)

where d is the vector pointing from the negative charge to the positive charge.

An ideal dipole has a minuscule separation (d → 0) and a titanic charge

(q → ∞) such that the product of qd is a finite value p. Now, what is the

field due to a dipole at a point P far away7 from the dipole? Our approach is

to first compute the potential due to the dipole and then take the negative

gradient of it to determine the electric field. Let r be the vector from the

middle of the dipole to the point of concern, P. Then, we define angle θ as

the clockwise angle subtended by the vector joining the center of the dipole

to P and d. The potential and electric field at the point of concern P are

then,

V =
p cos θ

4πε0r2
=

p · r̂
4πε0r2

, (6.15)

E =
p cos θ

2πε0r3
r̂ +

p sin θ

4πε0r3
θ̂ =

1

4πε0r3
[3(p · r̂)r̂ − p]. (6.16)

7By far away, we mean that the distance between the dipole and P is much larger than d.
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Derivation:

Figure 6.11: Dipole

Referring to Fig. 6.11, the potential at point P is the sum of the individual

potentials due to each charge.

V =
q

4πε0r+
− q

4πε0r−
.

By the cosine rule,

r+ =

√
r2 − rd cos θ +

d2

4
≈ r

√
1− d

r
cos θ,

r− =

√
r2 + rd cos θ +

d2

4
≈ r

√
1 +

d

r
cos θ

as d� r.

V =
q

4πε0r

⎛
⎝ 1√

1− d
r cos θ

− 1√
1 + d

r cos θ

⎞
⎠

≈ q

4πε0r

[
1 +

d

2r
cos θ −

(
1− d

2r
cos θ

)]

=
qd cos θ

4πε0r2

=
p cos θ

4πε0r2

where we have used the Maclaurin expansion 1
1+x = 1−x+· · · and discarded

second order and above terms in d
r . Since θ is the angle between r and p,

the above can be rewritten as

V =
p · r̂

4πε0r2
.
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To calculate the electric field, we can find the negative potential gradient

in cylindrical coordinates. We define the z-axis to be perpendicular to the

plane containing the dipole and P.

E = −∂V
∂r

r̂ − 1

r

∂V

∂θ
θ̂ − ∂V

∂z
k̂

=
p cos θ

2πε0r3
r̂ +

p sin θ

4πε0r3
θ̂

=
1

4πε0r3
[3p cos θr̂ − (p cos θr̂ − p sin θθ̂)]

=
1

4πε0r3
[3(p · r̂)r̂ − p].

Torque due to Uniform External Electric Field

When placed in an external electric field that is locally uniform, a physical

dipole tends to orient its axis along the direction of the electric field.

Figure 6.12: Dipole in external electric field

Referring to Fig. 6.12, when the dipole moment p subtends an angle θ

with respect to the external electric field E, the torque on the dipole due to

the external electric field is

τ = −qdE sin θ = −pE sin θ,

τ = p×E. (6.17)

Note that we do not need to mention the origin that the torque is calculated

with respect to, as there is no net force on the dipole due to the external

electric field — implying that the torques about all pivots are the same.8

8We proved this in the chapter on statics.
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Figure 6.13: Anti-parallel and parallel configurations

Next, Fig. 6.13 illustrates the two possible equilibrium orientations. The

parallel configuration is a stable equilibrium while the anti-parallel configu-

ration is an unstable equilibrium as shown above. The equilibria are stable

and unstable respectively as a slight angular displacement tends to be min-

imized and amplified by the external field respectively.

Lastly, we can define the potential energy of a dipole, which depends on

its current angular orientation, as the work by an external agent (in opposi-

tion to the external electric field) required in bringing the dipole from infinity

to its current configuration, without a change in kinetic energy. Exploiting

the path independence of the potential energy, we can do this in the dipole in

the following manner. We first bring in the two charges from infinity to the

current region, in the orientation where the dipole moment is perpendicular

to the external electric field. There is no external work done in this process

even though the external electric field may be non-uniform in general (we

only require it to be uniform in the vicinity of the final position of the dipole).

This is because, the difference in electric potentials at the locations of the

two charges after this procedure is zero as the line integral of the electric field

along a straight line connecting the two charges is zero (the electric field is

always perpendicular to the line). This implies that the final electric poten-

tial energies of the two opposite charges of the dipole nullify each other —

insinuating that no net external work has been performed. Subsequently, we

exert an external torque in rotating the dipole into its current orientation,

against a local uniform electric field. The change in potential energy due to

the work done by an external force in orienting the dipole at an angle θ with

respect to the external electric field E, while beginning from θ = π
2 , is

ΔU =

ˆ θ

π
2

τext dθ = −
ˆ θ

π
2

τelecdθ =

ˆ θ

π
2

pE sin θdθ = −pE cos θ,

where we have used the fact that the torque by the external agent must be

negative of the torque due to the electric field for the kinetic energy of the
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dipole to remain constant, τext = −τelec. This change in potential energy is

the total potential energy of the dipole.

U(θ) = −pE cos θ = −p ·E. (6.18)

Force due to Non-Uniform External Electrostatic Field

A physical dipole does not experience a net force in a locally uniform external

electric field as the forces on the opposite charges cancel out. However, it

will indeed feel a net force from a non-uniform field due to the discrepancy

of the external electric field at the location of the two charges. If the position

vector of the −q charge is r, the net force on the dipole is

F = q[E(r + d)−E(r)],

where E refers to the external electric field and d is the vector pointing from

−q to q. The x-component of force is

Fx = q([Ex(r + d)− Ex(r)].

If we use dx, dy and dz to denote the components of d and as d→ 0,

Ex(r + d) = Ex(r) +
∂Ex
∂x

dx +
∂Ex
∂y

dy +
∂Ez
∂z

dz

= Ex(r) + d · ∇Ex
=⇒ Fx = qd · ∇Ex = p · ∇Ex.

Similarly,

Fy = p · ∇Ey,
Fz = p · ∇Ez,

so we can condense them into the single expression

F = (p · ∇)E, (6.19)

where the (p · ∇) term in brackets should be read as an operator that acts

on each component of E to produce the corresponding component of F . It

turns out that we can write

∇(p ·E) = (p · ∇)E + p× (∇×E),
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where ∇×E is the curl of E given by

∇×E =

⎛
⎜⎜⎝

∂
∂x

∂
∂y

∂
∂z

⎞
⎟⎟⎠×

⎛
⎝ExEy
Ez

⎞
⎠ =

⎛
⎜⎜⎜⎝
∂Ez
∂y − ∂Ey

∂z

∂Ex
∂z − ∂Ez

∂x

∂Ey

∂x − ∂Ex
∂y

⎞
⎟⎟⎟⎠

in Cartesian coordinates. Recall that we once remarked in the chapter on

energy that the curl of a vector field must vanish at all points for it to be

conservative. Since the electrostatic field is conservative (we have shown that

its line integral is path-independent), we must have ∇×E = 0. Thus,

F = (p · ∇)E = ∇(p ·E)

which makes sense in retrospect as the right-hand side is simply the negative

gradient of the potential energy of the dipole (−p ·E)!

6.4.2 Multipole Expansion

Let us now invent an analogous notion for the dipole moment of a continuous

charge distribution.

Figure 6.14: Relevant vectors

Referring to Fig. 6.14, suppose we are interested in the potential at a

distant point P which has a position vector r relative to the origin O. Let

r′ denote the position vector of an infinitesimal charge dq on the charge

distribution and R denote the vector pointing from dq to P. The potential

at P is

V (r) =

ˆ
1

4πε0R
dq.
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We can relate R, r′ and r via the cosine rule. Using the definition of θ in

the figure above,

R2 = r2 + r′2 − 2rr′ cos θ

R =
√
r2 + r′2 − 2rr′ cos θ,

V (r) =

ˆ
1

4πε0
√
r2 + r′2 − 2rr′ cos θ

dq.

Since

(r2 + r′2 − 2rr′ cos θ)−
1
2 =

1

r

(
1 +

r′2

r2
− 2r′

r
cos θ

)− 1
2

,

if we let ε = r′2
r2 − 2r′

r cos θ,

(r2 + r′2 − 2rr′ cos θ)−
1
2

=
1

r
(1 + ε)−

1
2

=
1

r

(
1− ε

2
+

3ε2

8
− · · ·

)

=
1

r

(
1− r′2

2r2
+
r′

r
cos θ +

3

8

(
r′2

r2
− 2r′

r
cos θ

)2

− · · ·
)

=
1

r

(
1 +

r′

r
cos θ +

3cos2 θ − 1

2

r′2

r2
+O

(
r′3

r3

))
,

where third order and higher terms in r′
r are included in O( r

′3
r3
) and are

relatively negligible when r � r′ (assuming that the larger terms are non-

zero). Substituting this expansion into the electric potential,

V (r) =

ˆ
1

4πε0r
dq +

ˆ
r′ cos θ
4πε0r2

dq +

ˆ
(3 cos θ − 1)r′2

8πε0r3
dq + · · · .

Observe that for large r � r′, the primary dominant term is
ˆ

1

4πε0r
dq =

Q

4πε0r

where Q is the total charge of the distribution which is also known as the

monopole moment. This makes sense as any charge distribution should look

like a point charge commensurate with the total charge if we zoom out of
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the picture far enough. However, for a charge distribution with zero charge,

the first term is zero such that the next term in line isˆ
r′ cos θ
4πε0r2

dq =

ˆ
r′ · r̂
4πε0r2

dq

since r′ · r̂ = r′ cos θ. As r is constant in the context of integrating over the

charge distribution, the above is equivalent to(´
r′dq

) · r̂
4πε0r2

=
p · r̂

4πε0r2

where the dipole moment p is defined as

p =

ˆ
r′dq. (6.20)

Now, an important property of p is its independence of the choice of origin if

the total charge of the distribution is zero (which is precisely when we want

to examine it). To prove this, consider the dipole moment p′ with respect to

a separate origin O’ that is at a position vector a relative to O.

p′ =
ˆ

(r′ − a)dq =

ˆ
r′dq − a

ˆ
dq = p

since
´
dq = Q = 0 under our assumption of a collectively neutral distribu-

tion. This property also enables us to move the origin close to the charge

distribution such that r � r′ is satisfied.
As seen from the above, the dipole moment of a charge distribution is

merely a term involved in the expansion of the potential function (known

as the multipole expansion) and is significant in describing the distant elec-

tric field of a distribution that is neutral overall (assuming that the dipole

moment is non-zero). If the dipole moment too vanishes, we have to look

at the higher-order moments, like quadrupole and octopole moments, to

describe the far-field behaviour of the charge distribution. For our purposes,

the dipole moment usually suffices such that the distant potential of a charge

distribution with dipole moment p is

V (r) =
p · r̂

4πε0r2
(6.21)

which is identical to that generated by a physical dipole. Taking the negative

gradient in cylindrical coordinates, the distant electric field is also akin to

that of a physical dipole.

E(r) =
1

4πε0r3
[3(p · r̂)r̂ − p]. (6.22)
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6.4.3 Dielectrics

In insulators, charge carriers are not free to move and can only deviate

slightly from their equilibrium positions. A dielectric is an insulating material

whose molecules are polarized in the presence of an external electric field,

such that molecular dipoles arise. There are mainly two phenomena that

may occur. If permanent dipoles exist within the internal structures of the

molecules of the dielectric (e.g. water), the polar molecules will experience

a torque due to the external field that tends to rotate them into the stable

equilibrium configuration. Otherwise, even if the molecules are non-polar

and neutral, there may also be induced net charges in certain regions of

the molecules as the external field produces forces on positive and negative

charges in opposite directions — the nucleus and electron cloud in an atom

thus tend to be “torn apart” and their centers no longer coincide. Either way,

the molecules in a dielectric will look something like Fig. 6.15 in the presence

of an external electric field. The exact cause of polarization is not of concern.

Figure 6.15: Dielectric in an external electric field

The effect of a dielectric is to reduce the net electric field in it by gen-

erating its own electric field that opposes the external field, via induced

dipoles.

Figure 6.16: Charges due to dielectric under uniform polarization

The equivalent system of charges due to molecules in a dielectric under

uniform polarization is shown in Fig. 6.16. The positive charge on the bottom
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end of one molecule “cancels” the negative charge on the top end of another

molecule below it. Hence, there are only net charges left at the ends of the

dielectric. These charges evidently generate an electric field that opposes the

original electric field.

6.4.4 Bound Charges

With the physical scenario in mind, let us proceed with a more quantitative

analysis. Firstly, we can define the polarization density P of a dielectric as

the dipole moment per unit volume, induced by the external electric field.

We do not understand the exact mechanism behind the creation of such

dipoles but this is perfectly fine as it turns out that P alone characterizes

the effects of the dielectric to a large extent. Actually, the expression for P is

very difficult to be determined directly from the external field in general as

the external field induces some dipoles which then produce their own fields

that spur the creation, destruction or realignment of other dipoles and so

on. Therefore, we will instead examine the ramifications of a polarization

density P while assuming that it is a given. In this section, keep in mind

that when we refer to the electric field, we mean the electric field due to the

polarization P only (there could be fields due to external charges added to

the dielectric and charges outside of the dielectric which are excluded).

Firstly, consider an infinitesimal cuboid of edge lengths dx, dy and dz

with a polarization P in the z-direction in Fig. 6.17.

Figure 6.17: Actual cuboid and equivalent charge distribution

Its dipole moment is

p = Pdxdydzk̂.

Since we have shown that the distant field of an arbitrary charge distribution

with zero total charge is only dependent on its dipole moment and indepen-

dent of its inner workings, we can assert that the distant field due to this
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cuboid is equivalent to a cuboid with uniform surface charge densities σ = P

and −σ = −P painted on the upper and lower surfaces that are perpendicu-

lar to the z-axis. To show this, we can exploit the fact that dipole moments

add. That is, we can sum the dipole moment of a portion of charges and the

dipole moment of the leftovers to obtain the total dipole moment. Applied

to this situation, we can sum the dipole moments of pairs of infinitesimal

charges dq and −dq that lie on the upper and lower surfaces, with the same

(x, y) coordinates. Observing that each pair forms a physical dipole with

dipole moment dqdzk̂, the total dipole moment of the right cuboid must be

p = (σdxdy)dzk̂

after summing over all pairs. Hence, we require

σ = P

for the dipole moments to match. A pivotal caveat in this analysis is that

the electric fields due to the two different cuboids in the regions within them

are most probably dissimilar as they depend on the internal structure of the

dipoles (but it turns out that we are not interested in the exact internal

field anyway). We are only claiming that the right cuboid is merely a model

for the left cuboid for the exterior electric field at points at distances, much

larger than the length scale of the cuboids, from the cuboids.

Figure 6.18: Cuboid with inclined surface

Now, what should be the equivalent charge distribution if, as in Fig. 6.18,

one face of the original cuboid is now inclined such that its normal vector

now subtends an angle θ with the z-direction (P is still in the z-direction)?

Well, if we slice off the additional wedge on top of the cuboid and calculate its

equivalent surface charge distribution, we can then superpose the equivalent

distributions of the wedge and the cuboid to obtain our desired answer. To

this end, consider the wedge in Fig. 6.19.
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Figure 6.19: Actual wedge and equivalent charge distribution

Its dipole moment is

p =
1

2
dx2dy tan θP k̂

which suggests that we should place surface charge densities σ′ and −σ on

the “hypotenuse” and the bottom base. Assume that the surface charge

densities are uniform over the respective surfaces as we wish to propose a

simple equivalent charge distribution. Notice that if we still hope to consider

charges on the two surfaces in pairs (i.e. physical dipoles), we must have

σ′ = σ cos θ,

as the area of the “hypotenuse” is 1
cos θ times larger than the bottom base.

Summing the dipole moments of all corresponding pairs, the dipole moment

of the wedge is the total magnitude of charge on either surface, multiplied

by the average distance between a pair of corresponding charges
(
dx tan θ

2

)
.

p = σdxdy · dx tan θ
2

k̂

where we have accounted for the direction as well. Matching our proposed

model with the true dipole moment, we must have

σ = P,

σ′ = P cos θ.

Therefore, our original trapezoidal element (left in Fig. 6.20) has surface

charge density P cos θ on its upper slanted surface and −P on its lower

surface.

Observe that the surface charge density on each surface of the element

can be neatly summarized by

σ = P · n̂,
where n̂ is the normal unit vector (pointing outwards of the surface). Next,

notice that we can apply a similar argument for elements with other inclined
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Figure 6.20: Cuboid with inclined surfaces

faces (slice off a wedge) such as that on the right of Fig. 6.20. This shows

that the relationship is valid, regardless of how many inclined surfaces there

are and where they are located. To extend this result to a general polariza-

tion direction, we simply have to split the polarization into its components

and apply the principle of superposition. All in all, the equivalent surface

charge distribution on an element constructed from attaching wedges to a

cuboid is

σb = P · n̂.
We have added an additional subscript b to emphasize that this surface

charge distribution is merely a model for the actual cuboid (which is spec-

ified by its polarization due to an external field). Such equivalent charge

distributions for polarized matter are known as bound charges as they are

induced by polarization and do not include the charges we add to the

dielectric (known as free charges) to spark off the polarization in the first

place.

Armed with the previous relationship, we can now proceed with dissect-

ing a dielectric with significant volume. First and foremost, for fields outside

of a relevant region of dielectric, we can always cut the dielectric into many

cuboids (in the interior) and cuboid with inclined faces (at the exterior sur-

face of the volume). Therefore, the electric field outside of this dielectric

region is equivalent to that produced by a surface charge density

σb = P · n̂ (6.23)

plastered on the exterior surface of the region and certain charges in the

interior which shall now be examined. Within the interior, P is generally a

function of position and the equivalent bound charge distribution is obtained

from conjoining many infinitesimal cubes together. After such a surgical

procedure, consider the infinitesimal volume element in Fig. 6.21 with a

polarization that varies over its faces.
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Figure 6.21: Surface and volume charges

By Eq. (6.23), the total net charge on the surface of the cube is

Px(x+ dx, y, z)dydz − Px(x, y, z)dydz + Py(x, y + dy, z)dxdz

−Py(x, y, z)dxdz + · · ·

=
∂Px
∂x

dxdydz +
∂Py
∂y

dxdydz +
∂Pz
∂z

dxdydz,

by the definition of the partial derivative. Since our model of bound surface

charges on infinitesimal cuboids is originally neutral overall, the cube above

must also have zero net bound charge. Actually, this is ordained by the fact

that a dielectric is initially neutral9 overall (before any free charges are added

to it) such that our model of equivalent bound charges must also have zero

net bound charge, as we must lack the monopole term (total charge) in the

multipole expansion for our model to be coherent with the true field of the

polarized matter. Therefore, the negative of the above expression must be

the total charge contained within the cube — implying that a bound volume

charge density

ρb = −∂Px
∂x

− ∂Py
∂y

− ∂Pz
∂z

= −∇ · P (6.24)

resides within the cube, where ∇·P is a short form for the preceding expres-

sion that is known as the divergence of P . To recapitulate, the electric field

9All atoms, which are the building blocks of matter, are neutral precisely because of the
large electrostatic forces that tend to pull charges of opposite signs together.
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outside of a dielectric due to a polarization P is akin to that produced by a

surface bound charge density σb on its exterior surface and a volume bound

charge density ρb in its interior.

An important point to keep in mind is that our model only produces

the correct electric field outside the dielectric because the electric field due

to an infinitesimal cuboid is only valid at distances much larger than the

size of the cuboid. Thus, the electric field produced by this model does not

reflect the true field within the dielectric (as interior points are surrounded

by infinitesimal cuboids) but correctly captures the field even directly outside

the dielectric (note that we are comparing length scales with the size of an

infinitesimal cuboid and not the entire dielectric).

Macroscopic Field Within Dielectric

Finally, what can we say about the electric field (due to polarization) within

the dielectric? Well, it must be incredibly complicated as we could suddenly

run into an electron, which causes the electric field to diverge towards neg-

ative infinity in its vicinity, at one location and then into a positive nucleus

at the next location. Precisely because of this intricacy, it is not edifying to

study the microscopic field within the dielectric. Instead, we usually consider

the macroscopic field which is the electric field averaged over a small volume

that encapsulates many dielectric molecules. Ideally, we would hope that our

model of bound charges correctly reflects the macroscopic field within the

dielectric. Though it seems like a far stretch currently, this claim is in fact

true, as we shall now show!

Figure 6.22: Contour C on actual polarized matter and bound charges model

Figure 6.22 depicts a small region around a point within the dielectric

(the rest of the dielectric is not shown). Consider the line integrals of the

electric field over a loop C that protrudes out of this region in both the

original system (which has a certain polarization P ) and our model of bound

charges (σb and ρb). Denoting the electric fields of the original system and
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our model as E and E′ respectively, we have

˛
C
E · ds = 0,

˛
C
E′ · ds = 0,

over the contour C as the closed loop integral of the electrostatic field must

be zero. Since E = E′ outside the dielectric,

ˆ
L
E · ds =

ˆ
L
E′ · ds

along the part of the contour C that lies within the region. Therefore, the

line integrals of the electric fields E and E′ between any two points on the

surface of the region, along a path L entirely within the region, must be

identical!

After some scrutiny, observe that this paves a way for comparing the

average electric fields within the selected region of the two set-ups! Firstly,

notice that the net electric field (due to polarization) at a point within

the region has two causes — due to the polarized matter outside of this

region (which can be assumed to be sufficiently distant from this region

for our bound charge model to accurately reflect the true field) and the

dielectric within this region (where the previous assumption is no longer

true). By choosing a parallel bundle of lines (such as an array of vertical

lines) throughout the dielectric and equating the line integrals, we can argue

that the average fields within the two set-ups in the figure above, due to the

dielectric within the demarcated region, must be identical! Thus, our model

of bound charges, surprisingly, gives the correct macroscopic field within the

dielectric. Henceforth, it shall be understood that when we refer to the field

inside a dielectric, we mean the macroscopic field.

Problem: Determine the electric fields outside and inside of a dielectric

sphere with radius R and a uniform polarization density P .

Define the origin at the center of the sphere and the positive z-axis to

be along the direction of P . Let θ be the angle subtended by the position

vector of a point on the surface of the sphere and the positive z-axis. Since

the bound surface charge density at a point on the surface of the sphere is
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σb = P · n̂ where n̂ is the normal vector of an infinitesimal area element

there,

σb(θ) = P cos θ.

Furthermore, since P is uniform, there are no bound volume charges induced

within the sphere. We are left with finding the electric field engendered by

this charge distribution. Now, we can make the astute observation that this

charge density that varies with cos θ on the surface and has zero volume

charge density can actually be constructed by superposing two spheres of the

same radius R and uniform volume charge densities ρ and −ρ in Fig. 6.23.

Their centers are separated by a small z-distance d.

Figure 6.23: Superposition of spheres with volume charge densities −ρ and ρ

Evidently, the volume charge density is zero in the overlapping region

such that as we take d → 0, the two spheres converge to produce zero

volume charge density and solely a surface charge density. To see why the

surface charge density of this set-up varies with cos θ, observe that the verti-

cal height of the non-overlapping region is always d, but the radial distance

is d cos θ at an angle θ from the z-axis. As the two spheres converge, the

volume charges are compressed into surface charges and the surface charge

density as a function of θ is determined by the radial distance of the non-

overlapping portion multiplied by the volume charge density. Therefore, the

surface charge density of the sphere formed by bringing these two spherical

charge distributions together is

σ(θ) = ρd cos θ.

For this set-up involving the two spherical distributions to properly reflect

the bound surface charge density, we must set

ρd = P.
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That is, as we take d→ 0, we must also take ρ→ ∞ such that the product

ρd is maintained at P . Since we know that a uniform sphere of charge is akin

to a commensurate point charge located at its center for regions outside the

sphere, the two spheres can be reduced to two point charges 4
3πρR

3 and

−4
3πρR

3 that are separated by a vertical distance d when calculating the

electric field outside them. As d tends to zero, what we obtain is an ideal

dipole at the origin (center of the original sphere) with the following dipole

moment!

p =
4

3
πρR3 · d =

4

3
πR3P.

In vector notation,

p =
4

3
πR3P .

The electric field at a position vector r from the origin is then given by

Eq. (6.16) as

E =
2R3P cos θ

3ε0r3
r̂ +

R3P sin θ

3ε0r3
θ̂

in spherical coordinates — an incredibly elegant result! To determine the

interior field, we first specify the potential on the spherical surface which is

simply that due to an ideal dipole (Eq. (6.15)).

V (θ) =
p cos θ

4πε0R2
=
Pz

3ε0

where z represents the z-coordinate of a point on the surface. Now that

we have specified the potential on the boundary of the interior volume and

the interior charge distribution (zero everywhere), we are ensured that the

electric potential and electric field within the sphere are unique by the first

uniqueness theorem. We can easily guess a solution for the general potential

as V (z) = Pz
3ε0

where z is the z-coordinate of an interior point. Since this

obviously satisfies the boundary potential, let us check if it is coherent with

the charge distribution within the sphere. The electric field associated with

this proposed potential is

E(z) = −∇V = − P

3ε0
k̂

which is uniform — implying that there is no net charge anywhere within

the sphere as the closed surface integral of the electric field is zero about any

surface within the sphere. Having met the conditions of the first uniqueness
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theorem, we can now confidently claim that the electric field within the

sphere is given by the above expression.

6.4.5 Electric Displacement

Now that we have determined the bound charges which describe the electric

field solely due to polarization, we can apply Gauss’ law to an arbitrary

Gaussian surface S that bounds a volume V in a homogeneous dielectric. In

this section, we are interested in the net electric field which is generated by

both polarized matter and free charges. Then,‹
S
E · dA =

qf + qb
ε0

.

The left-hand side refers to the electric flux cutting across S while qf and

qb refer to the total free and bound charges enclosed by S. qb is the volume

integral of ρb performed over the volume V.

qb =

˚
V
ρbdV.

However, we also know that the dielectric is initially neutral (neglecting the

free charges) such that qb must be the negative of the total bound surface

charge on the Gaussian surface S! Since the bound surface charge on an

infinitesimal area dA on the Gaussian surface is P · dA,

qb = −
‹
S
P · dA.

Substituting this back into the first equation,‹
S
(ε0E + P ) · dA = qf .

This expression is extremely convenient as it directly relates the closed sur-

face integral of a certain quantity to the free charges within a dielectric, with-

out mentioning the bound charges which are difficult to determine directly.

The quantity in the brackets on the left-hand side is defined as the electric

displacement D.

D = ε0E + P . (6.25)

The previous equation then becomes‹
S
D · dA = qf . (6.26)

That is, the surface integral of D over a closed surface S is the total free

charge enclosed in S. We thus have a “Gauss’ law” for D.
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Boundary Conditions

At the interface between two inhomogeneous dielectric media 1 and 2, we

have the following boundary conditions. Firstly, the component of electric

field in the plane of the interface must be continuous to ensure that the

closed loop integral of the electric field over an infinitesimal loop around a

point along the boundary is zero.

E‖2 = E‖1. (6.27)

Next, applying Gauss’ law for D to an infinitesimal pillbox with negligible

height and bases with area vectors dA normal to the interface, we must have

a discontinuity in the normal component of D at the interface.

D⊥2dA−D⊥1dA = σfdA

D⊥2 = D⊥1 + σf , (6.28)

where σf is the free surface charge density at the point of concern on the

interface and where the positive directions of D⊥1 and D⊥2 have been set to

be along the normal direction pointing from medium 1 to medium 2.

6.4.6 Linear Dielectrics

Up till now, we have not substituted an expression for P which is incredibly

difficult to determine. However, for linear dielectrics, the polarization density

P at a particular point is directly proportional to the net electric field E

(due to both bound and free charges) at that point.

P = ε0χeE (6.29)

where χe is a constant known as the electric susceptibility of the linear

dielectric. Concomitantly, the electric displacement D at every point is also

proportional to E.

D = ε0E + P = ε0(1 + χe)E.

The constant of proportionality is often written as ε which is known as the

permittivity of the dielectric.

D = εE (6.30)

where ε = (1 + χe)ε0. The permittivity of the dielectric is also commonly

written as

ε = κε0, (6.31)
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where κ is termed the dielectric constant and is related to the electric sus-

ceptibility by

κ = 1 + χe. (6.32)

With all these related definitions out of the way, Gauss’ law for the electric

displacement yields ‹
S
εE · dA = qf

‹
S
E · dA =

qf
ε

(6.33)

for a closed surface S drawn entirely in a homogeneous10 dielectric. We

see that the effect of a homogeneous linear dielectric is to “modify” the

permittivity of the region it occupies though its exact mechanism operates

by inducing bound charges to oppose an external field. The electric field in a

homogeneous dielectric is then that if the medium were vacuum, decreased

by a factor of 1
κ .

E =
ε0
ε
Evac =

Evac

κ
.

Another perspective is to simply replace ε0 in Evac by ε. One main appli-

cation of a dielectric is to enhance the capacitance of a capacitor. If the

region between the two conductors of a capacitor is completely filled with

a homogeneous dielectric, the electric field and hence potential difference

between the conductors is decreased by a factor of 1
κ , which implies that the

capacitance is increased by a factor of κ.

C = κCvac. (6.34)

For a parallel-plate capacitor consisting of two plates of area A, separation

d and a dielectric with dielectric constant κ that occupies the gap between

them,

C = κε0
A

d
= ε

A

d
. (6.35)

The volume exterior to the plates does not need to be filled with the dielectric

as Evac = 0 outside of the gap — implying that there will be no polarization

there anyway.

10A prerequisite of homogeneity is that no interfaces are included in the closed surface
S. If the surface contains boundaries between different dielectrics, Eq. (6.33) may not be
true as ε varies across regions, and because bound surface charges at the boundary have
to be considered.
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Solving Linear Dielectric Problems

A general problem in linear dielectrics is to solve for a certain quantity

(net electric field, potential, bound charge distribution, etc) due to a set-up

involving a dielectric placed under certain external conditions (free charges,

exterior charges or external electric field). Unfortunately, such problems are

extremely difficult and our solutions will mostly rely entirely on guesswork.

However, recall that there is something that goes hand-in-hand with guess-

ing — uniqueness theorems! Thankfully, our tools developed in the section

on conductors can be transferred to linear dielectrics.

Recall that uniqueness theorems require us to specify the volume charge

distribution within a given volume of interest. In the case of dielectrics, this

comes from both free and bound charges. Therefore, we ideally want to show

that we can determine the bound volume charge density when given the free

volume charge density. This can be performed as follows. In a homogeneous

linear dielectric,

ρb = −∇ · P = −∇ · χeε0E = −χeε0
ε

∇ ·D = −κ− 1

κ
ρf , (6.36)

where κ is the dielectric constant and where we have applied Gauss’ law

for D to an infinitesimal cuboid in writing ∇ ·D = ρf . Furthermore, there

are also boundary conditions at the interface of different dielectric media.

Firstly, the parallel component of electric field must be continuous, i.e.

E‖2 = E‖1.

Next, we can rewrite the second boundary condition (Eq. (6.28)) between

two linear dielectrics with permittivities ε1 and ε2 as

ε2E⊥2 = ε1E⊥1 + σf , (6.37)

or in terms of potentials V1 and V2 in the two dielectrics,

ε2
∂V2
∂n

= ε1
∂V1
∂n

− σf , (6.38)

where ∂
∂n indicates the partial derivative in the normal direction (pointing

from media 1 to 2). However, note that the potentials V1 and V2 must still

be continuous along the interface.

V1 = V2 (along interface). (6.39)

It turns out that if we specify the free charge distribution (volume and sur-

face) everywhere in a volume Ω and the potential everywhere on the surface

S of Ω, there will only be a unique electric field in Ω that is coherent with the
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volume free charge density and the boundary conditions above (at dielectric

interfaces within Ω). The proof of this analogous first uniqueness theorem

shall be omitted.

Problem: A dielectric sphere of radius R and dielectric constant κ, which

is initially neutral everywhere, is placed in a region of uniform external field

E0. Determine the resultant electric field in all space.

Firstly, since there are no free volume charges in the sphere, there must

not be any net volume charges anywhere within the sphere in the final con-

figuration. Furthermore, we can exploit the ambiguous origin of the external

field E0 to say that it is produced by two opposite charges (of appropri-

ate magnitudes) placed at diametrically opposite points with respect to the

sphere, at distances much greater than R from the sphere. We need not state

the explicit charge magnitude and distance from the sphere, as our objective

is only to show that it is possible to specify an external charge configura-

tion that produces E0. Having specified the charge distribution in all space,

we assert that since the potential at infinity must tend to zero, the first

uniqueness theorem guarantees that the electric field in all space is unique.

Now, we can safely guess a solution to the net electric field within the

sphere. It is always beneficial to start from the field within the dielectric

so that we can first solve for the polarization and thus the field due to

polarization (which extends outside of the sphere). A natural instinct is to

seek for the simplest solution — which in this case is a uniformly polarized

sphere. Suppose that the resultant polarization of the sphere is a uniform P

along the direction of E0. If we let the net electric field within the sphere be

Ein, which should be uniform to engender a uniform polarization, we have

P = (κ− 1)ε0Ein.

However, we also know from the example problem about a uniformly polar-

ized sphere that the electric field due to polarization, within the sphere, is

Epol
in = − P

3ε0
.

Since we have Ein = Epol
in +E0,

P = (κ− 1)ε0(E
pol
in +E0) = (κ− 1)ε0

(
− P

3ε0
+E0

)

=⇒ P =
3(κ− 1)

κ+ 2
ε0E0,
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Epol
in = −κ− 1

κ+ 2
E0,

Ein =
3

κ+ 2
E0.

We see that our assumption has worked as the polarization and net electric

field within the sphere are indeed uniform! In making this guess, we should

have already anticipated this self-consistency to a certain extent as a uni-

form polarization requires a uniform net electric field, and yet a uniformly

polarized sphere produces a uniform electric field due to polarization within

itself, which, combined with the uniform external field, results in a uniform

net electric field!

The net electric field outside the sphere is simply the superposition of E0

and the field due to a sphere with uniform polarization P (which we have

previously derived). Adopting spherical coordinates about the center of the

sphere,

Eout(r) = E0k̂ +
2R3P cos θ

3ε0r3
r̂ +

R3P sin θ

3ε0r3
θ̂

= E0 cos θr̂ − E0 sin θθ̂ +
2(κ− 1)R3E0 cos θ

(κ+ 2)r3
r̂

+
(κ− 1)R3E0 sin θ

(κ+ 2)r3
θ̂

=

(
2(κ − 1)R3

(κ+ 2)r3
+ 1

)
E0 cos θr̂ +

(
(κ− 1)R3

(κ+ 2)r3
− 1

)
E0 sin θθ̂

where the positive z-axis has been defined to be along E0. Finally, note

that we did not need to check if the boundary conditions are satisfied at

the dielectric-vacuum interface as we proposed that the electric fields out-

side and inside the sphere are caused by the same charge distribution such

that the boundary conditions are naturally satisfied. If we suggested dif-

ferent charge distributions for different regions (e.g. disparate image charge

configurations), we have to check if the boundary conditions are fulfilled.

6.4.7 Force on Dielectrics

Due to the formation of dipoles in molecules and atoms, the electric fields

at the locations of positive and negative charges of a dipole are generally

different — resulting in a net force on the dielectric. However, this effect is

often entirely due to the fringe fields which are notoriously difficult to solve
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for. That said, a slick way of accurately evaluating the force on a dielectric,

based on the principle of virtual work, exists. Consider the following example.

Problem: A parallel-plate capacitor of length l, width w and plate sepa-

ration d is partially filled with a dielectric with width w, thickness d and

permittivity ε. If the current potential difference between the plates is V ,

determine the force on the dielectric due to the capacitor when length x of

the dielectric is sandwiched between the plates. The width of the plates and

the dielectric are aligned.

Well, one might expect no force on the dielectric, despite the separation

of charges, as the field between the plates is uniform! However, this is not

true for the fields at the edges of the plates which curve away from the plate

and are the true cause behind the force on the dielectric. To evaluate the

force on the dielectric due to the capacitor, we take an indirect route by

first determining the external force Fext required to maintain the dielectric

at static equilibrium. Suppose that the dielectric is further driven into the

plates by a virtual distance δx, the total virtual work performed by the entire

system (the external force, capacitor plates and other external entities) must

be zero by the principle of virtual work.∑
W = 0.

The exact forms of work performed depend on the actual set-up. We will

consider the two cases where the parallel plates are electrically isolated such

that the charges on the plate remains constant and where the parallel plates

are connected by a battery such that the potential difference between them

is constant. In the first case, the only forms of work performed on the system

are that by the external force and that by the capacitor. Then,

δWext + δWcap = 0.

Next, we can exploit the fact that Wcap = −ΔUcap and Ucap = q2

2C where q

is the charge on the capacitor and C is the capacitance. Then,

Fextδx = dUcap

Fext =
dUcap
dx

= − q2

2C2

dC

dx
.

To compute dC
dx , observe that the equivalent capacitance, when length x of

the dielectric lies within the plates, is that of two capacitors of capacitances

ε0
(l−x)w

d and εxwd connected in parallel as the potential difference across both
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regions must be identical at equilibrium in light of the conducting plates.

C = ε0
(l − x)w

d
+ ε

xw

d
,

dC

dx
=

(ε− ε0)w

d
,

Fext = − q2

2C2
· (ε− ε0)w

d
= −(ε− ε0)V

2w

2d
.

Since Fext is the external force required to maintain the dielectric in static

equilibrium, the force on the dielectric due to the capacitor must be −Fext.

F = −Fext = (ε− ε0)V
2w

2d

which is independent of the length of dielectric inside the capacitor, x. Since

this quantity is positive (towards increasing x), the capacitor tends to pull

the dielectric into itself. Proceeding with the second set-up where the plates

are maintained at a constant potential difference by a battery, one might

think that the forms of work involved are exactly the same as the previous

case. However, observe that the total charges on the plates are now vari-

able — implying that work Wbat must be done by the battery in driving

charge over a constant potential difference. The principle of virtual work in

this case yields

δWext + δWbat = δUcap.

Suppose that the positive plate gains charge δq while the negative plates

loses the same amount of charge when the length of the dielectric inside the

capacitor is increased by δx. The work done by the battery in transferring

this charge across the potential difference V is then

δWbat = V δq

Fext =
dUcap
dx

− V
dq

dx
.

To evaluate
dUcap

dx , it is more convenient to express Ucap as 1
2CV

2 in light of

the constancy of V .

dUcap
dx

=
1

2
V 2dC

dx
.
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We then express dq
dx in terms of dCdx by substituting q = CV .

dq

dx
= V

dC

dx

Fext =
1

2
V 2 dC

dx
− V 2dC

dx
= −1

2
V 2 dC

dx
,

which is the same expression as before. Substituting the expression for dC
dx

and taking the negative of the result produces the force on the dielectric due

to the capacitor.

F = −Fext = (ε− ε0)V
2w

2d
.

It makes sense that the results of the two set-ups are coherent. The current

force on the dielectric should only depend on the charge distributions in the

capacitor and the dielectric at the current instance — this is characterized by

the current potential difference V and the length of the dielectric within the

plates, x. The different external connections only serve to affect the charge

distributions in the future. Finally, this discussion also suggests that we have

the liberty of devising our own set-ups in determining the force on a certain

object via the principle of virtual work as all set-ups should yield the same

answer.
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Problems

Conductors

1. Connecting Conductors*

A conducting sphere that is currently carrying a total charge q is enclosed

by a neutral spherical shell of inner radius r1 and outer radius r2. Both the

sphere and the shell are electrically isolated from the rest of the world. A

thin wire is then used to connect the sphere and the inner surface of the

shell. Determine the final distribution of charge everywhere.

2. Capacitor Surfaces*

A parallel-plate capacitor is formed by two identical conducting plates, of a

large common area, separated by a small distance. One plate has total charge

Q1 and the other has total charge Q2. Though the plates are thin, they each

still have two surfaces. Neglecting edge effects, calculate the surface charge

density on all four surfaces at equilibrium.

3. Collision with Infinite Conducting Plane*

A charge q of mass m is placed at a height h above a grounded, infinite

conducting plane. If it is then released from rest, determine the time taken

for the charge to collide with the plane.

4. Flux of Conducting Cube**

An electrically isolated conducting cube of side length l is neutral. It contains

an arbitrary number of cavities that enclose a total amount of charge Q.

Determine the electric flux cutting across a l×l plane parallel to and directly

above a face of the cube. There are no charges outside the cube.

5. Induced Charges**

A spherical conducting sphere of radius R is maintained at a potential V0
relative to infinity. It contains an arbitrary number of cavities that enclose

arbitrary amounts of charge but not the center of the sphere. If a point

charge Q is placed at a distance d from the center of the sphere, outside

the sphere, determine the total charge residing on the exterior surface of the

sphere at equilibrium.
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6. Spherical Shell and Charge Revisited**

Considering the problem of a charge q1 that is brought to a distance r from

the center of a grounded spherical shell of radius R, what is the appropriate

image charge configuration if the shell was not grounded and had a net

charge q3 instead? What is the force on q1 due to the shell?

7. Semi-Infinite Conducting Plates**

A semi-infinite conducting plate covers the entire yz-plane in the region

z ≥ 0 while another semi-infinite plate covers the entire xy-plane in the

region x ≥ 0. A charge q is placed at (l, 0, l). What is the corresponding

image charge configuration and the force on q due to the conducting plates?

8. Sphere in Electric Field**

Determine the charge distribution on an electrically isolated, neutral con-

ducting sphere placed in a region with a uniform external electric field E.

9. Dipole above Sphere**

Define the origin at the center of a neutral conducting sphere of radius R

and set up a Cartesian coordinate system. An idealized dipole with dipole

moment p = pk̂ lies at a positive z-coordinate r � R. Determine the approx-

imate force experienced by this dipole.

10. Cylinder in Uniform Field**

In this problem, we shall directly construct the solution to the charge distri-

bution induced on an infinite conducting cylinder of radius R placed in an

electric field E perpendicular to its cylindrical axis. The conducting cylin-

der is neutral and electrically isolated. Firstly, prove that the electric field

is uniform within the overlapping region of two infinite, parallel cylinders of

radius R and volume charge densities ρ and −ρ. By tweaking this set-up to

satisfy the boundary conditions imposed by a particular uniqueness theorem,

find the charge distribution on the surface of the conducting cylinder in the

original problem.

11. Third Uniqueness Theorem**

Prove that if you specify the charge density ρ(x, y, z) in a volume Ω and the

normal derivative of the potential ∂V
∂n everywhere on the surface S bound-

ing Ω, the electric field within Ω is uniquely determined. You do not need to
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be completely rigorous — an intuitive explanation is fine (e.g. by considering

electric field lines).

12. Cylindrical Conductors***

Our objective is to determine the capacitances per unit length of the follow-

ing two systems: (1) two long cylindrical conductors and (2) a long cylindrical

conductor and an infinite conducting plane.

(a) In three-dimensional Cartesian coordinates, two infinitely long lines

at x = −a and x = a with y = 0 carry linear charge densities λ and

−λ respectively. Show that the equipotential surfaces of this set-up are

infinitely long cylinders. Define the potential at the origin as zero.

(b) Consider a set-up with two infinitely long cylindrical conductors with

radius R and their cylindrical axis along lines x = −b and x = b (b > R)

with y = 0. By maintaining the conductors at x = −b and x = b at

potentials V0 and −V0 relative to the origin, determine the capacitance

per unit length of this system of conductors in light of the previous

result.

(c) An infinitely long cylindrical conductor of radius R is now placed with

its center a distance b > R above an infinite conducting plane that is

grounded. The cylinder is parallel to the plane. Determine the capaci-

tance of this system, per unit length of the cylinder.

Capacitors and Dielectrics

13. Joining Capacitors*

A capacitor with capacitance C1 is initially charged with q amount of charge.

Then, its ends are connected via long conducting wires to an initially neutral

conductor of capacitance C2. Calculate the energy loss in connecting the

capacitors when the system has equilibrated.

14. Cylindrical Breakdown**

A cylindrical capacitor has an inner conductor of variable radius a > 0 and

an outer conductor of fixed radius b. If the breakdown electric field is given

by Eb (a fixed value), determine the relation between a and b such that the

capacitor is able to store the most energy. What if we wish to maximize the

potential difference between the two conductors?



November 13, 2018 7:7 Competitive Physics 9.61in x 6.69in b3255-ch06 page 400

400 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

15. Work on Capacitor Plates**

Two large, electrically isolated capacitor plates of area A and charge densities

σ and −σ are oriented parallel to each other. Suppose that one of the plates

is fixed. Determine the work done by an external force in increasing the

plate separation by x, by pushing away the other plate without increasing

its kinetic energy. Do this in three ways: by directly calculating work from

force, considering the energy density of the electric field and the potential

energy stored in a capacitor.

16. Charge in Spherical Shell**

A conducting sphere of radius r1 is enclosed by a thin concentric conducting

shell of radius r2 > r1. Both conductors are grounded. A charge q is now

placed between the sphere and the shell at a distance d (r1 < d < r2) from

the common center. Determine the total charges induced on the sphere and

the shell with and without Green’s reciprocity theorem.

17. Spherical Capacitor**

Consider two concentric spherical shells of radii r1 and r2 with r1 < r2. If

q and −q amounts of charge are uniformly spread on the inner and outer

shells respectively, determine the energy stored in this capacitor.

Now, consider a separate problem where a point charge −q is located

at the center of a spherical, conducting shell of inner and outer radii r1
and r2. The conducting shell is initially neutral and is electrically isolated.

Determine the external work done in moving the point charge −q through a

narrow hole drilled in the shell to infinity, without a change in kinetic energy.

Try to use the previous result.

18. Tilted Plate**

Find the resultant capacitance of a “parallel”-plate capacitor if one of the

plates were to be tilted slightly at an angle θ � 1 with respect to the

horizontal. Each place has surface area A, horizontal length l and width w.

The smallest vertical distance between the plates is d.

19. Half-Filled Capacitor**

Determine the equivalent capacitance of a parallel-plate capacitor, with

plates of length l, width w (directed into the page) and plate separation
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h (h � l and h � w), that is half-filled with a triangular dielectric of

permittivity ε1.

Electric Fields in Matter

20. Rising Water*

A square parallel-plate capacitor with dimensions a × a and a separation

d is placed inside a beaker of water with density ρ and dielectric con-

stant κ. Two edges of each plate are aligned with the vertical. A battery

is connected to the capacitor such that a constant potential difference V

is maintained across its plates. The water between the plates rises up to a

height h above the water level in the beaker. Neglecting capillary effects,

determine h.

21. Parallel Plates with Dielectrics*

Two large parallel plates with a narrow separation carry fixed, uniform

surface charge densities σ and −σ respectively. Two large slabs with iden-

tical surface areas as the plates and permittivities ε1 and ε2 are then

slotted between the plates such that the gap within the plates is filled

completely. If the slab with permittivity ε1 is closer to the plate with

surface charge density σ, determine the electric displacements, electric fields

and polarizations in the two slabs. Finally, determine the bound charges

everywhere.

22. Dielectric with Cavity*

A dielectric with dielectric constant κ, that is initially neutral everywhere,

fills all space. If a spherical cavity of radius R is carved and a uniform

external electric field E0 permeates all space, determine the net electric field

everywhere.

23. Dipole in Dielectric Sphere**

An ideal dipole with dipole moment p is embedded at the center of a spherical

dielectric with permittivity κ and radius R. Determine the resultant electric
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field in all space. In solving this problem, model the ideal dipole as two

opposite point charges with a small separation.11

24. Spherical Conductor in Dielectric**

An electrically isolated, spherical conductor, of radius R and carrying a

total charge Q, is centered about the origin. The region z ≥ 0 (excluding the

conductor) is vacuum while the region z < 0 (excluding the conductor) is

filled with a dielectric with permittivity ε. By trying a solution of the form

V (r) = A
r (where A is a constant to be determined) for the potential outside

the conductor as a function of radial distance from the origin, determine the

potential in all space. Assume that the conditions of this problem are set up

such that the potential is unique.

25. Charge Above Infinite Dielectric Plane**

A dielectric medium of dielectric constant κ fills the entire region z ≤ 0. A

point charge q is placed at a positive z-coordinate z = d (the region z > 0 is

in vacuum). Determine the force experienced by q.

11It turns out that the result will vary according to how we model an ideal dipole.
For example, imagining it as a small sphere with a uniform polarization would lead to a
radically different result!
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Solutions

1. Connecting Conductors*

After the sphere and the shell are connected, they must become equipo-

tential. Applying the corollary of the first uniqueness theorem, because the

region between the inner surface of the shell and the sphere is free of net

charge and bounded by a uniform potential, it must be completely devoid

of electric field. Then, by applying Eq. (6.1), there must be no net charge

anywhere on the inner surface of the shell and the sphere. Therefore, all of

the q charge must reside on the outer surface of the shell. We claim that this

q charge is evenly distributed over the outer surface. Well, the electric field

produced by this configuration satisfies the condition that the outer surface

is equipotential and that a total amount of q charge lies on the outer surface.

Applying the second uniqueness theorem to the region outside of the shell,

this electric field must be correct and hence the distribution of charge with

uniform surface density q
4πε0r22

on the outer surface must also be correct by

Eq. (6.1).

2. Capacitor Surfaces*

Consider the side view of the capacitors shown in Fig. 6.24.

Figure 6.24: Capacitor surfaces

Let the charges on the surfaces from the left to right be Q1 − q, q, −q
and Q2 + q respectively. These must be evenly distributed over the surfaces

due to the infinite nature of the set-up. The inner surfaces must have equal

magnitudes of charge of the opposite sign — this assertion can be proven by

drawing the Gaussian surface S (dotted lines) shown in the figure above (its

width extends in the direction normal to the page). The electric field inside

the capacitors is zero — thus yielding zero net electric flux. The electric fields

at the other surfaces are in the plane of the surfaces — implying that the

total electric flux through this Gaussian surface is zero. Then, there must be

no total net charge in the volume enclosed — causing the surfaces to have q

and −q charge respectively.
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Now, the electric field everywhere is the superposition of that of four

individual plates. The electric field due to a single plate with charge density σ

is σ
2ε0

, emanating normally outwards from the plate. To determine q, we just

need to enforce the condition that the electric field within the left capacitor

is zero. If the area of the plates is A,

Q1 − q

2Aε0
− q

2Aε0
+

q

2Aε0
− Q2 + q

2Aε0
= 0

q =
Q1 −Q2

2
.

Thus, the charges on the surfaces from left to right are Q1+Q2

2 , Q1−Q2

2 , Q2−Q1

2

and Q1+Q2

2 .

Another way of solving this problem, which is arguably more insightful, is

to introduce −Q1+Q2

2 amount of charge to both conducting plates such that

their total charges become Q1−Q2

2 and Q2−Q1

2 . Since these are of equal mag-

nitude, we know that these charges must reside solely on the inner surfaces

of the plates while the outer surfaces must be neutral everywhere in this new

set-up (see parallel-plate capacitor in Section 6.3). The potential difference

between the two plates is then Q1−Q2

2C where C is the capacitance between

them. The crucial observation here is that introducing the same amount of

charge to both plates does not change the potential difference between them

as the electric fields produced by these additional charges cancel out in the

region outside of the plates. Therefore, the potential difference between the

two plates in our original set-up must also be Q1−Q2

2C . Now, the next impor-

tant observation is that the potential difference between the two plates in

our original set-up is only due to the charges q and −q on the inner surfaces.

This can be concluded from applying Gauss’ law to a Gaussian cylinder

with one end inside a plate and the other end in the region between the two

plates such that the only charge enclosed is on the inner surface of a plate.

Therefore, the potential difference between the plates in the original set-up

is q
C . Equating the two expressions for the potential difference, we obtain

q = Q1−Q2

2 and the charges on the outer surfaces can then be computed

from the conservation of charge.

3. Collision with Infinite Conducting Plane*

Using the method of image charges, the force on the charge when it is at a

distance x from the plane is

F = − q2

16πε0x2
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where the negative sign reflects the fact that the force is attractive towards

the plane and tends to reduce x. By Newton’s second law,

ẍ = − q2

16πε0mx2
.

It is important to note that if we defined x as the separation between

the physical charge and the image charge instead, the force would be

F = − q2

4πε0x2
but ẍ = 2F

m as the image charge also “accelerates” towards

the physical charge. Using our current definition and expressing ẍ = ẋdẋdx ,ˆ ẋ

0
ẋdẋ = − q2

16πε0m

ˆ x

h

1

x2
dx

ẋ2 =
q2(h− x)

8πε0mhx

ẋ = −
√
q2(h− x)

8πε0mhx

where we have chosen the negative root, since ẋ = 0 initially and ẍ < 0 for

positive x. Adopting the substitutions x = h sin2 θ and dx = 2h sin θ cos θdθ,

ẋ = 2h sin θ cos θ
dθ

dt
= −

√
q2

8πε0mh

cos θ

sin θ√
q2

32πε0mh3

ˆ τ

0
dt = −

ˆ 0

π
2

sin2 θdθ =
π

4

τ = π

√
2πε0mh3

q2
.

A simpler solution is to observe that the equation of motion can be

expressed as

ẍ = − μ

x2

where μ = q2

16πε0m
. Therefore, the analogous Kepler’s third law is

T 2 =
4π2a3

μ

where T is the “period” and a is the “semi-major axis” of the charge’s

elliptical orbit. Now, we simply have to tailor a to fit the context of this

question. We can see the collision between the charge and the plane as (half)
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an elliptical orbit with an eccentricity e→ 1. Then, a = h
2 as the focus, where

the origin of the inverse-square force on the charge is located, is situated at

the periapsis when e → 1, while the distance between the focus and the

apoapsis is h based on the conditions in the problem. Therefore,

T 2 =
4π2 · (h2 )3

q2

16πε0m

=
8π3ε0mh

3

q2
.

The time taken for the charge to collide with the plane is half the “period.”

τ =
T

2
= π

√
2πε0mh3

q2
.

4. Flux of Conducting Cube**

By Gauss’ law, a total of −Q charge must be induced on the surfaces of

the cavities — implying that Q amount of charge resides on the surface of

the cube. By Property 5 of electrostatic shielding and because there are no

external charges, Q6 amount of charge must be deposited on each face of the

cube by symmetry. Next, draw a rectangular Gaussian box of infinitesimal

thickness, width l and length l, parallel to a single face of the cube. One

l× l surface lies directly above the cube while the other lies in the interior of

the cube. We now apply Gauss’ law to this Gaussian box. The electric flux

through the surfaces with infinitesimal thickness is negligible. The electric

flux through the l × l surface inside the cube is zero as the electric field

is zero inside a conductor at equilibrium. Therefore, the total electric flux

through this Gaussian box only stems from the electric flux Φ through the

l × l surface above the cube (this is our objective). Gauss’ law then implies

Φ =
Q

6ε0
.

5. Induced Charges**

By Property 7 in Section 6.2.3, the potential V0 of the conductor is only

caused by the charges on the exterior surface and the external charge Q.

Suppose that a total charge q resides on the exterior surface (we do not know

this distribution). Then, consider the center of the sphere. The potential here

due to the charges on the exterior surface is

q

4πε0R

as the charges are all equidistant from the center. This, coupled with the

contribution from Q, results in the potential at the center of the sphere
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which must be V0.

q

4πε0R
+

Q

4πε0d
= V0.

Then,

q = 4πε0RV0 − QR

d
.

6. Spherical Shell and Charge Revisited**

The image charge configuration in this case is that in Fig. 6.6, with an

additional image charge q3 − q2 at the center of the shell where q2 is the

image charge in Fig. 6.6. This will ensure that the shell is an equipotential

surface with total charge q3. Then, the electric field in the region outside the

shell due to this image charge configuration must be the correct solution,

as guaranteed by the second uniqueness theorem. The force on q1 at this

instance is then

F =
q1(q3 − q2)

4πε0r2
+

q1q2
4πε0(r − a)2

.

Substituting q2 = −R
r q1 and a = R2

r that were derived previously,

F =
q1(rq3 +Rq1)

4πε0r3
− q21Rr

4πε0(r2 −R2)2

in the direction away from the shell.

7. Semi-Infinite Conducting Plates**

There are three image charges: −q at (−l, 0, l), −q at (l, 0,−l) and q at

(−l, 0,−l). The force on the real charge due to these image charges are then

q2

4πε0
(
2
√
2l
)2
⎛
⎜⎝

√
2
2

0√
2
2

⎞
⎟⎠− q2

4πε0 · (2l)2

⎛
⎝1

0

0

⎞
⎠− q2

4πε0 · (2l)2

⎛
⎝0

0

1

⎞
⎠

=
(
√
2− 4)q2

64πε0l2

⎛
⎝1

0

1

⎞
⎠.

8. Sphere in Electric Field**

The trick in this question pertains to how we interpret this uniform external

electric field E. Define the positive z-axis to point in the direction of E and
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the origin at the center of the sphere. We can construct E by placing two

charges q and −q at (0, 0,−r) and (0, 0, r) where r � R. The field in the

region of the sphere is then uniform (especially after we take the limit of r

to infinity later) and of magnitude

E =
q

2πε0r2
.

The above shows that in order for our constructed pair of charges to properly

reflect the electric field E given in the problem, they must satisfy

q

r2
= 2πε0E.

Moving on, this pair of charges produces an image pair of charges −R
r q and

R
r q at (0, 0,−R2

r ) and (0, 0, R
2

r ) respectively. Now, let us take the limit of

r → ∞ while maintaining the ratio of q
r2

at 2πε0E. Observe that through

such a maneuver, the distance between the two image charges tends to zero

while their charges tend to infinity. Therefore, what we obtain is an idealized

dipole with a dipole moment

p =
R

r
q · 2R

2

r
k̂ = 4πε0R

3Ek̂.

Now, adopt spherical coordinates about the center of the sphere. Applying

Eq. (6.16), the electric field due to the image dipole at a point corresponding

to polar angle θ in spherical coordinates, immediately outside the surface of

the sphere, is

Ep(θ) =
p cos θ

2πε0R3
R̂+

p sin θ

4πε0R3
θ̂ = 2E cos θR̂+ E sin θθ̂,

where R̂ is the radial unit vector pointing from the origin to the point

of concern on the surface of the sphere and θ̂ is the polar unit vector in

spherical coordinates. The external electric field expressed in terms of these

coordinates at the point with angular coordinate θ is

E = E cos θR̂− E sin θθ̂.

Their superposition yields the net electric field Etot immediately outside of

the sphere, at a point that subtends an angle θ with the positive z-axis, as

Etot = 3E cos θR̂

which only has a normal component and lacks a tangential component as

expected (so that the surface of the sphere is an equipotential). The surface

charge density of a point on the surface of the sphere that makes an angle θ
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with the positive z-axis is then

σ(θ) = 3ε0E cos θ

by Eq. (6.1). Another way of solving this problem is to directly construct

the surface charge configuration in a manner similar to Problem 10.

9. Dipole above Sphere**

Let the dipole be constituted by a negative charge −q located at (0, 0, r− d
2)

and a positive charge q located at (0, 0, r+ d
2 ) such that p = qd. We will take

two limits in our solution at two different junctures — firstly, we will take

d → 0 and then r � R. The image charges of this charge pair are R
r− d

2

q at

(0, 0, R2

r− d
2

) and − R
r+ d

2

q at (0, 0, R2

r+ d
2

). Performing binomial expansions and

discarding second order and above terms in d
r , these become R

r q +
dR
2r2
q at

(0, 0, R
2

r + dR2

2r2 ) and −R
r q+

dR
2r2 q at (0, 0,

R2

r − dR2

2r2 ). Observe that the R
r q and

−R
r q charges effectively form a dipole of dipole moment p′ = R

r q · dR
2

r2
k̂ =

R3

r3
pk̂ at (0, 0, R

2

r ). The remaining dR
2r2
q’s at (0, 0, R

2

r + dR2

2r2
) and (0, 0, Rr q −

dR
2r2
q) effectively converge to form a charge dR

r2
q = R

r2
p at (0, 0, R

2

r ) as d→ 0.

Finally, remember that this is not the full image charge configuration as

the sphere must be neutral overall — there must be another compensating

image charge − R
r2p that is located at the center of the sphere (to ensure

that it is equipotential). Therefore, we have another pair of opposite charges

with magnitude R
r2
p separated by a distance R2

r which converge to form a

dipole with dipole moment p′′ = R3

r3
pk̂ at the origin when r � R. Therefore,

the overall image charge configuration, when we take r � R, is an idealized

dipole with total dipole moment

pimage = p′ + p′′ =
2R3

r3
p

located at the origin. Applying Eq. (6.16), the electric field produced by this

effective image dipole at a z-coordinate z along the z-axis is

Eimage =
pimage
2πε0r3

=
R3p

πε0r6
.

The net force exerted by this image dipole on the original dipole (defined to

be positive in the positive z-direction) is thus

F = − R3qp

πε0
(
r − d

2

)6 +
R3qp

πε0
(
r + d

2

)6
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≈ −R3qp

πε0r6

(
1 +

3d

r

)
+
R3qp

πε0r6

(
1− 3d

r

)

= −6R3p2

πε0r7
.

Note that another way of deriving this involves applying the result

F = (p · ∇)Eimage, where p refers to the dipole moment of the real dipole.

10. Cylinder in Uniform Field**

Firstly, let us determine the electric field E(r) within an infinitely long cylin-

der of volume charge density ρ, at a radial distance r from the cylindrical

axis. Draw a cylindrical Gaussian surface of radius r and length l whose axis

is aligned with the cylinder’s. Due to the symmetry and infinite nature of the

set-up, the electric field is of uniform magnitude across the curved surface

of the Gaussian cylinder and is solely in the radial direction. Therefore,

E · 2πrl = ρ · πr2l
ε0

as the electric flux E · 2πrl through this Gaussian surface only comes from

its curved surface while the charge that it enclosed is ρπr2l. Therefore, the

electric field at a radial distance r is

E(r) =
ρr

2ε0
,

in vector notation where r is the radial vector, perpendicular to the cylin-

drical axis, pointing from the cylindrical axis to the point where the electric

field is of concern. Now, consider two overlapping cylindrical distributions of

charge with volume charge densities ρ and −ρ. Let d be the vector pointing

from the center of the −ρ distribution to the center of the other distribution

and r1 and r2 be the radial vectors pointing from the centers of the cylindri-

cal distributions of charge densities ρ and −ρ to a point in the overlapping

region (in the cross section containing that point). The electric field at that

point is

ρ(r1 − r2)

2ε0
= − ρd

2ε0
.

This shows that the electric field is uniform in the entire overlapping region!

Now, when a cylindrical conductor is placed in a uniform electric field,

charges will redistribute themselves along its surface until their electric field
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cancels the uniform external field inside the conductor. This can be achieved

with our two cylindrical distributions of charges as we take d→ 0 if

E − ρd

2ε0
= 0

=⇒ ρd = 2ε0E,

where E is the uniform external electric field. That is, even though d → 0,

ρ must tend to infinity such that the value of ρd is maintained at 2ε0E. As

the distance d between the two cylindrical distributions tends to zero, they

essentially converge to form a cylinder with zero volume charge distribution

and solely a surface charge distribution

σ(θ) = ρd cos θ = 2ε0E cos θ,

where θ is the angle subtended by a vector pointing from the center of

the cylinder to a point on the surface (in the same cross section) and the

external electric field E. Refer to Fig. 6.23 for a pictorial representation to

see why the cos θ factor arises. Let us now check if the electric field produced

by this charge distribution satisfies the boundary conditions for the second

uniqueness theorem. Firstly, the total charge on the surface of the cylinder

produced by this distribution is zero and corresponds to the total charge

on the conducting cylinder (which is neutral). Secondly, the electric field on

the surface of the cylinder is purely radial because the electric field is zero

within the cylinder and only surface charges, whose patches produce electric

fields normal to themselves, exist. Therefore, the constraint for the cylinder

to be equipotential is also satisfied. The second uniqueness theorem then

guarantees that the electric field produced by this charge distribution outside

the cylinder is correct. Applying Eq. (6.1) to the surface of the cylinder, we

can conclude that the surface charge distribution is indeed

σ(θ) = ρd cos θ = 2ε0E cos θ.

11. Third Uniqueness Theorem**

An intuitive proof goes as follows: suppose you had two electric fields,

E(x, y, z) and E′(x, y, z), that satisfy the conditions given in the problem.

Then, E(x, y, z) − E′(x, y, z) is a solution to the electric field within the

volume Ω when there is no net charge anywhere and when the normal com-

ponent of electric field is zero everywhere along the surface of S (boundary

of Ω). The second condition stems from the fact that specifying ∂V
∂n along

S ensures that the normal components of E and E′ are identical along S.
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Since there are no net charges (which produce electric field lines) and no

field lines entering the volume Ω from the outside, the entire volume Ω must

be completely devoid of field lines! That is,

E(x, y, z) −E′(x, y, z) = 0

E(x, y, z) = E′(x, y, z),

which shows that the electric field is unique within Ω. For the sake of rigor, we

shall now present a general proof that ties the various uniqueness theorems

together. Suppose that E1(x, y, z) and E2(x, y, z) are two solutions to the

electric field within a volume Ω with a stipulated charge density ρ(x, y, z).

Then, E3 = E1 − E2 is a solution to the electric field within Ω with zero

charge density everywhere. By Gauss’ law (you can see this as applying the

integral form of Gauss’ law to an infinitesimal cuboid),

∇ ·E3 =
ρ

ε0
= 0,

since ρ = 0 within Ω. If we let V3(x, y, z) denote the potential associated

with E3, as E3 = −∇V3,
∇ · ∇V3 = 0.

∇·∇V3 is usually written as ∇2V3 where ∇2 is the Laplacian. Thus, we have

∇2V3 = 0.

Now, consider the quantity ∇ · (V3∇V3). This can be rewritten via vector

calculus identities as

∇ · (V3∇V3) = V3∇2V3 + |∇V3|2.
Since ∇2V3 = 0 within Ω,

∇ · (V3∇V3) = |∇V3|2

within Ω. Integrating both sides over the volume Ω,˚
Ω
∇ · (V3∇V3)dΩ =

˚
Ω
|∇V3|2dΩ.

From the divergence theorem,
˝

Ω∇ · (V3∇V3)dΩ =
‚
S(V3∇V3) · dA where

S is the surface that bounds Ω. Thus,‹
S
(V3∇V3) · dA =

˚
Ω
|∇V3|2dΩ.
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Now, observe that if we specify sufficient boundary conditions to make

the left-hand side zero, the right-hand side will be the integral of some-

thing squared that yields zero — implying that the integrand must be

zero throughout Ω and we will thus have a unique electric field within Ω

(as ∇V3 = E2−E1). So what are the possible boundary conditions that can

be imposed? For example, if we stipulate the potential on S originally, the

potentials V1(x, y, z) and V2(x, y, z) associated with E1 and E2 must have

the same value on S — indicating that V3 = V1−V2 = 0 throughout S! Then,

the left-hand side is zero and we retrieve our first uniqueness theorem.

To see how the second and third uniqueness theorems can be deduced

from the above equation, we can rewrite ∇V3 = −E3 such that
‚
S(V3∇V3) ·

dA = −‚S V3E3·dA = −‚S V3E3⊥dA, where E3⊥ is the normal component

of E3 on S. If the entire surface S solely comprises the surfaces of conductors,

let the surface of the ith conductor that is part of S be Si. Then, V3 is a

constant over each surface (as a conductor must be equipotential). If we let

the constant V3 over the ith conductor surface be V3i,

−
‹
S
V3E3⊥dA = −

∑
i

V3i

‹
Si

E3⊥dA = −
∑
i

V3i
Qi
ε0

where Qi is the total charge on the ith conductor in the solution E3 (the

last equality comes from Gauss’ law). Therefore, if we had specified the total

charge on each conductor surface beforehand, we must have Qi = 0 for all i

(the crucial condition in the second uniqueness theorem) and hence a unique

electric field within Ω.

For the third uniqueness theorem, since we have −E3⊥ = ∂V3
∂n where the

latter is the partial derivative of V3 in the normal direction on the surface

S, we have
‹
S
V3
∂V3
∂n

dA =

˚
Ω
|∇V3|2dΩ.

Thus, if we had indicated the partial derivative of the potential on S in

the normal direction beforehand, ∂V1
∂n and ∂V2

∂n must have the same value

on S — implying that ∂V3
∂n = ∂V1

∂n − ∂V2
∂n = 0. Correspondingly, the electric

field within Ω must be unique and this proves our third uniqueness theorem.

Incidentally, the above procedure also shows that we can mix and match

boundary conditions. For example, we could specify the potential on some

portions of S, the total charges on some conducting surfaces that are part of

S and ∂V
∂n on the rest of S such that the electric field within Ω would still be

uniquely determined!
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12. Cylindrical Conductors***

We have shown via Gauss’ law that the electric field strength at a perpen-

dicular distance r from an infinitely long line of linear charge density λ is

E =
λ

2πε0r
.

The electric field vector is directed radially outwards from the cylindrical

axis. The potential at a perpendicular distance r from the line at x = −a,
relative to the origin, is then

V = −
ˆ r

a

λ

2πε0r
dr =

λ

2πε0
ln
a

r
.

A similar statement can be made for the other line. The potential at a point

(x, y, z) in space is then

V (x, y, z) =
λ

2πε0
ln

a√
(x+ a)2 + y2

− λ

2πε0
ln

a√
(x− a)2 + y2

=
λ

4πε0
ln

(x− a)2 + y2

(x+ a)2 + y2
.

Now, we wish to determine the points that correspond to a fixed potential V .

(x− a)2 + y2

(x+ a)2 + y2
= e

4πε0V
λ .

Defining the constant on the right-hand side as c for the sake of convenience,

(x− a)2 + y2 = c[(x+ a)2 + y2]

(1− c)x2 − 2a(1 + c)x+ (1− c)y2 + a2(1− c) = 0.

Simplifying the above yields[
x− a(1 + c)

1− c

]2
+ y2 =

a2(1 + c)2

(1− c)2
− a2

which is the equation of an infinitely long cylinder with its cylindrical axis

at x = a(1+c)
1−c , y = 0 and squared radius a2(1+c)2

(1−c)2 −a2. We can then apply the

result of this auxiliary problem to determine the image charges in the set-up

involving the two conductors of potential V0 and −V0 at x = −b and x = b.

We first consider the conductor of potential V0. The idea is to choose the pair

of infinitely long lines such that the equipotential cylinder of potential V0
coincides with the conductor with potential V0. Then, we have to precisely
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choose λ and a for the lines to achieve this. Since the axis of the conductor

with potential V0 is at x = −b and possesses radius R,

a(1 + c)

1− c
= −b

a2(1 + c)2

(1− c)2
− a2 = R2

a2 = b2 −R2

a =
√
b2 −R2.

The positive root is chosen as one can show that the negative root would

result in an invalid solution for c. To solve for λ, we substitute this expression

for a into the first equation.

1 + c

1− c
= − b√

b2 −R2

c =
b+

√
b2 −R2

b−√
b2 −R2

.

Substituting c = e
4πε0V0

λ ,

λ =
4πε0V0

ln b+
√
b2−R2

b−√
b2−R2

.

Therefore, the image charges that satisfy the boundary conditions of the

conductor at potential V0 are lines of linear charge densities λ = 4πε0V0

ln b+
√

b2−R2

b−
√

b2−R2

and −λ = − 4πε0V0

ln b+
√

b2−R2

b−
√

b2−R2

at x = −√
b2 −R2 and x =

√
b2 −R2. One can show

that these are the same image charges that satisfy the boundary condition

of the conductor with potential −V0 as well.

Now, we simply need to determine the total induced charges on the sur-

faces of the conductors to compute the capacitance of this system (we already

know that the potential difference is 2V0). Firstly, observe that the image

charges are completely enclosed in the volumes of the conductors. Then, one

can draw Gaussian surfaces encapsulating each cylinder and apply Gauss’

law to conclude, based on the electric flux through the Gaussian surfaces,

that the total induced charge on the surface of each cylinder is that of its

image charge. Therefore, the capacitance per unit length of this system of
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conductors is

C

l
=

λ

2V0
=

2πε0

ln b+
√
b2−R2

b−√
b2−R2

.

In the final problem, drawing the image charges would yield the exact same

set-up as the previous problem. However, the potential difference in this case

is half of the previous case as the potential difference is taken between the

plane and the cylinder, rather than between the two cylinders. The capaci-

tance per unit length is then twice the previous answer.

C ′

l
=

4πε0

ln b+
√
b2−R2

b−√
b2−R2

.

13. Joining Capacitors*

The potential differences across the two capacitors must be identical as they

are connected by conducting wires in parallel. The system is then equal to

two capacitors connected in parallel with a total charge q and equivalent

capacitance C1 + C2. The energy loss is then

ΔU =
q2

2(C1 + C2)
− q2

2C1
= − C2q

2

2C1(C1 + C2)
.

14. Cylindrical Breakdown*

Suppose that the inner conductor carries a linear charge density λ while the

outer conductor carries −λ. The electric field at a perpendicular distance r

from the axis of the capacitor, a ≤ r ≤ b, is given by Gauss’ law as

E =
λ

2πε0r
,

directed radially outwards from the inner cylinder. As λ is increased, the

breakdown electric field will occur at r = a.

Eb =
λ

2πε0a
.

The potential difference between the two conductors is

V = −
ˆ a

b
Edr =

λ

2πε0
ln
b

a
= Eba ln

b

a
.

The capacitance per unit length is

c =
λ

V
=

2πε0

ln b
a

.
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The stored energy per unit length is thus

u =
1

2
cV 2 =

1

2
· 2πε0
ln b

a

·
(
Eba ln

b

a

)2

= πε0E
2
b a

2 ln
b

a
.

To maximize the energy per unit length,

du

da
= 0

2a ln
b

a
+ a2 · −1

a
= 0

b

a
=

√
e

as a �= 0. To maximize the potential difference between the two conductors,

dV

da
= 0

ln
b

a
+ a · −1

a
= 0

b

a
= e.

15. Work on Capacitor Plates**

The electric field strength at the location of one infinitely large plate, due

to the other plate, is σ
2ε0

by Gauss’ law. Therefore, the electrostatic force on

the movable plate is

Felec = −σA · σ

2ε0
= −σ

2A

2ε0
,

where the negative sign indicates that the electrostatic force acts along the

direction that tends to reduce the distance between the two plates. The

external force applied in moving the plate must then be negative of this to

not result any change in kinetic energy of the plate. The work done by the

external force in increasing the plate separation by x is then

W = Fextx =
σ2Ax

2ε0
.

Now, consider the energy density of the field. The field between the two

plates has a uniform magnitude σ
ε0

and direction. The field outside the gap
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is zero. The energy density between the plates is then

1

2
ε0E

2 =
σ2

2ε0
.

The change in the potential energy associated with the electric field in

increasing the plate separation by x is the change in volume, Ax, multi-

plied by the energy density above. This must also be equal to the work done

by the external force.

W = ΔU =
σ2Ax

2ε0
.

The change in potential energy can also be determined via the potential

energy stored in a capacitor U = q2

2C . Then,

W = ΔU =
q2

2
·
(

1

C ′ −
1

C

)
=
σ2A2

2

(
d+ x

ε0A
− d

ε0A

)
=
σ2Ax

2ε0
.

16. Charge in Spherical Shell**

First and foremost, note that the outer surface of the shell is neutral every-

where. The region outside the shell has boundaries with zero potential (the

shell and infinity) and contains no net charge. Therefore, a zero potential

and electric field in this entire region is a valid solution to these boundary

conditions and must be the correct solution by the first uniqueness theorem.

Therefore, applying Eq. (6.1) to the outer surface of the shell, we conclude

that it is neutral everywhere.

Now, let the total charges induced on the sphere and the inner surface of

the shell be q1 and q2 respectively. Firstly, applying Gauss’ law to a concentric

spherical Gaussian surface that is within the shell and noting that the total

electric flux through it is zero, we can directly conclude that q1 + q2 = −q
since the total enclosed charge must be zero. Let set-up 1, that we will apply

Green’s reciprocity theorem to, be the original set-up in the problem. Let

set-up 2 be the configuration where the charge q is removed and the inner

sphere is maintained at a constant potential φ0. Due to the symmetry of

this system, when the inner sphere is maintained at potential φ0, the charge

distributions on all surfaces must be uniform. The shell must produce no

electric field within itself. Therefore, the potential in the region between the

sphere and the shell must decrease with the inverse of the radial distance

from the center as the inner sphere, which is the sole contributor to the

potential difference in the region between the sphere and the shell, is akin to

a point charge at its center. Consequently, the potentials at radial distances
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d and r2 are
φ0r1
d and V0r1

r2
in set-up 2. Applying Green’s reciprocity theorem

to our chosen set-ups,

q1φ0 + q · φ0r1
d

+ q2 · φ0r1
r2

= 0.

Solving this equation simultaneously with q1 + q2 = −q,

q1 = −(r2 − d)r1
(r2 − r1)d

q,

q2 = −(d− r1)r2
(r2 − r1)d

q.

To solve this problem without Green’s reciprocity theorem, we can spread

q into a uniform spherical shell of total charge q and this would not change

the total charges induced on the two relevant surfaces (see argument in

Section 6.3.1). Now, as an intermediate step, let us determine the capacitance

between two shells of radii a and b > a. Place q amount of charge on the

inner shell which will be distributed evenly over it due to spherical symmetry.

Since a spherical shell is akin to a point charge at its center in the region

outside it, the inner shell produces a potential q
4πε0r

at a radial distance r

that satisfies a ≤ r ≤ b. Therefore, the potential difference between the two

shells is ΔV = q
4πε0

( 1a − 1
b ). The capacitance is thus

C =
q

ΔV
=

4πε0
1
a − 1

b

.

Now, after dispersing the charge q into a spherical shell of charge, we can

further deem it as two shells of total charges −q1 and −q2. Then, the system
of the sphere, the spherical shell of charge and the outer conducting shell

is akin to two spherical-shell capacitors (between the sphere of charge q1
and the shell of charge −q1 and between the shell of charge −q2 and the

outer shell of charge q2) with total charges q1 and −q2 connected in series.

The capacitances of the inner and outer capacitors are C1 = 4πε0
1
r1

− 1
d

and

C2 = 4πε0
1
d
− 1

r2

. Imposing the condition that there is no potential difference

across this capacitor system (as the sphere and the conducting shell are

grounded),

q1
C1

− q2
C2

= 0.
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Solving this equation simultaneously with q1 + q2 = −q, we retrieve

q1 = −(r2 − d)r1
(r2 − r1)d

q,

q2 = −(d− r1)r2
(r2 − r1)d

q.

17. Spherical Capacitor**

The electric field at a radial distance r from the center of the spherical shell,

r1 ≤ r ≤ r2, is given by Gauss’ law as

E =
q

4πε0r2
.

The potential difference between the inner and outer shells is given by

ΔV = −
ˆ r1

r2

q

4πε0r2
dr =

q

4πε0

(
1

r1
− 1

r2

)
.

Since the potential energy stored in a capacitor is U = 1
2qΔV , the current

potential energy stored in the spherical shell is given by

U =
1

2
qΔV =

q2

8πε0

(
1

r1
− 1

r2

)
.

Integrating the energy density of the electric field would also yield the same

result. In the next problem, observe that q amount of charge will be uniformly

induced on the inner surface of the shell so that the electric field within the

shell is zero. This leaves −q amount of charge uniformly distributed on the

outer surface. We can determine the external work done by determining the

change in potential energy of the system. There are several methods to go

about this. Firstly, we can sum the potential energy of the charge due to the

two shells of charges and the potential energy between the shells of charges

(which was the previous result). To compute the former, simply observe that

the potential at the center of a spherical shell of charge Q and radius R is

simply

Q

4πε0R
,

as all charges are equidistant from the center. The potential at the center

due to the two spherical shells is then

Vcenter =
q

4πε0r1
− q

4πε0r2
.
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The potential energy of the charge due to the shells is then

Ucharge = −qVcenter = q2

4πε0r2
− q2

4πε0r1
.

The total potential energy of the initial set-up is then

U = Ucharge + Ushells =
q2

4πε0r2
− q2

4πε0r1
+

q2

8πε0

(
1

r1
− 1

r2

)

=
q2

8πε0r2
− q2

8πε0r1
.

The potential energy of the set-up after the charge has been extracted is

zero. Therefore, the external work done is

W = ΔU = 0− U =
q2

8πε0

(
1

r1
− 1

r2

)
.

There is another perspective to the change in potential energy involving the

electric fields. The electric field of the initial set-up is that of a point charge,

excluding the portion in the spherical shell of inner radius r1 and outer radius

r2 while the electric field of the final set-up is simply that of a point charge.

Therefore, the increase in potential energy is that carried by the field in the

spherical shell — this is essentially the previous result. Thus,

W =
q2

8πε0

(
1

r1
− 1

r2

)
.

18. Tilted Plate**

We define the origin to be at the left edge where the distance between the

plates is the smallest.

Figure 6.25: Tilted plate

Define the x-axis to be positive rightwards in Fig. 6.25. The separation

between the plates at a coordinate x is d+ x sin θ. The set-up can be taken

to be many capacitors of infinitesimal thickness, obtained from making myr-

iad vertical cuts, connected in parallel since the potential differences across
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them are identical due to the equipotential nature of both plates. Each of

these infinitesimal plates has length dx and hence area wdx. The plate sep-

aration of an infinitesimal plate at coordinate x is again d + x sin θ. Since

θ is small, the electric field between the plates is approximately vertical so

the capacitance of an infinitesimal plate is analogous to that of a parallel-

plate capacitor, ε0
wdx

d+x sin θ . The total capacitance of the system is obtained

by determining the equivalent capacitance of these infinitesimal elements.

Since the infinitesimal capacitors are connected in parallel, the equivalent

capacitance is simply the sum (integral) of the individual capacitances.

Ceq =

ˆ l

0

ε0w

d+ x sin θ
dx

=
[ ε0w
sin θ

ln |d+ x sin θ|
]l
0

=
ε0w

sin θ
ln

(
1 +

l sin θ

d

)
.

19. Half-Filled Capacitor**

Define the x-axis to be positive rightwards. At a distance x from the left

end, the height of the dielectric is h− xh
l while that of vacuum is xh

l . Now,

consider the section between x-coordinates x and x + dx. It is composed

of two capacitors of capacitances ε0
wdx
hx
l

= ε0
wldx
hx and ε1

wdx
h−hx

l

in series (the

capacitances are again analogous to that of a parallel-plate capacitor because

h � l and h � w such that the electric field is approximately vertical

between the two plates). The equivalent capacitance of this section is then

dC =
1

hx
ε0wldx

+
h−hx

l
ε1wdx

=
wε0ε1dx

(ε1 − ε0)
hx
l + hε0

.

The total capacitance of the system is then obtained by integrating the above

over all sections.

C =

ˆ l

0

wε0ε1dx

(ε1 − ε0)
hx
l + hε0

=
wlε0ε1

(ε1 − ε0)h
ln
ε1
ε0

as the sections are connected in parallel, since the potential differences across

them are identical due to the equipotential nature of the plates.
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20. Rising Water*

We have shown that the force on a dielectric that partially fills a parallel-

plate capacitor is

F =
(κ− 1)ε0V

2a

2d

and tends to pull the dielectric further into the capacitor. In this case, the

fluid level rises until the weight of the additional fluid above the level in the

beaker balances F .

(κ− 1)ε0V
2a

2d
= ρga2h

h =
(κ− 1)ε0V

2

2ρgad
.

21. Parallel Plates with Dielectrics*

Let the upper and lower plates be those with charge densities σ and −σ
respectively. The electric displacements, electric fields and polarizations

within each slab should be uniform as the plates are effectively infinite. Due

to this infinite nature, these quantities should only be perpendicular to the

plates. Drawing a Gaussian pillbox with one base inside the upper plate and

another base within the first dielectric (the bases are parallel to the plates),

Gauss’ law for electric displacement yields

−D1A = σA

D1 = −σ
where the negative sign indicates that D1 points in the downwards direction

(from the upper plate to the lower plate). Applying a similar procedure to

a Gaussian pillbox that straddles the lower plate and lies within the second

dielectric, the electric displacement in the second dielectric is

D2 = −σ.
Correspondingly, the electric fields within the two dielectrics are

E1 =
D1

ε1
= − σ

ε1
,

E2 =
D2

ε2
= − σ

ε2
.
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The polarizations are

P1 = D1 − ε0E1 = −(ε1 − ε0)σ

ε1
,

P2 = D2 − ε0E2 = −(ε2 − ε0)σ

ε2
.

There are no volume bound charges anywhere as the polarizations are uni-

form within each dielectric. The bound surface charge density at the upper

plate is

P1 = −(ε1 − ε0)σ

ε1
,

while the bound surface charge density at the lower plate is

−P2 =
(ε2 − ε0)σ

ε2
.

Since there are no surface free charges at the interface between the two

dielectrics, the discontinuity in electric field at the interface must purely be

engendered by the bound surface charges there. The bound surface charge

density at the interface is thus

ε0(E1 − E2) =
ε0(ε1 − ε2)σ

ε1ε2
.

Another way to derive this is to see it as the superposition of the bound

charges that P1 and P2 would have caused at the interface.

−P1 + P2 =
ε0(ε1 − ε2)σ

ε1ε2
.

22. Dielectric with Cavity*

Since this problem is effectively equivalent to a dielectric sphere, surrounded

by vacuum, under a uniform external field E0 with the roles of the dielectric

and vacuum interchanged, we propose that the desired electric field is equal

to answer for the electric field of the dielectric sphere, after replacing κ

by 1
κ . Let us check if this suggested solution is coherent with the free charge

distribution in this problem.

Since there are no free volume charges everywhere, there are no bound

volume charges everywhere. Hence, the surface integral of the electric field

must be zero for all Gaussian surfaces lying entirely in the cavity or in the

dielectric. Our proposed solution easily satisfies this requirement as there

were also no free volume charges everywhere in the case of a dielectric sphere
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(swapping κ for 1
κ does not change this as it is equivalent to choosing a

dielectric sphere with dielectric constant 1
κ instead of one with κ). Similarly,

the line integral of our proposed electric field is also guaranteed to be path-

independent.

Now that we are sure that our proposed solution is valid inside the cav-

ity and inside the dielectric, we have to ensure that it fulfils the boundary

conditions. The only condition that can conceivably fail (the continuity of

potential and the parallel component of electric field are natural since they

were satisfied by the dielectric sphere) is

ε2E⊥2 = ε1E⊥1 + σf .

If we let E⊥2 denote the field outside of the cavity or the dielectric sphere

and E⊥1 denote the field inside the sphere or dielectric sphere, we require

κε0E⊥2 = ε0E⊥1

for our current problem (we have noted that σf = 0). However, we also know

that for the dielectric sphere,

ε0E⊥2 = κε0E⊥1,

so the substitution of 1
κ for the κ’s in the electric field of the dielectric sphere

is appropriate. It is paramount to observe that this substitution is valid only

because σf was zero — otherwise, no such analogy can satisfy the boundary

condition. Replacing κ in the electric field of the dielectric sphere with 1
κ ,

the electric field due to the current set-up is

Ein =
3κ

2κ+ 1
E0

within the cavity and

Eout(r) =

(
2(1− κ)R3

(1 + 2κ)r3
+ 1

)
E0 cos θr̂ +

(
(1− κ)R3

(1 + 2κ)r3
− 1

)
E0 sin θθ̂

outside the cavity, with respect to spherical coordinates about the center of

the cavity.

23. Dipole in Dielectric Sphere**

Firstly, consider the effects of embedding a single point charge q at the center

of the spherical dielectric. Due to the spherical symmetry of this system,
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applying Gauss’ law for electric displacement to a spherical Gaussian surface

would yield

D =
q

4πr2

at a radial distance r from the center of the sphere. This result is valid for

both regions outside and inside the sphere. The electric fields outside and

inside the sphere are thus

Er≥R =
D

ε0
=

q

4πε0r2
,

Er<R =
D

κε0
=

q

4πκε0r2
.

We see that the dielectric effectively reduces the magnitude of the point

charge 1
κ for regions within the sphere while leaving the electric field outside

the sphere unchanged. Since an ideal dipole can be seen as the superposition

of two opposite point charges with a separation that tends to zero, the field

outside of the sphere in the original problem must simply be that due to p

in vacuum!

Er≥R(r) =
1

4πε0r3
[3(p · r̂)r̂ − p].

Meanwhile, the field inside the sphere is akin to that produced by an ideal

dipole with a scaled dipole moment p
κ .

Er<R(r) =
1

4πκε0r3
[3(p · r̂)r̂ − p].

24. Spherical Conductor in Dielectric**

Let us first check if a potential of the form V (r) = A
r (outside the conductor)

is coherent with the charge distribution outside the conductor. Because there

are no free volume charges anywhere, no net volume charges exist in the

region outside the conductor. This potential naturally fulfils this condition

as it is akin to that produced by a point charge located at the origin and no

charge elsewhere.

A more rigorous proof is to use Gauss’ law. Applying Gauss’ law to an

infinitesimal cuboid, we have

∇ ·E =
ρ

ε0
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where ρ is the volume charge density. Since E = −∇V ,

∇ · ∇V = ∇2V = − ρ

ε0
,

where ∇2 is known as the Laplacian operator. For a scalar field that only

depends on the radial distance from the origin r,

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
=

1

r2
∂

∂r
(−A) = 0

everywhere outside the conductor — proving that ρ = 0 outside the conduc-

tor. Next, we have to check if A
r satisfies the various boundary conditions.

Firstly, it trivially causes the surface of the spherical conductor to be

equipotential. Secondly, the electric field associated with V (r) = A
r is

E(r) = −∇V =
A

r2
r̂,

which is directed solely along the radial direction. This also trivially satisfies

the condition that the normal component of electric displacement is contin-

uous over the vacuum-dielectric interface (because there is no normal com-

ponent in the first place since D is in the direction of the strictly radial E).

Furthermore, the parallel components of electric field and potentials on the

two sides of the interface are also naturally continuous.

Therefore, we see that the potential V (r) = A
r meets the various condi-

tions outside of the conductor! Now, we simply have to tweak A such that

it is consistent with the total free charge on the conductor and assert that

V (r) is the correct potential since the potential is guaranteed to be unique

by the conditions in the problem.

Our proposed potential implies that the electric displacement at the

surface of the conductor is

ε0E =
ε0A

R2
r̂

along the conductor-vacuum interface and

εE =
εA

R2
r̂

along the conductor-dielectric interface. Since the surface integral of the

electric displacement over the surface of the spherical conductor must reflect
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the total free charge on the conductor by Gauss’ law,

ε0A

R2
· 2πR2 +

εA

R2
· 2πR2 = Q

=⇒ A =
Q

2π(ε0 + ε)
,

where we have noted that half of the conductor surface is covered by the

dielectric while the other half is surrounded by vacuum. Thus, the potential is

V (r) =
Q

2π(ε0 + ε)r

for regions outside the conductor and

V =
Q

2π(ε0 + ε)R

within the conductor (since it is equipotential).

25. Charge Above Infinite Dielectric Plane**

There are no free charges on the surface of the dielectric or within the dielec-

tric. Therefore, there are no bound volume charges and hence no net volume

charges within the dielectric by Eq. (6.36). Only bound surface charges can

exist on the interface between the dielectric and vacuum.

Define the origin such that coordinates of q are (0, 0, d). Now, since the

potential at infinity should be zero and we know the free charge distribution

in all space (which is just q), the electric field is unique in all space by the

(modified) first uniqueness theorem. Before proceeding to guess a solution,

it is beneficial to write down the boundary conditions we have to satisfy.

If we let Etop(x, y, z) and Ebot(x, y, z) denote the electric fields above and

below the dielectric-vacuum interface. By Eq. (6.37),

ε0Etop(x, y, 0) = κε0Ebot(x, y, 0)

Etop(x, y, 0) = κEbot(x, y, 0).

Furthermore, the potentials must be continuous at the interface.

Vtop(x, y, 0) = Vbot(x, y, 0).

Now, we can construct image charge configurations for Etop and Ebot. As

always, we must be cautious in not placing image charges in a volume of

interest as that would change the charge distribution in that volume. For

Etop in the volume z ≥ 0, we can imagine that the entire z < 0 region is
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equivalent to an image charge qb being placed at (0, 0,−d). qb is a variable to

be determined but it represents the total charge plastered on the dielectric-

vacuum interface (this is a consequence of Gauss’ law applied to an infinite

pillbox that contains the entire interface but excludes q). The field along the

interface due to this configuration is

Etop(x, y, 0) =
(qb − q)d

4πε0(x2 + y2 + d2)
3
2

.

For Ebot in the volume z < 0, we can imagine that the entire region z ≥ 0

region is equivalent to an image charge q+qb placed at (0, 0, d). Note that we

choose a charge of magnitude q+qb as it is ordained by Gauss’ law applied to

a surface that bounds z ≥ 0 (as such a surface contains the charge q and all

charges on the interface which amounts to qb). The field along the interface

due to this is

Ebot(x, y, 0) =
−(qb + q)d

4πε0(x2 + y2 + d2)
3
2

.

For Etop(x, y, 0) = κEbot(x, y, 0), we must have

qb =
1− κ

1 + κ
q.

Furthermore, it is easy to see that the potentials due to the top and bot-

tom image configurations are continuous along z = 0. Therefore, the force

experienced by q is

Fz =
qbq

4πε0(2d)2
=

(1− κ)q2

16πε0(1 + κ)d2
.

Actually, this is one of the rare problems that can be directly solved without

any guessing. Since the bound charge distribution purely consists of surface

charges along the interface, the normal component of electric field above

or below (x, y, 0) is solely due to the superposition of that produced by q

at (x, y, 0) and that produced by the surface charge σb(x, y, 0) (the surface

charges at other locations do not contribute to a normal electric field here).

The contribution due to the latter is simply σb
2ε0

(outwards) by Gauss’ law

and symmetry. Therefore, the net normal component of electric field directly

below the interface, at coordinates (x, y, 0−), is

En(x, y, 0
−) = − σb

2ε0
− qd

4πε0(x2 + y2 + d2)
3
2

.
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Next, the normal component of polarization Pn in the dielectric at z = 0 is

Pn(x, y, 0
−) = (κ− 1)ε0En(x, y, 0

−).

However, we also know that Pn(x, y, 0
−) is precisely σb(x, y, 0) as σb = P · n̂!

Thus,

En(x, y, 0
−) =

σb
(κ− 1)ε0

.

Substituting this into the first equation,

σb
(κ− 1)ε0

= − σb
2ε0

− qd

4πε0(x2 + y2 + d2)
3
2

σb = − (κ− 1)qd

2πε0(1 + κ)(x2 + y2 + d2)
3
2

.

Observe that this is simply the induced surface charge on an infinite con-

ducting plane, due to a charge q placed a distance d above it, scaled by a

factor κ−1
1+κ . Consequently, the force on q in this situation must be the force

on q due to an infinite conducting plane (which was previously derived),

multiplied by κ−1
1+κ .

Fz =
(1− κ)q2

16πε0(1 + κ)d2
.
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Magnetism

In this chapter, we will study another form of charge-dependent interactions

between moving charges and the concept of a magnetic field.

7.1 Lorentz Force Law and the Definition

of Magnetic Field

Empirically, it is observed that two current-carrying wires exert forces on

each other. In search for an explanation, one might be tempted to say that

this may be due to each wire carrying a net charge and that the force is purely

electrostatic in nature. However, stationary charges placed next to a current-

carrying wire or two experience no such force. Only when the charges start

moving do they experience a force. Hence, there must be another interaction

that is non-electrostatic and velocity-dependent in some manner.

The Lorentz force law states that the total charge-dependent force on a

charge that has a certain instantaneous position and instantaneous veloc-

ity v is

F = qE + qv ×B, (7.1)

where E and B are the electric field and magnetic field at the instantaneous

position of the charge, respectively. The first term is the familiar Coulomb

force. The second term is the magnetic force on which the magnetic field is

defined. That is, B at a point (with a known E) is such that the expression

for the force on a test charge q placed at that point is given by Eq. (7.1).

Again, the magnetic field is a vector field whose utility lies in the fact that

identical charges with the same velocities respond to identical magnetic fields

in the same manner, regardless of the exact source of the magnetic fields.

431
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Zero Work Done by Magnetic Force

A corollary of the above expression for the magnetic force is that a magnetic

force does no work on a charged particle as it always acts in the direction

perpendicular to a charge’s instantaneous velocity and thus instantaneous

displacement.

W =

ˆ
F · ds =

ˆ
q(v ×B) · v dt = 0. (7.2)

This implies that if a charge is influenced solely by a magnetic force, its

speed remains constant though its direction of velocity may vary.

Force on a Current-Carrying Wire

Stemming from Eq. (7.1), the magnetic force on a thin wire carrying current

I can be calculated as

F =

ˆ
v ×B dq =

ˆ
I ds×B, (7.3)

where ds is an infinitesimal current element along the wire since the current

of a thin wire is the rate of charge transport across a particular point on the

wire.

Ids =
dq

dt
ds = dq

ds

dt
= vdq.

The integration in Eq. (7.3) is performed over the entire current-carrying

wire. For a straight wire of length L which carries a current I at an angle θ

with respect to a uniform magnetic field B, the magnitude of the magnetic

force on the wire is

F = BIL sin θ.

The direction of this force can be determined by evaluating the cross product.

Actually, this result is valid for any arbitrarily shaped wire carrying current

between two terminals in a uniform magnetic field, as we shall prove in

the following problem. In such cases, L becomes the straight line distance

between the two terminals and the direction of the magnetic force on the

wire is the same as that of a straight wire delivering current from the starting

point to the ending point.

Problem: A finite wire of an arbitrary shape, with terminals A and B, lies

in a region containing a uniform external magnetic field, B. The wire carries

a current I from A to B. If the vector pointing from A to B is l, find the
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magnetic force on the wire. Hence, what can you say about the force on a

current loop in a uniform magnetic field?

The magnetic force on the wire is given by

F = I

ˆ
ds×B

= I

(ˆ
ds

)
×B

= Il ×B,

where the second equality is possible because B is uniform in space. This is

exactly the force on a straight wire, which has length l, that carries current

I from the first point to the second. Since F = 0 when l = 0, an interesting

corollary is that there is no net magnetic force on a current loop in a uniform

magnetic field.

In fact, we can do much better than a single wire. Suppose an arbitrary

arrangement of thin wires carries a total current I from A to B. The wires

can merge and split freely. We claim that the total force F on these wires

is still given by the previous expression. To see why, suppose that we track

an infinitesimal current dI along an arbitrary path P from A to B. The

contribution to F due to this current is dF = dIl × B. Summing over all

currents,

F =

ˆ
dIl ×B =

(ˆ
dI

)
l ×B = Il ×B.

7.2 Magnetic Field

Now that we have understood how a charge responds to a magnetic field, let

us analyze how a magnetic field arises. Surprisingly, moving charges are not

only the victims of a magnetic field but are also the sources as well.

Unfortunately, there are no empirical laws for the magnetic field of an

isolated point charge so we cannot really determine the magnetic field of a

system of moving charges by piling the contributions of point charges. How-

ever, there are laws for systems involving steady currents which are adequate

forms of consolation as our everyday experiences with moving charges often

involve currents in wires.

A steady current refers to a continuous flow of charge that is not varying

with time — this requires no accumulation or loss of charge at any point

in space. Examples would include currents that are cyclic and currents that

travel to infinity (which is not really realistic). Finite, non-cyclic wires, on
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the other hand, do not carry a steady current as there is charge retrieved

from one end and deposited on the other end. Moving on, the significance

of a steady current is to generate a steady magnetic field that is not vary-

ing with respect to time, just like how stationary charges produce steady

electric fields. A situation involving steady magnetic fields is often known as

magnetostatics.

The Biot-Savart law quantifies the magnetic field at a point P due to a

steady thin current I as

B =
μ0
4π

ˆ
Ids× r̂

r2
(7.4)

where ds is an infinitesimal displacement along the current-carrying element

and r is the vector pointing from that infinitesimal element to the point

of interest, P. The integration is performed over the entire current-carrying

entity. The constant μ0 is known as the permeability of free space which has

a numerical value of 1.257 × 10−6 mkg s−2A−2. More generally, the current

may not be transmitted along a thin strip.

Figure 7.1: Line, surface and volume currents

Depicted in Fig. 7.1 are three forms of infinitesimal current elements

which have different spatial dimensions. The simplest is a current line ele-

ment that flows over an infinitesimal cross section — this is the case that

we have considered hitherto. Next, current could also flow on a thin sheet.

Such currents are known as surface currents and can be parameterized by the

surface current density K whose magnitude is the current per unit perpen-

dicular length dI
dl (dl is the infinitesimal length perpendicular to the current

flow). K is a vector that points in the direction of the current. In such situa-

tions, we can then substitute Ids = KdA into the Biot-Savart law where dA

is the area of an infinitesimal surface element on the current sheet. Finally,

we can have a volume current which flows across a finite cross sectional

area — a realistic wire is a vivid example. Then, the volume current den-

sity J , which is the current per unit cross sectional area in the direction

of current flow, can be used to characterize the current. An infinitesimal

current-carrying element of volume dV then corresponds to Ids = JdV .
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In light of the above expressions, the Biot-Savart law can be expressed

in the following forms for line, surface and volume currents respectively.

B =
μ0I

4π

ˆ
ds× r̂

r2
=
μ0
4π

¨
KdA× r̂

r2
=
μ0
4π

˚
JdV × r̂

r2
, (7.5)

where we have included double and triple integrals to explicitly indicate that

we are integrating over area and volume distributions. Incidentally, though

a single moving point charge q traveling at a velocity v is the ultimate

antithesis of a steady current as the charge in all space is evidently not

constant, the non-relativistic approximation1 of the magnetic field produced

at a point P by it is

B =
μ0q

4π

v × r̂

r2
(7.6)

where r is the vector pointing from the point charge to point P. Note that this

is a completely different equation from the Biot-Savart law (which cannot

be applied here) that is derived from special relativity. One can obtain the

above expression from the Biot-Savart law via the sleight-of-hand Ids = qv,

but this is an incorrect application of the Biot-Savart law.

To obtain a better understanding of the meaning of the terms in the

Biot-Savart law, consider the following examples.

Problem: A thin conducting ring of radius R carries an anti-clockwise

current I. Determine the magnetic field along a perpendicular axis passing

through the center of the ring.

Figure 7.2: Current-carrying ring

Due to the circular symmetry of the set-up in Fig. 7.2, there can only be

a magnetic field along the axis of the ring which we define as the z-direction,

but we shall pretend that we do not know this for now to better illustrate the

1This is the regime where v � c, with c being the speed of light in vacuum.
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terms in the Biot-Savart law. Consider a point P that is a distance z above

the center of the plane of the ring. The contribution to the magnetic field at

P due to an infinitesimal segment Rdθ of the ring at angular coordinate θ is

dB =
μ0I

4π

ds× r̂

r2
.

The infinitesimal length element ds in this case is

ds = Rdθ

⎛
⎝− sin θ

cos θ

0

⎞
⎠ ,

while the vector pointing from this infinitesimal segment to point P is

r̂ =

⎛
⎜⎝
− R√

R2+z2
cos θ

− R√
R2+z2

sin θ
z√

R2+z2

⎞
⎟⎠.

Furthermore, the distance between this infinitesimal segment and P is r =√
R2 + z2. The contribution to the magnetic field at P by this infinitesimal

current element is then

dB =
μ0I

4π(R2 + z2)
·Rdθ

⎛
⎝− sin θ

cos θ

0

⎞
⎠×

⎛
⎜⎝
− R√

R2+z2
cos θ

− R√
R2+z2

sin θ
z√

R2+z2

⎞
⎟⎠

=
μ0IRdθ

4π(R2 + z2)
3
2

⎛
⎝z cos θz sin θ

R

⎞
⎠.

Technically, we cannot say that this is the magnetic field due to this infinites-

imal segment, as the Biot-Savart law only applies to steady currents. We can

only say that the total magnetic field at point P due to the entire ring is

obtained from integrating the above from θ = 0 to θ = 2π. The sin θ and cos θ

terms vanish after this integration — only the z-component of the magnetic

field survives as expected.

Bz(z) =

ˆ 2π

0

μ0IR
2dθ

4π(R2 + z2)
3
2

=
μ0IR

2

2(R2 + z2)
3
2

.

Problem: Determine the magnetic field everywhere due to a thin, long wire

that carries a current I.

Orient the wire such that the current I flows along the x-axis, towards

the positive direction. The magnetic fields at all points with the same y and
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z-coordinates but different x-coordinates are identical due to the infinite

nature of the wire such that if we are interested in the magnetic field at a

certain point, we can consider a corresponding point at x = 0. Furthermore,

we can always orient the y-axis such that this new point of interest lies on

the y-axis. Therefore, if we determine the magnetic field at point P with

coordinates (0, ρ, 0), we will have solved for the magnetic field everywhere.

Now, consider an infinitesimal segment of wire ds = (dx, 0, 0) at x-

coordinate x. The separation vector between this segment and P is r =

(−x, ρ, 0) such that r̂ = (− x
x2+ρ2

, ρ
x2+ρ2

, 0) and r2 = x2+ ρ2. Integrating the

contributions from all such segments with x-coordinates ranging from −∞
to +∞, the Biot-Savart law yields the magnetic field at P as

B =
μ0I

4π

ˆ +∞

−∞

1

x2 + ρ2

⎛
⎝dx0

0

⎞
⎠×

⎛
⎜⎜⎝
− x√

x2+ρ2
ρ√
x2+ρ2

0

⎞
⎟⎟⎠

=
μ0I

4π

ˆ +∞

−∞

ρdx

(x2 + ρ2)
3
2

⎛
⎝0

0

1

⎞
⎠.

To evaluate the integral for the z-component, use the substitutions x =

ρ tan θ and dx = ρ sec2 θdθ.

Bz =
μ0I

4π

ˆ π
2

−π
2

ρ

ρ3 sec3 θ
· ρ sec2 θdθ

=
μ0I

4πρ

ˆ π
2

−π
2

cos θdθ

=
μ0I

2πρ
.

Applying this result for general P, the magnetic field strength is purely

dependent on the radial distance ρ from the wire.

B(ρ) =
μ0I

2πρ
.

Furthermore, the magnetic field is solely azimuthal, as seen from the fact

that it is perpendicular to the plane containing the wire and a line joining a

point on the wire to P. Writing the above in vector form,

B(ρ) =
μ0I

2πρ
φ̂,
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where φ̂ is the azimuthal unit vector whose positive direction is given by

applying the right-hand-grip rule with your thumb pointing in the direction

of the current I.

Currents Formed by Rotations

In some cases, currents are formed by rotating charge distributions about an

axis with a certain angular velocity ω. Then, there are elegant expressions

for the surface and volume current densities K and J . The magnitude of the

current carried by an infinitesimal surface element with area dA and surface

charge density σ can be written as

dI =
dq

dt
=
dq

dA
· ds
dt

· dl = σ · ds
dt

· dl = σvdl,

where ds and dl are the infinitesimal lengths of the element, parallel and

perpendicular to its velocity. It can then be seen that the magnitude of the

surface current density is

K =
dI

dl
= σv.

Furthermore, one can easily see that the direction of K should be parallel

to the velocity of this element v as well. Therefore,

K = σv. (7.7)

One can use a similar analysis to conclude that the volume current den-

sity of an infinitesimal volume element with volume charge density ρ and

velocity v is

J = ρv. (7.8)

These expressions are completely general. Now, if we define our origin to be

at a point along the axis of rotation, the velocity of an infinitesimal element

at position vector s is

v = ω × s.

The respective current densities are then

K = σω × s, (7.9)

J = ρω × s. (7.10)

One can then substitute these expressions for the current densities in the

Biot-Savart law.
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Problem: In Fig. 7.3, an insulating disk of radius R possesses a uniform

surface charge density σ and is rotating in the anti-clockwise direction with

an angular velocity ω about its central axis. Find the magnetic field of a

point that is at a distance h above the disk, along the axis of the disk.

Figure 7.3: Rotating disk

Referring to Fig. 7.4, consider the plane of the disk in polar coordinates.

We will use s and φ to denote the radial distance and azimuthal angle.

Figure 7.4: Vectors

Consider an infinitesimal area element dA = sdφds at (s, φ). It has posi-

tion vector s = (s cosφ, s sinφ, 0) and thus surface current density

K = σ

⎛
⎝0

0

ω

⎞
⎠×

⎛
⎝s cosφs sinφ

0

⎞
⎠ = σ

⎛
⎝−ωs sinφ
ωs cosφ

0

⎞
⎠.

The separation vector r pointing from this infinitesimal element to the point

of interest P is

r = r

⎛
⎝− sin θ cosφ

− sin θ sinφ

cos θ

⎞
⎠ ,
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where we will defer the substitutions of the expressions for r and θ till later.

Applying the Biot-Savart law,

B =
μ0σ

4π

ˆ R

0

ˆ 2π

0

sdφds

r2

⎛
⎝−ωs sinφ
ωs cosφ

0

⎞
⎠×

⎛
⎝− sin θ cosφ

− sin θ sinφ

cos θ

⎞
⎠

=
μ0σ

4π

ˆ R

0

ˆ 2π

0

ωs2dφds

r2

⎛
⎝cos θ cosφ

cos θ sinφ

sin θ

⎞
⎠.

The x- and y-components disappear as the integrals of sinφ and cosφ over

an entire period yield zero. Then, we only need to evaluate the z-component.

Bz =
μ0σω

2

ˆ R

0

s2 sin θ

r2
ds.

Substituting s = h tan θ, ds = h sec2 θdθ and r = h sec θ,

Bz =

ˆ tan−1 R
h

0

μ0σωh

2

sin3 θ

cos2 θ
dθ

=

ˆ tan−1 R
h

0

μ0σωh

2

sin θ(1− cos2 θ)

cos2 θ
dθ

=

ˆ tan−1 R
h

0

μ0σωh

2

sin θ

cos2 θ
dθ −

ˆ tan−1 R
h

0

μ0σωh

2
sin θdθ.

Using the substitution u = cos θ, du = − sin θdθ for the first integral,

Bz =

ˆ h√
h2+R2

1
−μ0σωh

2

1

u2
du−

ˆ tan−1 R
h

0

μ0σωh

2
sin θdθ

=

[
μ0σωh

2

1

u

] h√
h2+R2

1

+

[
μ0σωh

2
cos θ

]tan−1 R
h

0

=
μ0σωh

2

(√
h2 +R2

h
− 1

)
+
μ0σωh

2

(
h√

h2 +R2
− 1

)

=
μ0σω

2

(
2h2 +R2

√
h2 +R2

− 2h

)
.

7.2.1 Magnetic Field Lines

With Biot-Savart’s law, the magnetic field in all space can be calculated.

However, how can we visualize this magnetic field? To illustrate the direction
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of the magnetic field, magnetic field lines, which are continuous curves which

point in the direction of the magnetic field at each point, can be drawn. In

magnetism, we usually consider current-carrying entities as our elementary

building blocks, as opposed to point charges, because most laws are only

valid for steady currents. Thus, we shall study the magnetic field lines due

to a steady state current-carrying wire. As the wire is axial-symmetric, the

magnetic field generated by it should also obey such a property. The magnetic

field lines due to current-carrying wires are depicted in Figs. 7.5 and 7.6 (they

are concentric circles in a transverse cross section, as seen from the result

derived previously for a long wire).

Figure 7.5: Current into the page

Figure 7.6: Current out of the page

The cross and dot represent current going into and coming out from the

page respectively. One can imagine firing an arrow into the page — the arrow

head, which corresponds to the cross, will point into the page while the tail,

which corresponds to the dot, will point out of the page.

It can be observed that magnetic field lines always exist in loops. To

remember the direction of the magnetic field line loops, you can grasp your

right hand to form a spiral and point your thumb in the direction of the

current. Then, your fingers will curl in the direction of the magnetic field.

This is known as the right-hand-grip rule.
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Magnetic field lines do not originate from or terminate anywhere. In fact,

one of Maxwell’s equations states that the closed surface integral of a mag-

netic field over an arbitrary closed surface S is zero.2 This is intuitive as

magnetic field lines, which exist in loops, that enter a volume must also exit

from it. ‹
S
B · dA = 0. (7.11)

Electric field lines, on the other hand, face no such constraint and instead,

emanate from a positive charge and return to a negative charge. We have

established that electric field lines cannot have any loops from the line inte-

gral of an electric field. Another perspective to this is that the existence of

a loop requires electric field lines to start and end at the same point and

hence implies that the charge there must be simultaneously positive and

negative — an absurd criterion!

7.2.2 Magnetic Energy Density

Similar to the electric field, a magnetic field can be associated with a volume

energy density uB = B2

2μ0
such that an infinitesimal volume element dV is

associated with energy

dU =
B ·B
2μ0

dV =
B2

2μ0
dV.

Integrating this over all space, the energy “stored” in a magnetic field can

be computed as

U =

ˆ
allspace

B2

2μ0
dV. (7.12)

Again, this expression can be derived from considering the work done by an

external agent in introducing currents but the proof requires tools beyond

the scope of this book. However, we will understand why work is required

2You can actually prove this directly for magnetostatic fields given by Biot-Savart’s law
(though this requires some vector calculus) like how Gauss’ law can be proven for electro-
static fields from Coulomb’s law. However, we should treat the nullity of the closed surface
integral of the magnetic field (alas, this equation does not have a name) and Gauss’ law as
fundamental laws rather than corollaries as we will soon discover that magnetic and elec-
tric fields can literally be induced by another mechanism (i.e. the sources of magnetic and
electric fields need not only be currents and charges). Even in these non-magnetostatic and
non-electrostatic regimes, the nullity of the closed surface integral of the magnetic field
and Gauss’ law still hold — the magnetic and electric fields now comprise both the static
and induced portions.
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to create currents and deduce another expression for the energy stored in a

magnetic field in the next chapter.

7.3 Ampere’s Law

In a system that is constituted by steady currents, an equivalent but some-

what more convenient form of the Biot-Savart law exists. Ampere’s law states

that the closed loop integral of the magnetic field along an arbitrary cyclic

contour is proportional to the amount of current Ienc cutting perpendicu-

larly to a surface3 S bounded by the loop (i.e. surface integral of the current

density over S), with the constant of proportionality being μ0. For planar

loops, we usually choose S to be the plane of the loop so we shall refer to

Ienc as the current enclosed or encased in the case of planar loops henceforth

(but keep in mind that only the perpendicular component matters). Recall

that a closed loop integral refers to the sum of values of the dot product

of a vector field with infinitesimal length elements — which are vectors —

computed along a cyclic path.˛
B · ds = μ0Ienc. (7.13)

The loop chosen to evaluate the above integral is often known as the Ampe-

rian loop. Now, there seemingly lies an ambiguity regarding the positive

direction of Ienc. To rectify this muddy point, we use the right-hand-grip

rule — curl your palm in the direction of the integration along the Ampe-

rian loop. Your straightened thumb will point in the positive direction of

current.

Generally, the integral on the left-hand side is non-trivial and onerous

to calculate. However, in systems with certain forms of symmetry, we can

choose a convenient Amperian loop such that the integral can be evaluated

virtually effortlessly — enabling an elegant method to calculate magnetic

fields. Hopefully, the following common illustrations of this technique will be

enlightening.

Infinitely Long Wire

Ampere’s law can be applied to an infinitely long current-carrying wire, as

it can be regarded as a steady state current due to the fact that no charge

3You might think that there is an ambiguity in the surface S here but Ienc is actually
independent of the exact surface S chosen for steady currents (as long as it spans the
contour) — refer to the next chapter for more details.
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accumulates anywhere in space. A finite wire, on the other hand, engenders

accumulation of charges at its ends which renders Ampere’s law inapplicable.

Figure 7.7: Long wire

The first step to solving for a magnetic field is obviously to determine

its direction. In this case, the magnetic field due to an infinite wire can only

be in the azimuthal direction (i.e. in circles perpendicular to the wire) due

to its axial symmetry. Let us prove this rigorously. Firstly, as the magnetic

field produced by a current is always perpendicular to the current (due to

the expression given by the Biot-Savart law), there must not be an axial

component of magnetic field. Next, suppose that in the plane containing a

certain cross section of a wire, the magnetic field had a radial component. For

purposes of illustration, let’s say that this is radially outwards. Now, we can

imagine flipping the entire wire such that current now runs downwards —

the radial magnetic field must still be outwards due to this flip. This implies

that if we superpose this flipped wire and the original wire, there will be a

radially outwards magnetic field, even though there is no current — hence

invalidating our claim!

Therefore, the magnetic field due to an infinitely long wire can only be

azimuthal. To solve for this, we can draw a circular Amperian loop as shown

in Fig. 7.7. The magnitude of the magnetic field is uniform throughout the

loop due to axial symmetry and its direction is always along the loop. Thus,
˛

B · ds = B · 2πr = μ0I.

In writing this equation, the direction of integration along the loop was anti-

clockwise — implying that the upwards direction is taken to be positive for

Ienc by the right-hand-grip rule. Rearranging,

B =
μ0I

2πr
,

which agrees with what we have previously derived from the Biot-Savart law.
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Infinite Current Sheet

Now, consider a current sheet with a thickness t that propagates indefinitely

in the directions perpendicular to its thickness. It carries a current density

J in a single direction along the plane. To determine the magnetic field due

to this set-up, we first deliberate its direction as always. Evidently, there

cannot be a component parallel to the direction of the current density as

the magnetic field involves the cross product of the current density (Biot-

Savart’s law). Furthermore, there cannot be a component of magnetic field

normal to the infinite plane due to the infinite nature of the sheet. Consider

the cross section of the sheet perpendicular to the current density.

Figure 7.8: Magnetic field at point along line of symmetry of cross section

Referring to Fig. 7.8, suppose we wish to determine the magnetic field at

a point P along a vertical line of symmetry. Then, the contribution to the

vertical magnetic field by the left current cancels that of the right element

(we mean the entire lines of currents that run into the page) — this nullifica-

tion holds for all pairs symmetric about the vertical axis. Furthermore, this

argument works everywhere as the plane is infinite. Therefore, there must

not be a vertical component of magnetic field.

Actually, there is a more elegant argument, similar to our previous argu-

ment for the long wire, as follows. Suppose that the above sheet of current

going into page produces a magnetic field emanating from the sheet. Flipping

this sheet would produce a current sheet that comes out of the page and still

produces a magnetic field emanating from the plane. Superimposing these

set-ups would produce a system with zero current but a non-zero normal

magnetic field — an evident contradiction.

Now that we have determined that the direction of magnetic field due to

the sheet must be perpendicular to both the normal and the current density,

we can draw a rectangular Amperian loop of width w and arbitrary length

as shown in Fig. 7.9. The component of magnetic field along lines 2 and 4

is zero as there is no vertical component of magnetic field. For lines 1 and

3, the magnetic field throughout each line should be constant due to the
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Figure 7.9: Cross section of infinite sheet

infinite nature of the system. Furthermore, they must be purely horizontal.

Thus, if we draw the loop such that lines 1 and 3 are equidistant from the

set-up, the magnetic field strength should be identical along both lines with

the only exception being that the magnetic fields must point in different

horizontal directions (based on the right-hand-grip rule for the magnetic

field of a current). Thus, the closed loop integral of magnetic field along this

Amperian loop is˛
B · ds =

ˆ
1
B · ds+

ˆ
2
B · ds+

ˆ
3
B · ds+

ˆ
4
B · ds

= B · w + 0 +B · w + 0

= 2Bw.

The enclosed current depends on whether the Amperian loop protrudes out

of the sheet. If it does,

Ienc = Jwt.

Thus, by applying Ampere’s law,

2Bw = μ0Jwt

B =
μ0Jt

2

for regions outside the sheet. The magnetic field above the plane is right-

wards for positive J while that below the plane is leftwards. Interestingly,

the magnetic field strength due to an infinite current sheet is independent

of the distance from the point of concern to the sheet for regions outside the
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sheet. If the loop is within the sheet, let the length of the loop be 2l. Then,

the enclosed current is

Ienc = 2Jwl,

B = μ0Jl.

The magnetic field strength scales linearly with the distance from the center

of the sheet, in regions within the sheet, as the Amperian loop encloses more

current with increasing length. Again, the magnetic field is rightwards above

the middle and leftwards below the middle.

Infinitely Long Solenoid

A solenoid is a coil that takes the shape of a spring. For the sake of our pur-

poses, we assume that the coil is densely wound such that the gaps between

rings are small. Then, we can approximate a solenoid as a collection of rings,

without taking into account the effects of the segments that connect them.

Figure 7.10: Solenoid

The magnetic field lines due to a solenoid are depicted in Fig. 7.10. One

end of a solenoid is similar to a North pole (emits magnetic field lines) while

the other is similar to a South pole of a magnet (receives magnetic field

lines). To easily remember the “poles”, apply the right-hand-grip rule to the

current — your thumb will point towards the North pole.

To understand why the magnetic field is tenuous outside the solenoid and

concentrated within it, consider the side view of the solenoid in Fig. 7.11.

The currents at the top come out while those at the bottom go into the

page. Therefore, their magnetic fields counteract in regions beyond the coil

but are reinforced within the coil (use the right-hand-grip rule). In fact,
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Figure 7.11: Side view

for an infinitely long solenoid, the magnetic field outside is zero while the

magnetic field everywhere inside the solenoid is uniform and horizontal.

To prove these, we first determine the direction of the magnetic field pro-

duced by a long solenoid. Firstly, there should not be a radial component of

magnetic field — if not, we can flip the solenoid (such that the current runs

in the reverse direction) and superpose it with the original solenoid to obtain

a set-up with no current but non-zero magnetic field. Secondly, there should

not be an azimuthal component of magnetic field. Due to the solenoid’s

axial symmetry, we can draw an Amperian loop that is concentric with the

solenoid axis. The azimuthal component of magnetic field (if it exists) should

be uniform throughout this loop due to symmetry so the closed loop integral

of magnetic field over this Amperian loop is simply the azimuthal compo-

nent of magnetic field multiplied by the perimeter of the loop. However, this

Amperian loop does not contain any net current that crosses it (regardless

of whether the loop is inside or outside4 the solenoid) which implies that the

azimuthal component of magnetic field is zero by Ampere’s law. In conclu-

sion, the magnetic field due to a long solenoid can only be axial.

For physical reasons, the magnetic field due to the solenoid should vanish

at points which are infinitely far away from the solenoid axis. In light of this,

we can prove that the magnetic field outside the solenoid is zero everywhere.

Draw the upper Amperian loop depicted in Fig. 7.12, which extends radially

to infinity. As the radial magnetic field is zero and the magnetic field dis-

appears at infinity, the only contribution to the closed loop integral of the

magnetic field over this Amperian loop is the bottom horizontal segment —

along which the axial magnetic field must be uniform due to the infinite

nature of the solenoid. Since no current crosses through this loop, the axial

4Actually, when the loop is outside the solenoid windings, there should be some current
flowing through it due to the segments that connect different layers of the solenoid. How-
ever, the current cutting normally to the plane of the loop is negligible when the turns are
densely wound such that the gradient of these segments are very small (they are essentially
horizontal and parallel to the loop).
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Figure 7.12: Amperian loop

magnetic field along the bottom segment must be zero — a fact that holds

for all points outside the solenoid.

To evaluate the magnetic field inside a solenoid, we can draw an Ampe-

rian loop of length L that protrudes out of the solenoid (we can be conser-

vative and choose segment 3 at infinity to ensure that the magnetic field is

zero along it) as shown in Fig. 7.12. The components of magnetic field along

lines 2 and 4 are zero as we have shown that the magnetic field can only

be horizontal. Furthermore, the magnetic field along segment 3 is also zero

as we have shown that no magnetic field lies outside the solenoid. Since

the magnetic field is uniform along line 1 and is always parallel to the

path of integration, the closed loop integral anti-clockwise along this loop

evaluates to

˛
B · ds =

ˆ
1
B · ds+

ˆ
2
B · ds+

ˆ
3
B · ds+

ˆ
4
B · ds

= B · L+ 0 + 0 + 0

= BL.
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Let η be the number of turns per unit length of the solenoid. The current

enclosed is then Ienc = ηLI. Applying Ampere’s law,

BL = μ0ηLI

B = μ0ηI.

7.3.1 Magnetostatic Boundary Conditions

Similar to how a surface charge engenders a discontinuity in the normal

component of the electrostatic field, a surface current results in a disconti-

nuity in the magnetic fields on the two sides of the surface. Firstly, we can

draw a pillbox, of infinitesimal length and a small base area, that straddles

a point on the surface and exploit the fact that the closed surface integral

of the magnetic field is zero, to conclude that the normal component of the

magnetic field must be continuous across the surface.

B⊥2 = B⊥1

where the subscripts 1 and 2 refer to the two sides of the surface. Now,

suppose that the surface current density at the point of concern on the sur-

face isK such that the current flowing across an infinitesimal length segment

dl, that is along the surface and perpendicular to K, at that point is Kdl.

Drawing an Amperian loop, with two essentially zero-length edges normal

to the surface and one edge of length dl (parallel to the length segment in

the previous statement) on each side of the surface, around this point and

applying Ampere’s law,

B‖2dl −B‖1dl = Kdl

B‖2 −B‖1 = K,

where B‖2 and B‖1 are the magnetic fields along the two edges of length dl.

Their positive directions are aligned and are defined to be along the direction

of the closed loop integral along the edge of length dl on side 2 (anti-clockwise

relative to K). We can rewrite the above in vector notation as

B‖2 −B‖1 = K × n̂,

where n̂ is the normal unit vector, pointing towards side 2. B‖2 and B‖1 are

now the magnetic field vectors on sides 2 and 1, tangential to the surface.

Combining this boundary condition with the fact that the normal component

of magnetic field is continuous, the net magnetic fields, B1 and B2, on sides

1 and 2 are related by

B2 −B1 = K × n̂.
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7.4 Motion in Magnetic Fields

Now that we understand how moving charges respond to and generate mag-

netic fields, certain special forms of motion shall be analyzed.

7.4.1 Charge in Uniform Magnetic Field

A particle with charge q and mass m traveling perpendicularly to a uniform

magnetic field B will exhibit uniform circular motion, as the magnetic force

on it is always perpendicular to its velocity, and also because its speed

remains constant, since the magnetic force does no work on the charge.

Figure 7.13: Charge moving in a magnetic field

Referring to Fig. 7.13, since the magnetic force provides the centripetal

force, the radius of orbit can be computed. Letting the constant speed of the

charge in the plane perpendicular to B be v,

F = qvB =
mv2

r

r =
mv

qB
. (7.14)

The angular velocity is

ω =
v

r
=
qB

m
(7.15)

which is known as the cyclotron (angular) frequency. If the charge has a com-

ponent of velocity parallel to the magnetic field, that component of velocity

will be constant as the direction of the magnetic force on the charge must

be normal to the magnetic field. Therefore, the particle will still orbit circu-

larly in the plane perpendicular to the magnetic field, while traveling at a
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constant velocity along the magnetic field — the trajectory of the particle is

then helicoidal.

To be completely rigorous about our claims, we can solve the particle’s

equation of motion. Align the z-axis with the external magnetic field and let

the instantaneous coordinates of the particle be (x, y, z) with initial coor-

dinates (x0, y0, z0) and initial velocity (ux, uy, uz). The net force on the

charge is

F = q

⎛
⎝ẋẏ
ż

⎞
⎠×

⎛
⎝ 0

0

B

⎞
⎠ =

⎛
⎝ qẏB

−qẋB
0

⎞
⎠.

By Newton’s second law,

ẍ =
qB

m
ẏ,

ÿ = −qB
m
ẋ,

z̈ = 0.

The z-component can be solved easily.

ż = uz

z = z0 + uzt.

For the other two components, we can devise the following formulation,

which is especially insightful when the equation of motion involves the cross

product of certain quantities. Define a new complex variable η = x+iy where

x and y are the instantaneous x and y-coordinates of the charge. Since x and

y are real, the coordinates of the charge is simply that of η in the Argand

plane. The slick part of this approach is that we can now combine the two

coupled equations of motion into an equation involving a single variable.

Multiplying the y-component of the equation of motion by i and adding it

to the x-component,

ẍ+ iÿ =
qB

m
(ẏ − iẋ) = − iqB

m
(ẋ+ iẏ)

η̈ = − iqB
m

η̇.
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We can immediately guess5 the general solution to this differential

equation as

η̇ = η̇0e
− iqB

m
t,

where η̇0 = ux + iuy is η̇ at t = 0. The above can be integrated once again

to yield

η = η0 − im

qB
η̇0 +

im

qB
η̇0e

− iqB
m
t

= η0 − m

qB
(−uy + iux) +

m

qB
(−uy + iux)e

− iqB
m
t.

Expressing the time-independent portion in Cartesian form and the time-

dependent portion in polar form via Euler’s formula,

η = x0 +
muy
qB

+ i

(
y0 − mux

qB

)
+
m
√
u2x + u2y

qB
e−i(

qB
m
t+φ)

where φ = tan−1 ux
uy
. To interpret this solution, observe that η = x + iy

is the addition of a constant term x0 +
muy
qB + i(y0 − mux

qB ) that represents

a constant vector (x0 +
muy
qB , y0 − mux

qB ) in the Argand plane and another

vector associated with
m
√
u2x+u

2
y

qB e−i(
qB
m
t+φ) that represents a vector of con-

stant length
m
√
u2x+u

2
y

qB rotating at a constant clockwise angular velocity qB
m ,

beginning at angle φ below the positive real axis. Therefore, the above solu-

tion describes a circular motion of radius
m
√
u2x+u

2
y

qB in the xy-plane about

the center (x0 +
muy
qB , y0 − mux

qB ). The angular frequency of this motion can

also be deduced from the rotating vector in the Argand plane as qB
m clock-

wise. Finally, one can retrieve the instantaneous x and y-coordinates of the

particle by taking the real and imaginary components of the above.

x = Re(η) = x0 +
muy
qB

+
m
√
u2x + u2y

qB
cos

(
qB

m
t+ φ

)
,

y = Im(η) = y0 − mux
qB

−
m
√
u2x + u2y

qB
sin

(
qB

m
t+ φ

)
,

5One may be tempted to separate variables and integrate but one will be delving into the
unfamiliar realm of integrating over a complex variable! Instead, it is simpler to directly
guess the solution and assert that we have found the general solution. The number of
independent solutions to a differential equation involving η is equal to that involving x or y
(if they can be combined into a single equation in η) as the former differential equation can
be seen as the composition of the equations in x and y through its real and imaginary parts.
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where φ = tan−1 ux
uy
. In fact, one can also manipulate the above set of para-

metric equations (by isolating the terms of each equation that involve t,

squaring and adding them together) to directly conclude that the trajectory

of the particle is a circle in the xy-plane.

7.4.2 Charge in Uniform and Perpendicular Electric

and Magnetic Fields

In this section, we will analyze the motion of a particle with charge q and

mass m in a mutually perpendicular and uniform pair of magnetic field

B = (0, 0, B) and electric field E = (0, E, 0). By the Lorentz force law, the

equations of motion of the charge are

ẍ =
qB

m
ẏ,

ÿ =
qE

m
− qB

m
ẋ,

z̈ = 0.

Evidently, the motion of the particle in the z-direction is not particularly

interesting as it travels at a constant velocity. Hence, we will simply con-

sider the motion of the particle in the x and y-directions. To solve this set

of coupled differential equations, we can introduce a new complex variable

η = x+ iy. Multiplying the y-component in the equation of motion by i and

adding it to the x-component,

η̈ = − iqB
m

η̇ +
iqE

m

=⇒ η̈ +
iqB

m
η̇ =

iqE

m
.

The particular solution to this differential equation is evidently η̇ = E
B while

the homogeneous solution is η̇ = Ae−
iqB
m
t where A is a certain complex

constant that can be solved from the initial conditions. The general solution

to η̇ is

η̇ = Ae−
iqB
m
t +

E

B
.

Enforcing the initial condition that η̇ at t = 0 is η̇0 = ux + iuy,

η̇ =

(
η̇0 − E

B

)
e−

iqB
m
t +

E

B
.
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Integrating the above with respect to time,

η = η0 +
im

qB

(
η̇0 − E

B

)(
e−

iqB
m
t − 1

)
+
E

B
t,

where η0 = x0 + iy0. Substituting the expression for η̇0,

η = x0+ iy0+
m

qB

(
−uy + iux − i

E

B

)
e−

iqB
m
t+

E

B
t− m

qB

(
−uy + iux − i

E

B

)
.

Applying Euler’s formula to simplify−uy+i(ux−E
B ) =

√
(ux − E

B )
2 + u2ye

−iφ

with φ = tan−1 ux−E
B

uy
in the time-dependent term and grouping the real and

complex terms,

η = x0+
muy
qB

+
E

B
t+i

(
y0 −

m
(
ux − E

B

)
qB

)
+
m

√(
ux − E

B

)2
+ u2y

qB
e−i(

qB
m
t+φ).

Let us try to interpret this trajectory physically by first considering the

simplest case where the particle is initially stationary, such that ux = uy = 0

and φ = −π
2 . Then,

η = x0 +
E

B
t+ i

(
y0 +

mE

qB2

)
+
mE

qB2
e−i(

qB
m
t−π

2 ).

The particle appears to undergo uniform circular motion with a radius

r = mE
qB2 and angular velocity ω = qB

m about a moving center that was ini-

tially at (x0, y0 +
mE
qB2 ) and is traveling at a constant velocity in the positive

x-direction, v = E
B , which is also coincidentally equal to rω.

Figure 7.14: Cycloid

Hence, the charge’s trajectory is identical to that of a particle attached to

a rigid circle with a radius r that is rolling without slipping in the xy-plane

on a flat ground parallel to the x-axis, such that the center of the circle

is maintained at a constant y-coordinate y0 +
mE
qB2 . Note that the particle is

initially located vertically below the instantaneous center of rotation (i.e. the

bottom point of the left-most circle in Fig. 7.14) as φ = −π
2 represents the

negative imaginary direction in the Argand plane. This trajectory is known

as a cycloid and these equations of motion arise when an initially stationary

charge is placed in uniform electric and magnetic fields that are mutually
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perpendicular. If the charge has a z-component of velocity, its trajectory

will be a cycloidal motion in the xy-plane, superimposed with a constant

z-velocity.

Figure 7.15: Initial position of particle on translating and rotating circle

In the general case where the particle starts with non-zero x and

y-velocities, the trajectory of the particle is tantamount to that of one

attached to a circle with radius

r =
m

√(
ux − E

B

)2
+ u2y

qB
(7.16)

that is rotating at a constant clockwise angular frequency

ω =
qB

m
, (7.17)

with its center translating at a constant positive x-velocity

v =
E

B
. (7.18)

Its initial angular position is a clockwise angle φ = tan−1 ux−E
B

uy
with respect

to the horizontal, as shown in Fig. 7.15. The constant y-coordinate of the

center of the circle is y0 − m(ux−E
B
)

qB .

7.4.3 Current Loop in Uniform Magnetic Field

Though we have shown that a current loop experiences no net magnetic force

due to a uniform magnetic field, it will generally still experience a torque.

Let us first consider a simple rectangular current loop whose area vector A

makes an angle θ with respect to a uniform magnetic field B. Two particular

parallel segments of the loop are perpendicular to B.

We have oriented B in the y-direction and segments 2 and 4 in the

x-direction in Fig. 7.16. Segments 2 and 4 have lengths a while segments

1 and 3 have lengths b. Evidently, the magnetic forces along lines 1 and 3

produce no net torque. Thus, we can simply consider the side view of the

rectangular loop in Fig. 7.17 where segments 2 and 4 extend into the page.
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Figure 7.16: Loop in magnetic field

Figure 7.17: Side view

The magnetic forces along lines 2 and 4 are of common magnitude

F = BIa

as the currents along those lines are always perpendicular to the magnetic

field. Then, the total torque on the loop about its center can be calculated as

τ =
Fb

2
cos

(π
2
− θ

)
× 2 = BIab sin θ.

This is the torque about any point in space as the torque on an object is

the same with respect to all pivots if the forces producing the torque sum

to zero vectorially — a condition that is satisfied by the zero net force on a

current loop due to the uniform magnetic field. Next, we notice that if we

define an area vector A that points perpendicularly from the plane of the

loop as

A = abn̂
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and the magnetic dipole moment as

μ = NIA, (7.19)

where N refers to the number of loops (N = 1 in this case), the torque on

the loop can be rewritten as

τ = μ×B (7.20)

for a rectangular coil with N loops. The direction of the normal vector n̂

is given by the right-hand-grip rule. If you grip your right hand along the

current loop, your straightened thumb will point in its direction.

Now, we proceed with a more general formulation — we now claim that

the torque, about any pivot, on an arbitrarily shaped planar coil with N

densely wound turns and carrying current I is given by Eq. (7.20) when

it is placed in a uniform magnetic field B. We will provide the proof for

this below but you can in fact extend Eq. (7.20) to non-planar loops (see

Problem 16) with a modified but similar definition for the magnetic dipole

moment μ.

Proof: To derive the above result, suppose that we put a single turn of a

coil carrying anti-clockwise current I in the xy-plane in a region of uniform

magnetic field B, as shown in Fig. 7.18.

Figure 7.18: Loop in xy-plane

We can always arrange for B to not have an x-component. Then,

B = (0, By, Bz). Now, consider an infinitesimal segment of the coil ds = (dx,

dy, 0) at position vector r = (x, y, 0). The magnetic force on this segment is

dF = Ids×B.

The torque on this segment about the origin is

dτ = Ir × (ds×B) = I(r ·B)ds − I(r · ds)B
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by the BAC-CAB rule. Now, observe that

r · ds = rdr,

where r is the radial distance from the origin. Then, the above can be sim-

plified into

dτ = IyByds− IrBdr.

The total torque about the origin is then obtained from integrating the above

over the entire loop. The second term vanishes after integration as the initial

and final r’s are the same for a loop. The contribution to the total torque

only stems from the first term.

τ =

˛
IyBy

⎛
⎝dxdy

0

⎞
⎠.

Considering the different components,

τx =

˛
IyBydx = −IABy

where A is the positive area of the coil drawn in Fig. 7.18. The integral yields

the negative area as the current I points in the negative x-direction at larger

values of y and points in the positive x-direction at smaller values of y. Next,

τy =

˛
IyBydy = 0

as the initial and final y values are the same for a loop. There is also no z-

component of torque as there is no z-component of ds. Then, the net torque

on the loop is

τ =

⎛
⎝−IABy

0

0

⎞
⎠ ,

which is consistent with

μ×B =

⎛
⎝ 0

0

IA

⎞
⎠×

⎛
⎝ 0

By
Bz

⎞
⎠ =

⎛
⎝−IABy

0

0

⎞
⎠.

For a coil with N turns, we can simply substitute NI for I — hence proving

Eq. (7.20).
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7.5 Magnetic Fields in Matter

Similar to how electric dipoles arise when matter is placed in an electric

field, magnetic dipoles are induced in matter when an external magnetic

field is imposed. The three main mechanisms through which this occurs are

diamagnetism, paramagnetism and ferromagnetism — we will discuss the

former two here.

Diamagnetism can be understood from the elementary model of electrons

orbiting a nucleus in an atom. The rapid revolution of the electron appears

like a current when averaged over time and hence constitutes a magnetic

dipole. Normally, the orbits are randomly oriented such that there is no net

orbital magnetic dipole moment. However, when a magnetic field is turned

on, an induced emf will be generated by Faraday’s law (introduced in the

next chapter), in an attempt to oppose the external magnetic field. This

induced electric field then accelerates all electrons (regardless of their orig-

inal directions of revolution) in a manner such that a net magnetic dipole

moment is generated antiparallel to the imposed magnetic field (to reduce

the change in magnetic flux through an imaginary loop). Such a phenomenon

is universal and affects all atoms.

Paramagnetism, on the other hand, occurs because an external magnetic

field exerts a torque on magnetic dipoles that tends to align their magnetic

dipole moments with the field. It turns out that an electron not only orbits

about its nucleus but also possesses an intrinsic angular momentum known

as spin. This is a purely quantum mechanical effect that has no classical

explanation, but you can picture an electron as a rotating ball of charge if

it helps. This spin endows an electron with a magnetic dipole moment and

causes it to behave like a magnetic dipole. Without an external magnetic

field, the orientation of the spin magnetic dipole moment is arbitrary and

thus results in zero net dipole moment over time. However, when an external

magnetic field is present, a lone electron tends to be oriented such that

its magnetic dipole moment is parallel to the external field, which is the

lowest energy configuration (it is not completely aligned due to thermal

fluctuations, so there is a compromise here). Therefore, a net dipole moment

parallel to the external magnetic field is induced. Now, it happens that most

electrons are stuck together as a pair with opposite spins which are mutually

nullified — implying that this effect does not ascribe them a net dipole

moment. As a result, paramagnetism predominantly occurs in molecules with

an odd number of electrons (such that there is an unpaired electron).
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7.5.1 Bound Currents

Now that we have understood the mechanisms of creating magnetic dipoles

in matter, we can describe the effects of the dipoles quantitatively. Similar

to the electric polarization, we can define a quantity known as the magneti-

zation M that describes the magnetic dipole per unit volume.

Consider an infinitesimal cuboid of edge lengths dx, dy and dz with a

uniform magnetization M in the positive z-direction, depicted in Fig. 7.19.

Figure 7.19: Actual cuboid and equivalent current distribution

As we shall show in Section 8.10.3 that the distant magnetic field (at

length scales much further away than the size of the dipole) due to a mag-

netic dipole is only dependent on the magnetic dipole moment of the dipole

and independent of the internal structure of the dipole (which could be cur-

rent loops, multiple current loops, non-planar loops, built-in dipoles, etc),

the magnetic field due to this cuboid, outside itself, is akin to a magnetic

dipole constituted by current loops with surface current density K =M (on

the right). To show this equivalence, firstly note that the magnetic dipole

moment of the actual cuboid is

μ =Mdxdydzk̂.

To compute the magnetic dipole moment of our model, observe that each

layer at a constant height constitutes a current loop of area dxdy. Therefore,

the total magnetic dipole moment of our model is

μ = (Kdz)dxdy

where Kdz is the total surface current running along a face. Therefore, we

require

K =M
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for the magnetic dipole moments to be identical. Similar to our agenda for

electric fields in matter, we proceed with the analysis of the equivalent sur-

face current distributions of cuboids with wedges attached. This is because

any volume can be seen as an array of cuboids in the interior and a col-

lection of cuboids with wedges attached on the surface (as the surface is

generally inclined). To this end, consider the wedge in Fig. 7.20, still with a

magnetization M in the positive z-direction.

Figure 7.20: Actual wedge and equivalent current distribution

Its total magnetic dipole moment is

μ =
1

2
Mdx2dy tan θk̂.

Now, we wish to propose an equivalent surface charge distribution that gen-

erates this magnetic dipole moment. For the sake of simplicity, we hope that

our model can be seen as a collection of current loops (when sliced at dif-

ferent heights along the wedge). Then, we need the total current flowing

along each face to be identical. If the uniform surface current density on the

“hypotenuse” face is K ′ while the uniform surface current densities on the

other three faces are K, we require

K ′ = K sin θ,

since the length of the hypotenuse, perpendicular to the flow of current, is

larger than that of the other faces by a factor of 1
sin θ . With this, we can

proceed with calculating the magnetic dipole moment of our model. Since

the surface current density is uniform over each face, the total magnetic

dipole moment is akin to that produced by the entire current I = Kdx tan θ

running in the loop at half the height of the wedge (since this represents the

average).

μ = Kdx tan θ · dxdy
2

.
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To match the actual and proposed magnetic dipole moments,

K =M,

K ′ =M sin θ.

Notice that the surface current density on each face of the wedge or cuboid

can be nicely summarized by

K = M × n̂,

where n̂ is the normal unit vector pointing outwards of the face. By the

principle of superposition, this expression for K is valid for any element

constructed from attaching wedges to a cuboid. What’s more, we can extend

this result to a magnetization M in a general direction, as we can always

divide it into its components and apply the principle of superposition.

Armed with this knowledge, we can analyze a piece of magnetic material

with significant volume and a certain magnetization M that is a function

of position. Since this magnetic substance can be divided into an array of

cuboids in the interior and an array of cuboids with wedges attached along

the surface, the magnetic field (due to magnetization) outside this material

is equivalent to that produced by a bound surface current density

Kb = M × n̂

along the exterior surface and a certain current configuration in the interior.

We have included a subscript b to emphasize that the origin of this bound

surface current density is the magnetization of the material (for which the

bound current is merely a model).

To determine the interior currents, consider two juxtaposed cuboids with

edge lengths dx, dy and dz at (x, y, z) and (x, y + dy, z). The cuboids are

tiny enough such that the magnetizations M(x, y, z) and M(x, y + dy, z)

are uniform over each of their volumes.

Referring to the left diagram of Fig. 7.21, due to the discrepancy in the

z-components of magnetization, there is a surface current of total current

Ix1 = [Mz(x, y + dy, z) −Mz(x, y, z)]dz =
∂Mz

∂y
dydz

flowing along the overlapping surface, in the positive x-direction. Similarly,

we can show that for two cuboids stacked on top of each other (depicted

in the right diagram of Fig. 7.21), the discrepancy in the y-components of

magnetization generates another current

Ix2 = −∂My

∂z
dydz
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Figure 7.21: Juxtaposed cuboids

in the positive x-direction. The net current in the x-direction that is associ-

ated with the cuboid at (x, y, z), due to magnetization, is thus

Ix =

(
∂Mz

∂y
− ∂My

∂z

)
dydz,

which is equivalent to the cuboid possessing a bound volume current density

Jx =
∂Mz

∂y
− ∂My

∂z

in the positive x-direction. Repeating the above procedure for the other

components of current, the equivalent bound volume current density of the

cuboid satisfies

Jy =
∂Mx

∂z
− ∂Mz

∂x
,

Jz =
∂My

∂x
− ∂Mx

∂y
.

More compactly, the bound volume current density is

J b = ∇×M .

To summarize what we have derived so far, the magnetic field outside a

magnetic material is equivalent to that produced by a bound surface current

density

Kb = M × n̂ (7.21)

on the exterior surface and a bound volume current density

Jb = ∇×M (7.22)

in the interior of the material. Now, what can we say about the magnetic

field (due to magnetization) inside the magnetic material? It is important
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to remember that our proposed model of a magnetized cuboid as one with

bound surface currents only produces the correct magnetic field at distances

much larger than the size of the cuboid, from the cuboid. Therefore, our

model definitely produces the wrong microscopic field within the substance.

However, we shall show that the macroscopic magnetic field, which is the

magnetic field averaged over a small volume containing many molecules, can

also be taken to be that due to bound current distribution afore!

Figure 7.22: Surface S on actual magnetized matter and bound current model

Consider a small volume of magnetic material around a relevant point

in the substance in Fig. 7.22 (the rest of it is not depicted) that contains

a multitude of molecules. The magnetic field (due to magnetization) within

this region has two causes — due to the magnetized material outside of this

region and due to the material within this region. Since the bound current

model is already accurate for the material outside of this region, we simply

have to show that the bound current model for the material within the region

produces the correct macroscopic field to prove our claim.

Draw a Gaussian surface S that protrudes out of the substance in this

region in both the actual system (with a certain magnetization M ) and our

model of bound currents (Kb and Jb). The portion S’ of the surface within

the demarcated volume is perpendicular to the vertical. If we let the magnetic

fields of the original system and our model beB andB′ respectively, we have‹
S
B · dA = 0,

‹
S
B′ · dA = 0

over the Gaussian surface S.

=⇒
‹
S
B · dA =

‹
S
B′ · dA.

Since we already know that B = B′ outside of this region, the surface

integrals of B and B′ over the portion S’ within the highlighted region must
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be identical! ¨
S′
B · dA =

¨
S′
B′ · dA.

If we define the z-direction to be along the vertical, notice that the above

is stating that the averages of Bz and B′
z are equal over the surface S’.

Therefore, if we choose other surfaces similar to S’ at different heights along

the demarcated region, we can guarantee that the averages of Bz and B′
z

over the entire region are identical! Repeating this process with surfaces S’

oriented in the other directions, we can subsequently prove that the average

magnetic fields of the original system and our proposed model, over this

isolated region, are equal! Therefore, the macroscopic field within a magnetic

material is also given by the bound currents Kb and J b.

Ampere’s Law in Magnetic Materials

Now that we have understood the magnetic field produced by magnetized

matter, we are ready to study the net magnetic field within a magnetic

material which can be due to both magnetization and free currents channeled

to the material by an external entity. In magnetic materials, the nullity of

the closed surface integral of the net magnetic field still holds.‹
S
B · dA = 0. (7.23)

However, it is often more edifying to express Ampere’s law (within the mate-

rial) purely in terms of free currents, just like what we did for dielectrics.

Applying Ampere’s law to a contour C encased in the interior of the magnetic

material, ˛
C
B · ds = μ0

¨
S
J · dA

where S is a surface that spans C. The volume current density comprises

both free and bound currents.

J = Jf + Jb.

Since Jb = ∇×M ,˛
C
B · ds = μ0

¨
S
Jf · dA+ μ0

¨
S
(∇×M) · dA.

It happens that Stokes’ theorem in vector calculus asserts that¨
S
(∇× F ) · dA =

˛
C
F · ds
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for any vector field F , where C is a contour that bounds surface S. Applied

to the current situation, this implies that¨
S
(∇×M) · dA =

˛
C
M · ds

˛
C

(
B

μ0
−M

)
· ds =

¨
S
Jf · dA.

This suggests that we define a new quantity

H =
B

μ0
−M (7.24)

which shall be referred to as the H-field (some call this quantity the magnetic

field but it is not as fundamental as B and is rather confusing). Then, we

retrieve an equation analogous to the original form of Ampere’s law.˛
C
H · ds = If (7.25)

where If is the free current passing through a surface bounding C. It is inter-

esting to note that the above equation is much more useful than its electric

counterpart
‚
SD ·dA = qf in practice. This is because If is much easier to

measure empirically than qf . In electrostatic experiments, we usually con-

nect a battery of a known emf to a dielectric which tells us nothing about the

distribution of free charge. At most, we can only determine the line integral

of E through the dielectric but this is still not directly related to D. On the

other hand, in magnetostatic experiments, (free) current is transferred to a

magnetic material via external wires and this current can be conveniently

measured via an ammeter!

Boundary Conditions

The following boundary conditions must be fulfilled at a surface carrying

a certain free surface current. Firstly, imposing the nullity of the surface

integral of the magnetic field over an infinitesimal pillbox with negligible

length around a point on the interface (its small bases are parallel to the

surface around that point), the normal components of magnetic fields on the

two sides of that point must be continuous.

B⊥2 = B⊥2. (7.26)

Next, suppose that a free surface current density Kf runs at a point of

interest on the interface. Draw a loop that is perpendicular to Kf around

that point, with the edges perpendicular to the surface being negligible. If we
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let the non-negligible length of this loop along the surface be dl, Ampere’s

law for the H-field yields

H‖2dl −H‖1dl = Kfdl

H‖2 = H‖1 +Kf

where H‖1 and H‖2 are positive in the positive direction defined along the

segment on side 2 when the right-hand-grip rule is applied to Kf . In vector

form,

H‖2 = H‖1 +Kf × n̂ (7.27)

where n̂ is the normal unit vector pointing from side 1 to side 2.

7.5.2 Magnetic Susceptibility

In a preponderance of materials, the magnetization is directly proportional to

the net magnetic field. You might think that we will adopt a definition, par-

allel to the electric susceptibility, for the constant of proportionality such as

M =
χbB

μ0
(incorrect)

where M is proportional to the B-field. However, convention ordains us to

define the magnetic susceptibility χb as

M = χbH. (7.28)

With this definition, the relationship H = B
μ0

−M yields

(1 + χb)H =
B

μ0

B = μ0(1 + χb)H . (7.29)

The material-dependent constant of proportionality μ0(1 + χb) is known as

the magnetic permeability μ of the substance.

μ = μ0(1 + χb), (7.30)

B = μH . (7.31)

With this definition, we can rewrite Ampere’s law for the H-field in a rather

simple form, if the Amperian loop lies entirely in a region of homogeneous
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material (else the magnetic permeability is a function of location and cannot

be extracted from the integral).˛
C

B

μ
· ds = If

˛
B · ds = μIf ,

so it is as if we can replace μ0 and I in our original Ampere’s law with μ

and If for a region of homogeneous material!

Boundary Conditions at Interface between Two Magnetic

Media

At the interface between two magnetic media with permeabilities μ1 and μ2,

the magnetic fields on the two sides must satisfy

B⊥1 = B⊥2 (7.32)

and

μ2B‖2 = μ1B‖1 +Kf × n̂, (7.33)

where n̂ is the normal unit vector pointing from medium 1 to medium 2.

7.5.3 Analogy between Magnetic and Electric Fields

An enlightening analogy exists between the electric field of a configuration

that is completely absent of free charges and the magnetic field of a set-up

devoid of free currents. The former obeys the equations‹
S
D · dA = 0,

˛
C
E · ds = 0,

for any surface S and contour C, with

ε0E = D − P .

Meanwhile, the latter obeys the equations‹
S
B · dA = 0,

˛
C
H · ds = 0,
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for any surface S and contour C, with

μ0H = B − μ0M .

Exploiting the fact that the substitutions D → B, E → H , P → μ0M and

ε0 → μ0 transform the electrostatic problem into the magnetostatic one,

the answers to many problems involving permeable magnetic materials can

be directly stated from this parallelism. However, be wary that there must

indeed be a correlation between P and μ0M for this analogy to work (e.g.

they are directly proportional to each other in all space).

For linear media,

E =
D

ε
,

H =
B

μ
,

so we make the substitution ε → μ instead of P → μ0M and ε0 → μ0. In

such cases, we then have to ensure that there is a valid parallelism between

ε and μ.

Problem: Determine the magnetic field in all space due to a sphere of radius

R with a uniform magnetization M .

The electric field of a sphere of radius R and uniform polarization P is

E(r) =
2R3P cos θ

3ε0r3
r̂ +

R3P sin θ

3ε0r3
θ̂

outside the sphere (with respect to spherical coordinates about the center)

and

E = − P

3ε0
k̂

inside the sphere, where the positive z-direction has been defined to be along

P . Making the appropriate substitutions, the H-field due to the uniformly

magnetized sphere is

H =
2R3M cos θ

r3
r̂ +

R3M sin θ

3r3
θ̂

outside of the sphere and

H = −M
3
k̂
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inside the sphere. Therefore, the magnetic fields are

B = μ0H =
2μ0R

3M cos θ

r3
r̂ +

μ0R
3M sin θ

3r3
θ̂

outside the sphere and

B = μ0H + μ0M =
2μ0M

3
k̂

within the sphere.
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Problems

Lorentz Force and Miscellaneous

1. An Apparent Paradox*

Determine the magnetic force per unit length between two parallel, thin

and long current-carrying wires that are separated by a distance r and held

stationary. The currents in the wires are I1 and I2 respectively, possibly

traveling in different directions. Now, wire 1 is still held fixed but wire 2 is

gently released. The current in wire 1 is maintained at I1 by an external

battery. We know from the previous result that wire 2 will begin to move

towards or away from wire 1. Since the kinetic energy of wire 2 increases,

have we violated the fact that a magnetic force cannot produce work? If not,

suggest possible forms of energy that this kinetic energy originated from, in

the case where wire 2 is not connected to any external entity and the case

where the current in wire 2 is also maintained at I2 by an external battery.

Do not worry about how these energies are actually converted to the kinetic

energy of wire 2.

2. Force Between Moving Charges*

A charge q moves along the positive y-axis while another charge −q moves

along the positive x-axis on fixed rails. Both start at the same time from

the origin, and move with constant speed 0 < v � c. What is the magnetic

force between the charges? Remember to indicate the direction too. Can

you spot something wrong? Now, what if v = 0? Argue, physically and

mathematically, why your expressions are invalid.

3. Current on Cube*

Referring to the left figure, a current I flowing along the edges of one face

of a cube produces a magnetic field B at the center of the cube. What is the

magnetic field at the center of the same cube in the right figure? The cubes

are isolated systems.
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4. Lorentz Force on a Short Wire**

An infinitely long and thin wire carrying current I1 in the negative y-

direction lies along the y-axis (x = 0, z = 0). Another short and thin wire

carrying current I2 in the positive x-direction lies parallel to the x-axis. Its

two ends are at (0, 0, h) and (l, 0, h). Find the force on the short wire due to

the long wire.

5. Torque on Arbitrary Wires**

A uniform external magnetic field B permeates all space in the positive

z-direction. Consider two points A and B in the xy-plane. An arbitrary con-

nection of thin wires that lie entirely in the xy-plane is used to transfer I

amount of total current from A to B. No charge is accumulated anywhere,

except for the terminals A and B, possibly. If the linear distance between A

and B, is l, determine the total torque experienced by the wires connecting

A to B, about terminal A. Note that the wires may merge or split freely.

Biot-Savart’s Law

6. Helmholtz Coil**

A pair of two identical coils of radius R are placed symmetrically along a

common axis and are separated by a distance d. The common axis coincides

with the z-axis, with the origin located at the center of the coils. The coils

carry identical currents I in the same direction and each has N turns in

total. Find the magnetic field strength along the axis of the coils B(z) as

a function of z. Determine the distance d such that ∂2B
∂z2

= 0 at the center

of the two coils. This set-up is known as the Helmholtz coil and is useful in

generating a relatively uniform magnetic field between the coils (possibly to

cancel Earth’s local field).

7. Bent Wire**

An infinite wire is bent as shown in the figure below. Find the magnetic field

at point P.
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8. Finite Solenoid***

A thin, vertical solenoid with η turns per unit length, length l and radius R

carries a current I anti-clockwise with respect to the positive z-axis which is

along its symmetrical axis. Determine the magnetic field everywhere along

the z-axis. To enforce the steady current condition, assume that thin wires —

whose contributions to the magnetic field can be neglected — are used to

transfer current to and from infinity.

Now, consider a vertical solenoid with η turns per unit length, inner

radius r0 and outer radius r1 which carries a uniform current I anti-clockwise.

Determine the magnetic field everywhere along the z-axis.

9. Rotating Sphere***

An insulating sphere with a uniform volume charge density ρ and radius R

rotates about an axis through its center with a constant angular frequency

ω. Find the magnetic field at a point along the axis of rotation.

Ampere’s Law

10. Thick Infinite Wire*

A long cylinder, with its axis oriented in the z-direction, carries an axial

current. The current density, although symmetric about the cylindrical

axis, is not uniform but varies with radial distance r from the axis

according to

J(r) =

⎧⎨
⎩

2I0
πa2

(
1− r2

a2

)
for r < a

0 for r ≥ a

where a is the radius of the cylinder and I0 is a constant with units of

amperes. Determine the magnetic field due to the cylinder everywhere.

11. Wire with Cavity*

A small long cylinder of radius R
2 is carved out of a long cylinder of radius

R as shown on the next page (a cross section is depicted). The “wire” then

carries a uniform current I, coming out of the page. Find the magnetic field

at point P.
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12. Opposite Currents*

The figure below shows the cross section of a current distribution that

extends indefinitely in the z-direction. It is given by two overlapping cir-

cles of radius b with a separation 2a between their centers. The shaded

regions of the left and right circles carry a uniform current density J into

and out of the page respectively. No current flows across the intersection of

the two circles. Determine the magnetic field at a point in the overlapping

region, in this cross section.

13. Toroid**

A toroid is a donut with a uniform cross section. For example, a toroid with

a circular cross section can be formed by bending a solenoid along a circular

ring and connecting both ends together. Now, suppose that we coil a wire

into a toroid with an arbitrary cross section and N 	 1 densely wound turns.

If the resultant toroid carries a current I, determine the magnetic field due

to this set-up everywhere.

14. Magnetic Flux and Field Lines**

Consider a long solenoid with η turns per unit length and radius R that

carries a steady current I. We categorize the solenoid into two halves about

its center — one half contains the North pole while the other half contains

the South. What is the net magnetic flux that leaves the solenoid through

the lateral surface of the North half? Next, a field line propagates at a radial

distance r from the solenoid axis, in the direction of the solenoid axis and
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towards the North pole, at the central cross section of the solenoid. For what

values of r will the field line exit from the lateral surface of the solenoid? If

it does not, what is its radial distance from the solenoid axis as it leaves the

North end of the solenoid?

Motion of Charges in Magnetic Fields

15. Bouncing Particle*

A particle of mass m and charge q is currently located on the interior of

a square room of side length l as shown in the figure below (top view).

A uniform magnetic field B is directed into the page in the figure. Suppose

that the particle is now propelled at an initial velocity v0 =
qBl
8m perpendicular

to a wall of the room, as depicted in the figure. Determine the time it requires

to return to its initial position, assuming that its collisions with the walls

are perfectly elastic.

16. Magnetic Dipole Moment**

Determine the instantaneous torque experienced by the loop below when it

is placed in a uniform magnetic field B, whose direction is depicted in the

figure. The loop is composed of two semicircles of radius r that subtend a

right angle. B bisects the angle between the semicircles.

In light of the previous set-up, propose a definition for the magnetic

dipole moment μ of a non-planar loop C with N turns, carrying a current
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I, such that the torque that it experiences in a uniform magnetic field B is

τ = μ×B.

Hint: Consider the vector area of the loop C, defined as A =
˜
S dA, where

the integral is performed over a surface S that spans C and where dA is

the area vector of an infinitesimal element on the surface S. Notice that

we did not specify which surface S to consider (there are infinitely many

possibilities). Provide a physical argument for why we could make such an

“ambiguous” statement.

17. Homing Charge**

A particle with a charge magnitude q and mass m is moving in the xy-plane.

It is launched from (−a, 0) with speed v. The region above y = f(x) is filled

with a uniform and constant magnetic B pointing in the negative z-direction.

It is observed that regardless of the direction of its initial velocity, as long as

the charge enters the magnetic field region in the region x ≤ 0, it will pass

through (a, 0) via a path symmetric about the y-axis. (International Physics

Olympiad)

(a) What is the sign of the charge?

(b) With what speed does the charge pass through point (a, 0)?

(c) Find the function f(x).

18. Rolling Sphere**

A solenoid of N turns carrying a constant current I is wound around the

equatorial plane of a uniform sphere of radius R and mass m. The sphere is

then placed on a rough, inclined plane with an angle of inclination θ, as shown

in the figure below. A uniform magnetic field B points upwards everywhere.

The magnetic dipole moment of the coil is initially directed perpendicularly

outwards from the plane and the sphere is initially stationary. If the sphere

rolls without slipping subsequently, determine the clockwise angular velocity

of the sphere φ̇, as a function of the clockwise angle φ that the sphere has

rotated.
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19. Charge and Wire**

A fixed infinite wire carries current I along the positive z-axis. Supposing

that a charged particle of mass m and charge q is initially launched at a

radial velocity v0 > 0 (positive outwards), at a perpendicular distance r0
from the wire, determine the maximum and minimum radial distances that

the charged particle can attain from the wire.

20. Two Identical Charges**

Two identical particles of mass m and charge q are placed along the x-

axis, in a region of uniform magnetic field B in the positive z-direction,

with arbitrary initial velocities. The charges still lie in the xy-plane in their

resulting motion.

By denoting r1 and r2 as the position vectors of the two charges, write

down the equations of motion of the charges. Now, express these in terms

of the position vector of the center of mass rCM and the separation vector

r = r1 − r2. What is the motion of the center of mass of the two charges?

Now, supposing that we wish to ensure that the distance between the

two charges is a constant d, show that there is a minimum d for which this

is possible. The angular velocity of the separation vector r in the lab frame,

that corresponds to the minimum d, undertakes a certain constant value

ω. After determining this ω, show that the original position of the center of

mass and the instantaneous positions of the two particles are always collinear

if the initial velocity of the center of mass (which is non-zero) does not have

a y-component.

21. Two Opposite Charges***

Two particles of the same mass m and charges q and −q are placed along the

x-axis, in a region of uniform magnetic field B in the positive z-direction. Let

the position vectors of the charges q and −q be r1 and r2 respectively and

define the separation vector as r = r1−r2. Only under certain special initial

conditions can the two charges remain in the xy-plane while their separation

vector remains at a constant magnitude d and rotates at a constant angular

velocity ω. Determine the initial velocity of the center of mass of the two

particles that results in such a motion. Given ω, find d and show that there

exists a minimum magnitude of the angular velocity ω for such a motion to

be possible.
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22. Magnetic Lens****

A thin, vertical solenoid carrying anti-clockwise current I with η turns per

unit length, length l and radius R can be used to focus off-axis charges.

Define the origin at the bottom of the solenoid and the z-axis to be positive

upwards (towards the top of the solenoid).

(a) Determine the longitudinal and radial magnetic field at a small per-

pendicular distance r � R from the cylindrical axis as a function of

z-coordinate z. Hint: we have calculated one of these fields in a previ-

ous problem.

(b) Now, suppose that particles with charge q and mass m are placed at

radial distances r � R at the bottom of the solenoid. They are given a

large velocity v0 in the positive z-direction such that their radial coor-

dinates are approximately constant throughout the solenoid. If l 	 R,

approximately how large should v0 be as compared to the other param-

eters for this to occur? Now, determine the instantaneous velocities of

these particles at the instance they exit from the top of the solenoid.

(c) Determine the time t after this instance, at which they coincide with

the z-axis, assuming that the magnetic field outside the solenoid is zero.

Would this set-up function as a good lens to focus charges (of the same

magnitude) with different initial radial distances?
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Solutions

1. An Apparent Paradox*

Apply Ampere’s law to a circular loop, perpendicular to and centered about

wire 1, that passes through wire 2.

B · 2πr = μ0I1.

The magnetic field due to wire 1 at wire 2 is then

B =
μ0I1
2πr

.

The force per unit length on wire 2 due to wire 1 is

f = BI2 =
μ0I1I2
2πr

.

If the two currents are in the same direction, the wires tend to attract each

other. Otherwise, they tend to repel.

For the second part of the problem, observe that the expression for the

force per unit length on wire 2 is only valid when it is stationary. Once

it begins moving, the charges in wire 2 acquire a component of velocity

transverse to the wire, in addition to the existing component along it. The

magnetic force on these charges due to wire 1 is perpendicular to their net

velocities which are obtained from the vector sum of the transverse and

longitudinal components. Therefore, a longitudinal force will be generated

on the charges in wire 2, parallel and anti-parallel to the current I2 in wire

2 for negative and positive charges respectively, on top of the transverse

force discussed in the first part of the problem. In other words, wire 2 gains

velocity due to the transverse component of the magnetic force but the net

magnetic force on wire 2 is not purely transverse and definitely still performs

zero work. This is akin to how we can claim that a component of the normal

force on a block sliding down a frictionless, inclined plane “accelerates” the

block in the horizontal direction (parallel to the flat ground), though the

normal force itself really does no work on the block.

But still, the kinetic energy of wire 2 must come from somewhere! Since

the longitudinal component of magnetic force tends to reduce the current

in wire 2, if wire 2 is not connected to any external entity, the current

in wire 2 will decrease — suggesting a decrease6 in the energy stored in

6Actually, our question is ill-posed at the moment as the energies stored in the wires are
actually infinite. One should use the more realistic picture of a wire having a non-negligible
cross section for concrete calculations.
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the magnetic field (empirically, it always takes positive external work to

increase a current7). Therefore, the decrease in potential energy stored in

the magnetic field balances the increase in kinetic energy of wire 2.

Otherwise, if wire 2 is connected to a battery, the battery needs to pro-

duce an additional longitudinal force on the charges in wire 2 to maintain its

current at I2. A possible source of the kinetic energy is then the work done

by the battery attached to wire 2. However, note that the energy stored in

the magnetic field still varies in this case (as the distance between the wires

changes) so it remains a factor here.

2. Force Between Moving Charges*

Label the charges q and −q as 1 and 2 respectively. At time t, charges 1 and

2 are at (0, vt) and (vt, 0). The magnetic field at the location of charge 2 due

to charge 1, in the non-relativistic regime, is

B1 =
μ0qv1 × r

4πr3
= − μ0qv(vt)

4π(
√
2vt)3

k̂ = − μ0q

8
√
2πvt2

k̂.

Keep in mind that we are not applying the Biot-Savart law in saying this,

as a moving point charge surely does not constitute a steady current. The

magnetic force acting on charge 2 is thus

F 21 = −qv2 ×B1 = −q(vî)×
(
− μ0q

8
√
2πvt2

k̂

)
= − μ0q

2

8
√
2πt2

ĵ.

However, if we repeat this procedure, we will find that the magnetic force

on charge 1 is

F 12 = − μ0q
2

8
√
2πt2

î,

so Newton’s third law is seemingly violated! This thought experiment led

to the modern idea of treating the electromagnetic field as an entity of its

own such that the charges interact with the field rather than each other. By

associating a momentum with the electromagnetic field, the conservation of

momentum (in the system comprising both charges and the field) can then

be retained.

7However, if we wish to nit-pick further, a smaller current, in this case, does not nec-
essarily imply a decrease in energy stored in the magnetic field since the location of the
current in wire 2 varies. We should just accept that the kinetic energy of wire 2 comes
from the decrease in energy stored in the magnetic field as that is the only possible source
here.
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Even though F 12 and F 21 are both independent of v, they are incorrect

when v = 0. This is because stationary charges do not produce a magnetic

field and do not experience a magnetic force even in the presence of an

external magnetic field. Mathematically, we cannot cancel the v’s in the

numerator and denominator of the magnetic fields (e.g. the third equality in

the computation of B1) when v = 0. Instead, the more rigorous statement

is that v → 0 and r → 0 but when the numerator and denominator of a

function both tend to zero, the value of the function in such a limit depends

on how v and r scale to zero and is generally indeterminate. However, we

usually require the magnetic field to be zero for physical reasons.

3. Current on Cube*

We can see the relevant current distribution as the superposition of three

current loops on the left, front and bottom faces of the cube, as shown in

Fig. 7.23. Each current loop produces a magnetic field of magnitude B at the

center, parallel to the area vector associated with the current loop (whose

direction is determined by the right-hand-rule). Therefore, the relevant mag-

netic field is

Figure 7.23: Superposition of currents

B′ = −Bî+Bĵ +Bk̂,

which is of magnitude
√
3B and directed from the center towards the top-

right vertex on the back face in Fig. 7.23.

4. Lorentz Force on a Short Wire**

Applying Ampere’s law to the infinitely long wire, the magnetic field at

coordinate (x, y, z) due to the infinite long wire is

B(x, y, z) =
μ0I1

2π
√
x2 + z2

⎛
⎜⎝

z√
x2+z2

0
x√

x2+z2

⎞
⎟⎠.
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The wire of finite length spans from (0, 0, h) to (l, 0, h). Therefore, the force

on an infinitesimal segment of the finite wire between (x, 0, h) and (x +

dx, 0, h) is

dF = I2ds×B

= I2

⎛
⎝dx0

0

⎞
⎠× μ0I1

2π
√
x2 + h2

⎛
⎜⎝

h√
x2+h2

0
x√

x2+h2

⎞
⎟⎠

= − μ0I1I2x

2π(x2 + h2)
dx

⎛
⎝0

1

0

⎞
⎠.

Integrating along the entire wire,

Fy =

ˆ l

0
− μ0I1I2x

2π(x2 + h2)
dx

=

[
−μ0I1I2

4π
ln(x2 + h2)

]l
0

= −μ0I1I2
4π

ln
l2 + h2

h2
.

5. Torque on Arbitrary Wires**

Suppose that we follow an infinitesimal current dI along a certain path P

from terminal A towards terminal B, which lies entirely in the xy-plane.

Consider an infinitesimal segment dr along P which lies at a position vector

r relative to A. Since the torque on this infinitesimal current segment about

A is dIr × (dr ×B), the total torque on the current dI along path P , with

respect to A, is

dI

ˆ
P
r × (dr ×B) = dI

ˆ
P
[dr(r ·B)−B(r · dr)]

= −BdI

ˆ
P
r · dr

= −BdI

ˆ l

0
rdr

= −dIl
2B

2
,
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where we have noted that r · B = 0 in the second equality and r · dr =
1
2d(r · r) = 1

2d(r
2) = rdr in the third equality. Summing the contributions

of all currents from A, the total torque on the wires about A is

τ = −
´
l2BdI

2
= −Il

2B

2

which is identical to the torque, about A, on a straight wire delivering current

I from A to B. An interesting property is that the torque about A is always

opposite in direction to the external field B.

6. Helmholtz Coil**

The magnetic field strength at a distance z away from the axis of a circular

ring of current I was previously derived to be

B =
μ0IR

2

2(R2 + z2)
3
2

.

For a coil with N turns, the corresponding magnetic field strength is then

B =
μ0NIR

2

2(R2 + z2)
3
2

.

The Helmholtz set-up consists of two coils with currents running in the same

direction. Therefore, the magnetic field strength in the region within the coils

is reinforced. The magnetic field strength at a perpendicular distance z from

the center of one coil is

B(z) =
μ0NIR

2

2(R2 + z2)
3
2

+
μ0NIR

2

2 (R2 + (d− z)2)
3
2

,

where we assume that the coils carry anti-clockwise currents I relative to

the positive z-direction.

dB

dz
= − 3μ0NIR

2z

2(R2 + z2)
5
2

+
3μ0NIR

2(d− z)

2 (R2 + (d− z)2)
5
2

,

d2B

dz2
= − 3μ0NIR

2

2(R2 + z2)
5
2

+
15μ0NIR

2z2

2(R2 + z2)
7
2

− 3μ0NIR
2

2 (R2 + (d− z)2)
5
2

+
15μ0NIR

2(d− z)2

2 (R2 + (d− z)2)
7
2

.
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For d2B
dz2 |z= d

2
= 0,

−
(
R2 +

d2

4

)
+

5d2

4
−
(
R2 +

d2

4

)
+

5d2

4
= 0

d = R.

7. Bent Wire**

Firstly, consider the following auxiliary problem.

Auxiliary Problem: A thin, conducting wire carries a uniform current I.

Determine the magnetic field at a point P that is situated at a perpendicular,

vertical distance h from the wire, while assuming that the Biot-Savart law

holds.8 The ends of the wire subtend anti-clockwise angles θ1 and θ0 with

respect to the vertical.

Figure 7.24: Thin wire

Define the x and y-axes to be the horizontal and vertical axes, positive

rightwards and upwards, in Fig. 7.24. Consider an infinitesimal segment of

wire between x-coordinates x and x + dx. The infinitesimal vector of this

segment is ds = (dx, 0, 0) while the separation vector between this segment

and point P is r = (− x√
x2+h2

, h√
x2+h2

, 0). Applying the Biot-Savart law, the

magnetic field at P due to the wire is

B =
μ0I

4π

ˆ x1

x0

1

x2 + h2

⎛
⎝dx0

0

⎞
⎠×

⎛
⎜⎝
− x√

x2+h2
h√

x2+h2

0

⎞
⎟⎠ =

μ0I

4π

ˆ x1

x0

hdx

(x2 + h2)
3
2

⎛
⎝0

0

1

⎞
⎠

where x0 and x1 are the x-coordinates of the ends of the rod. To evalu-

ate the integral for the z-component, use the substitutions x = h tan θ and

8The current in this set-up is definitely not steady but we will be applying our result
to a steady current configuration that this set-up is a part of. We are thus finding the
contribution due to this finite wire, in a certain sense.
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dx = h sec2 θdθ.

Bz =
μ0I

4π

ˆ θ1

θ0

h

h3 sec3 θ
· h sec2 θdθ

=
μ0I

4πh

ˆ θ1

θ0

cos θdθ

=
μ0I(sin θ1 − sin θ0)

4πh
.

The magnetic field at P points out of the page (recall that î × ĵ = k̂ for a

conventional coordinate system).

Returning to our original context, break the bent wire into two at the

kink. The above result can then be applied to the two resultant wires with

θ1 = π
2 − θ and θ0 = −π

2 for the top wire and θ1 = π
2 and θ0 = θ − π

2 for

the bottom wire. The perpendicular distance between P and the wires, h, is

d sin θ in this case. Observing that the contributions of the two half-infinite

wires are reinforced at P, the magnetic field at P is then

Bz =
μ0I(cos θ + 1)

2πd sin θ
=

μ0I · 2 cos2 θ2
4πd sin θ

2 cos
θ
2

=
μ0I

2πd
cot

θ

2

pointing out of the page.

8. Finite Solenoid**

Define the origin at the bottom end of the cylinder (smaller z-coordinate)

and consider the solenoid in cylindrical coordinates. Slice the solenoid into

rings of thickness dh. Suppose that we wish to calculate the magnetic field

at a certain point P with coordinates (0, 0, z). We have previously derived

in an example problem that a circular ring of radius R that carries an anti-

clockwise current I produces a vertical magnetic field

Bz =
μ0IR

2

2(z2 +R2)
3
2

at a point that is at a perpendicular height z from the ring, along the sym-

metrical axis. Applying this result to this problem, the contribution to the

magnetic field at the origin due to an infinitesimal ring between z-coordinates

h and h+ dh is

dBz =
μ0ηIdhR

2

2((h − z)2 +R2)
3
2

,
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as the particular infinitesimal ring carries current ηIdh and because point

P is a distance z − h away from the ring at z-coordinate h. Then, the total

magnetic field at P is obtained by integrating the above over all rings from

h = 0 to h = l.

Bz =

ˆ l

0

μ0ηIR
2

2((h − z)2 +R2)
3
2

dh.

Making the substitutions h− z = R tan θ and dh = R sec2 θdθ,

Bz =

ˆ tan−1 l−z
R

tan−1 −z
R

μ0ηI

2
cos θdθ =

[
μ0ηI

2
sin θ

]tan−1 l−z
R

tan−1 −z
R

=
μ0ηI

2

(
l − z√

(l − z)2 +R2
+

z√
z2 +R2

)
.

To solve the next problem, slice the solenoid into thin cylindrical shells with

radial distances between r and r+dr. Observe that the current per unit cross

sectional area of the solenoid is J = ηI
r1−r0 . Therefore, the current per unit

length of this cylindrical shell is Jdr. With the same origin at the bottom of

the solenoid, the contribution to the magnetic field at a point P along the

symmetrical axis by this cylindrical shell is

dBz =
μ0Jdr

2

(
l − z√

(l − z)2 + r2
+

z√
z2 + r2

)
,

where we have replaced the previous current per unit length ηI with Jdr,

and R with the variable r. The total magnetic field at P is then

Bz =

ˆ r1

r0

μ0J

2

(
l − z√

(l − z)2 + r2
+

z√
z2 + r2

)
dr.

To evaluate the integral
´

a√
a2+x2

dx, make the substitutions x = a tan θ and

dx = a sec2 θ. Then,

ˆ x1

x0

a√
a2 + x2

dx =

ˆ tan−1 x1
a

tan−1 x0
a

a sec θdθ

= [a ln | sec θ + tan θ|]tan
−1 x1

a

tan−1 x0
a

= a ln

∣∣∣∣∣
√
x21 + a2 + x1√
x20 + a2 + x0

∣∣∣∣∣.
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Therefore,

Bz =
μ0ηI(l − z)

2(r1 − r0)
ln

∣∣∣∣∣
√
r21 + (l − z)2 + r1√
r20 + (l − z)2 + r0

∣∣∣∣∣+ μ0ηIz

2(r1 − r0)
ln

∣∣∣∣∣
√
r21 + z2 + r1√
r20 + z2 + r0

∣∣∣∣∣.
9. Rotating Sphere***

Define the origin at the center of the sphere and adopt spherical coordinates.

We will use s to denote the radial distance of an infinitesimal element from

the origin. The position vector of an infinitesimal element at coordinates

(s, φ, θ) is s = (s sin θ cosφ, s sin θ sinφ, s cos θ). Its velocity is

v =

⎛
⎝0

0

ω

⎞
⎠×

⎛
⎝s sin θ cosφs sin θ sinφ

s cos θ

⎞
⎠ =

⎛
⎝−ωs sin θ sinφ
ωs sin θ cosφ

0

⎞
⎠.

Suppose that we wish to compute the magnetic field at a point P with a

z-coordinate z along the z-axis. Then, the separation vector is

r =

⎛
⎝0

0

z

⎞
⎠−

⎛
⎝s sin θ cosφs sin θ sinφ

s cos θ

⎞
⎠ =

⎛
⎝−s sin θ cosφ
−s sin θ sinφ
z − s cos θ

⎞
⎠.

Applying the Biot-Savart law and substituting ρv for the current density J

of an infinitesimal volume element dV = s2 sin θdφdθds in spherical coordi-

nates,

B =
μ0
4π

ˆ R

0

ˆ π

0

ˆ 2π

0

ρωs · s2 sin θdφdθds
(z2 + s2 − 2zs cos θ)

3
2

⎛
⎝− sin θ sinφ

sin θ cosφ

0

⎞
⎠

×
⎛
⎝−s sin θ cosφ
−s sin θ sinφ
z − s cos θ

⎞
⎠.

After integration, only the z-component remains due to the symmetry of the

sphere.

Bz =
μ0ρω

4π

ˆ R

0

ˆ π

0

ˆ 2π

0

s4 sin3 θdφdθds

(z2 + s2 − 2zs cos θ)
3
2

=
μ0ρω

2

ˆ R

0

ˆ π

0

s4 sin3 θdθds

(z2 + s2 − 2zs cos θ)
3
2

.
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This double integral is non-trivial to evaluate. We first evaluate the inner

integral via multiple integrations-by-parts.

ˆ π

0

s4 sin3 θdθ

(z2 + s2 − 2zs cos θ)
3
2

=

[
− s3 sin2 θ

z
√
z2 + s2 − 2zs cos θ

]π
0

+

ˆ π

0

2s3 sin θ cos θ

z
√
z2 + s2 − 2zs cos θ

dθ

= 0 +

[
2s2 cos θ

z2

√
z2 + s2 − 2zs cos θ

]π
0

+

ˆ π

0

2s2 sin θ

z2

√
z2 + s2 − 2zs cos θdθ

= −2s2

z2

(√
z2 + s2 − 2zs+

√
z2 + s2 + 2zs

)

+

ˆ π

0

2s2 sin θ

z2

√
z2 + s2 − 2zs cos θdθ.

To evaluate the final integral, make the substitutions u = z2 + s2 − 2zs cos θ

and du = 2zs sin θdθ.ˆ π

0

2s2 sin θ

z2

√
z2 + s2 − 2zs cos θdθ

=

ˆ z2+s2+2zs

z2+s2−2zs

s

z3
√
udu

=
2s

3z3

[
(z2 + s2 + 2zs)

3
2 − (z2 + s2 − 2zs)

3
2

]
.

Note that we cannot evaluate the square root yet as we do not know the

relative magnitude of z and s. Actually, another way to evaluate the integral

is to directly adopt the same substitutions from the start such that

ˆ π

0

s4 sin3 θdθ

(z2 + s2 − 2zs cos θ)
3
2

=

ˆ π

0

s4(1− cos2 θ) sin θdθ

(z2 + s2 − 2zs cos θ)
3
2

=

ˆ s4
[
1−

(
z2+s2−u

2zs

)2]
du
2zs

u
3
2
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=
s

8z3

[
−(z2 − s2)2

ˆ
u−

3
2 du+ 2(z2 + s2)

ˆ
u−

1
2 du−

ˆ
u

1
2 du

]

=
s

8z3

[
2(z2 − s2)2u−

1
2 + 4(z2 + s2)u

1
2 − 2

3
u

3
2

]z2+s2+2zs

z2+s2−2zs

and so on. However, it just happens that the resulting terms require less

simplification if we integrate-by-parts first. In any case, the magnetic field

at P is

Bz =
μ0ρω

2

ˆ R

0

(
−2s2

z2

(√
z2 + s2 − 2zs+

√
z2 + s2 + 2zs

)

+
2s

3z3
[(z2 + s2 + 2zs)

3
2 − (z2 + s2 − 2zs)

3
2 ]

)
ds.

To actually compute this integral, we have to consider two regimes of z:

z ≥ R (point P is outside the sphere) and z < R. In the case of the former,√
(z − s)2 = z − s for the entire regime of integration

Bz =
μ0ρω

2

ˆ R

0

(
−4s2

z
+

2s

3z3
[
(z + s)3 − (z − s)3

])
ds

= −2μ0ρωR
3

3z
+

ˆ R

0

2μ0ρωs
2

3z3
(
3z2 + s2

)
ds

=
2μ0ρωR

5

15z3

for z ≥ R (i.e. outside the sphere). If z < R, we have to split the integrals in

s into two parts — from 0 to z and z to R.
√
z2 + s2 − 2zs = z − s for the

first region and
√
z2 + s2 − 2zs = s− z for the second region. Therefore,

Bz =
μ0ρω

2

ˆ z

0
−4s2

z
ds+

μ0ρω

2

ˆ R

z
−4s3

z2
ds

+
μ0ρω

2

ˆ z

0

2s

3z3
[(z + s)3 − (z − s)3]ds

+
μ0ρω

2

ˆ R

z

2s

3z3
[
(z + s)3 − (s− z)3

]
ds

= −μ0ρωz
2

5
+
μ0ρωR

2

3
.
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10. Thick Infinite Wire*

The magnetic field can only be azimuthal for the same reasons as those

argued for an infinite thin wire. Draw a circular Amperian loop of radius r

perpendicular to the cylindrical axis, with its center along the axis. If r < a,

the current that this loop encloses is

Ienc =

ˆ r

0

2I0
πa2

(
1− r2

a2

)
· 2πrdr

=
2I0r

2

a2
− I0r

4

a4

=
I0r

2

a2

(
2− r2

a2

)
.

For r ≥ a, the enclosed current is obtained from substituting r = a in the

preceding expression.

Ienc =

ˆ a

0

2I0
πa2

(
1− r2

a2

)
· 2πrdr = I0.

Applying Ampere’s law to this loop (regardless of whether r < a or r ≥ a),

B · 2πr = μ0Ienc

=⇒ B =
μ0Ienc
2πr

=

{
μ0I0r
2πa2

(
2− r2

a2

)
for r < a

μ0I0
2πr for r ≥ a

.

11. Wire with Cavity*

The current density of the wire is

J =
I

πR2 − πR
2

4

=
4I

3πR2
.

Now, imagine filling up the hole with a wire that carries the same current

density J . Applying Ampere’s law to a circle perpendicular to the axis of a

solid wire,

B(r) · 2πr = μ0Jπr
2

B(r) =
μ0Jr

2

for r ≤ R, anti-clockwise in the azimuthal direction (referring to the figure in

the problem) as the current density J is coming out of the page. Since B = 0



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch07 page 492

492 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

when r = 0, the magnetic field at P due to a solid wire must be zero. Now,

this is the magnetic field at P due to both the original and imaginary wires.

To determine the magnetic field due to only the original wire, we subtract

the contribution by the imaginary wire which is B = μ0JR
4 anti-clockwise

along the circular boundary of the cavity (substitute r = R into the above

and replace R with R
2 ). Therefore, the magnetic field at P due to the wire

with a cavity is

B′ = 0− μ0JR

4
= − μ0I

3πR
,

where the negative sign indicates that this field is clockwise along the circular

boundary of the cavity.

12. Opposite Currents*

The current distribution in the problem can be seen as the superposition of

two currents with a circular cross section of radius b and current densities

−J and J in the positive z-direction. Consider the latter current. Applying

Ampere’s law to a circular loop of radius r < b (whose center is cut by the

cylindrical axis of the current) in the xy-plane, we have

B · 2πr = μ0Jπr
2

B =
μ0Jr

2
.

The magnetic field is azimuthal everywhere. Expressing it in vector form,

B =
μ0J

2
k̂ × r

where r is the vector pointing from the center of the circle, in the cross sec-

tion, to the point of interest for r < b. The magnetic field of the other current

can be obtained from substituting −J for J and adopting a similar definition

for r. If we denote the left and right currents as 1 and 2 respectively, the net

magnetic field at a point within the overlapping region is

B =
μ0J

2
k̂× (r2 − r1) =

μ0J

2
k̂ × (−2âi) = −μ0aJ ĵ.

13. Toroid**

Firstly, we can deduce the direction of the magnetic field produced by the

toroid — we shall simply state the procedure for this and the reader should

fill the details in. Define the z-axis as the axis that the toroid is rotationally
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symmetric about. Suppose that we wish to compute the magnetic field at a

certain point P. Orient the positive x-axis such that point P lies in the xz-

plane. One can show that the net magnetic field at P due to an infinitesimal

current segment and its counterpart corresponding to its reflection about

xz-plane only has a y-component (azimuthal with respect to the z-axis).

Dividing the toroid into two halves along the xz-plane and applying this

argument to all of such pairs, we conclude that the net magnetic field at

P must only be azimuthal. Since the toroid is circularly symmetric, the

magnetic field lines must take the form of circles around the z-axis.

Now, consider the circle (whose radius is denoted as r) obtained from

rotating point P about the z-axis for a complete revolution. Due to circular

symmetry, the magnetic field strengths at all points along this loop (the

direction of the magnetic field is azimuthal) must be identical. Therefore, if

we let this common value be B and use this loop as an Amperian loop to

apply Ampere’s law to,

B · 2πr = μ0Ienc

where Ienc is the current enclosed by this circle. If the circle lies outside the

toroid, it encloses no net current — implying that the magnetic field is zero

everywhere outside the toroid. On the other hand, if the circle lies within

the toroid, it encloses a total current NI. Thus,

B · 2πr = μ0NI

B(r) =
μ0NI

2πr
,

where we reiterate that r is the perpendicular distance between the point

of concern and the z-axis and that this result is only valid if the point of

concern is enclosed within the toroid.

14. Magnetic Flux and Field Lines**

By Ampere’s law, the magnetic field at the center of a long solenoid is

B = μ0ηI

and is uniform within the central cross section. The total magnetic flux

cutting across the central cross section is thus

ΦB,center = B · πR2 = μ0πηIR
2.

Now, we simply have to subtract the magnetic flux exiting the North end

of the solenoid from the above to compute the magnetic flux leaving from
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the lateral surface since the net magnetic flux emanating from a closed sur-

face, which is the North half of the solenoid in this case, must be zero. To

this end, we have to determine the component of magnetic field along the

solenoid axis at the North end (name this the z-component). This can be eas-

ily accomplished by exploiting the principle of superposition. Observe that

if we break a long solenoid into two at its center, we obtain two semi-infinite

solenoids whose z-components of magnetic field are reinforced at the center.

Therefore, twice the z-component of magnetic field, Bz, at any point on the

end of a solenoid is μ0ηI, which implies that

Bz =
μ0ηI

2

and is uniform over the cross section at the end of the solenoid. Therefore,

the total magnetic flux leaving the North end is

ΦB,end = Bz · πR2 =
μ0πηIR

2

2
.

The net magnetic flux leaving the North part of the solenoid from its lateral

surface is then

ΦB,center − ΦB,end =
μ0πηIR

2

2
.

We can adopt a similar approach to the second part. Suppose that a magnetic

field line that begins at a radial distance r at the central cross section departs

from the North end of the solenoid at a radial distance r′. Since the solenoid
is symmetrical about its axis, we can rotate this field line for a complete

revolution to generate other axial-symmetric field lines. This set of lines,

coupled with the two circles of radii r and r′ at the cross sections of the

solenoid at the center and the North end, forms a closed surface. Requiring

the net magnetic flux crossing this closed surface to be zero while observing

that the magnetic flux is only non-zero at the two circles (since we purposely

constructed part of our surface to be parallel to the field lines), the magnetic

fluxes through the two circles must be equal in absolute magnitude.

Bz · πr′2 = B · πr2

r′ =
√
2r.

The field line will only leave via the lateral surface if
√
2r > R.
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15. Bouncing Particle*

As analyzed before, the particle will undergo circular motion with radius

r =
mv0
qB

=
l

8

in the uniform magnetic field. When the particle undergoes a perfectly elas-

tic, head-on collision with the wall, its velocity is reversed and the center of

rotation shifts by 2r = l
4 . Furthermore, observe that near the edges of the

square, the particle still rotates with its center of rotation being a vertex

of the square — causing its subsequent collision with another edge of the

square to also be head-on. Therefore, the particle (if q is positive) follows

the trajectory in Fig. 7.25.

Figure 7.25: Clockwise movement of positive charge

If the particle is negatively charged, it would take the reverse path —

hence requiring the same amount of time to complete a cycle. In total, the

particle would have rotated

4l
l
8
4 = 8 complete rounds. The period of a single

rotation is 2π divided by the cyclotron angular frequency qB
m .

T =
2π
qB
m

=
2πm

qB
.

Therefore, the total time taken by the particle to return to its original posi-

tion is

8T =
16πm

qB
.

16. Magnetic Dipole Moment**

We can deem the original loop given in the problem as the composition of

two cyclic semi-circular loops in Fig. 7.26. The fictitious currents cancel such

that the current distribution is the same as the set-up in the problem.
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Figure 7.26: Two current loops

Suppose that we orient our positive x and y-axes rightwards and upwards

such that the two loops have magnetic dipole moments

μ1 = IπR2

⎛
⎝1

0

0

⎞
⎠,

μ2 = IπR2

⎛
⎝0

1

0

⎞
⎠,

while the external magnetic field is

B = B

⎛
⎜⎝

√
2
2√
2
2

0

⎞
⎟⎠.

The total torque experienced by the original loop is the sum of the torques

experienced by these semi-circular loops

τ = (μ1 + μ2)×B

= IπR2

⎛
⎝1

1

0

⎞
⎠×

⎛
⎜⎝

√
2
2√
2
2

0

⎞
⎟⎠

= 0.

For a general loop C, we can leverage on the previous idea to divide any

non-planar loop into planar loops by replacing regions that are devoid of

current with two fictitious line currents that travel in opposite directions. In

fact, why not further divide the planar loops into smaller and smaller planar

loops such that we obtain infinitesimal planar loops which carry current I

(all in the same direction — either clockwise or anti-clockwise)? This process

is depicted in Fig. 7.27.

Within the loop, the adjacent sides of the infinitesimal current loops nul-

lify each other such that the net effect of the entire group of infinitesimal



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch07 page 497

Magnetism 497

Figure 7.27: Dividing a non-planar loop into infinitesimal loops

loops is to deliver current I along the boundary line (the original loop C).

Each infinitesimal current loop with area vector dA experiences a torque

IdA ×B such that one turn of the coil experiences a torque I
˜
S dA ×B

where S is the surface constructed from patching the infinitesimal planar

loops together (it is a surface that spans C). Therefore, the torque experi-

enced by a coil with N turns is

τ =

(
NI

¨
S
dA

)
×B = μ×B

where

μ = NI

¨
S
dA

is the magnetic dipole moment of the coil. Now, we claim that
˜
S dA is only

dependent on the loop C and is independent of the surface that we choose,

as long as it spans C. To this end, we simply need to prove that the surface

integral of dA is zero for any closed surface, where the positive direction is

taken to be outwards. This is because, if we have
‚
dA = 0 and two surfaces

S1 and S2 that both span C, gluing these surfaces together forms a closed

surface — implying that ¨
S1

dA−
¨
S2

dA = 0

=⇒
¨
S1

dA =

¨
S2

dA,

which shows that all surfaces which span the same loop C result in the

same surface integral. In writing the first equation, the negative sign (rather

than positive) stems from the fact that we take outwards to be the positive

direction in writing
‚
dA. However, for a current loop C, we already have a

predetermined positive direction for the infinitesimal area vector of a surface

S that spans it (given by the right-hand-grip rule applied to the proposed

positive direction of current) such that dA for one of the surfaces is actually

inwards so we need to include a minus sign to reverse it.
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With this clarification, let us prove that
‚
dA = 0 — we shall first do

this with a physical argument and afterwards, a mathematical one. Imagine

that we impose a uniform electric field E in the volume enclosed by a closed

surface S. Gauss’ law states that‹
S
E · dA =

qenc
ε0

where qenc is the charge enclosed within S. However, observe that by applying

Gauss’ law to a small cube within every point inside S, the net charge at

each point within a region of uniform electric field must be zero since no

net flux cuts across the surface of the small cubes! Another way to see this

is that the field lines are straight within S such that they cannot start at a

positive charge or end at a negative charge within S. Therefore, qenc = 0.
‹
S
E · dA = E ·

‹
S
dA = 0.

Since E is arbitrary (it just has to be uniform),
‹
S
dA = 0

for any closed surface S. This jump is most obvious if we choose three electric

fields that are along the x, y and z-directions of our Cartesian coordinate

system such that we can conclude that the x, y and z-components of
‹
S
dA

are zero. Now, this nullity is rather intuitive as it asserts that an ideal gas

with a uniform pressure p does not exert a net force on the container that

contains it (the net force exerted is
‚
pdA). Well, we certainly do not see

containers of gas moving around on their own.

A rigorous mathematical proof requires elementary vector calculus

(which we assume that the reader has prior knowledge of, since we have

already presented a physical proof for other readers). The divergence theo-

rem states that for any vector field v,
¨
V
(∇ · v) dτ =

‹
S
v · dA

where the left-hand side is the volume integral of ∇ · v, known as the diver-

gence of v which is ∂vx
∂x +

∂vy
∂y + ∂vz

∂z in Cartesian coordinates, over a volume V

while the right-hand side is the surface integral of v over the closed surface
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S that bounds V. In particular, if we choose the vector field v to be uniform

everywhere, its divergence vanishes while the right-hand side becomes

‹
S
v · dA = v ·

‹
S
dA

such that

v ·
‹
S
dA = 0

for any uniform vector field v, from which we arrive at the conclusion‚
S dA = 0.

17. Homing Charge**

(a) Within the magnetic field, the charge moves along the arc of a circle. For

the charge to reach the positive x-axis when it starts with an initial velocity

with a positive y-component, its trajectory must be clockwise. Using the

right-hand-rule for the magnetic force, the charge must be negative.

(b) Since the only force that can act on the charge is the magnetic force that

does no work, its speed must remain at v at all times.

(c) Since the path of the particle is symmetric about the y-axis, the bound-

aries of the magnetic field region must also follow suit. That is, f(x) must

be an even function. This is because we can play a movie of the charge’s

motion backwards and the condition in the problem would still be fulfilled

(with the two terminals reversed). Now, referring to Fig. 7.28, suppose the

particle enters the magnetic field region at (−x, y) and leaves it at (x, y)

where x ≥ 0. Note that the particle’s velocities at the junctures of entering

and exiting the magnetic field must be locally tangential to the circular arc.

Figure 7.28: Trajectory of particle
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From Fig. 7.28, we have

tan θ =
x√

R2 − x2
=

y

|x− a| .

Even though the diagram depicts the case where x < a, the above equation

captures the case where x ≥ a too. Solving,

y =
x|x− a|√
R2 − x2

.

Thus, for x ≥ 0,

f(x) = f(−x) = y

so we can write for general x

f(x) =
|x|||x| − a|√
R2 − x2

.

18. Rolling Sphere**

There are three types of forces on the sphere — its weight, friction and

the magnetic force on the coil. We have shown that the last interaction

produces no net force on a current loop. Applying Newton’s second law

along the direction parallel to the plane, while taking the positive direction

as downwards,

mg sin θ − f = ma

where f is the friction force on the sphere and a is the acceleration of the

center (of mass) of the sphere. The torques on the sphere about its center

are due to friction and the magnetic force on the coil. When the sphere has

rotated a clockwise angle φ, the magnetic dipole moment μ has similarly

rotated φ clockwise. Then, the magnetic torque on the sphere is −μB sin(φ+

θ) clockwise where μ = NIπR2. Combining this with the mechanical torque,

fR− μB sin(φ+ θ) =
2

5
mR2φ̈.

Imposing the non-slip condition a = Rφ̈ and solving the above equations

simultaneously,

φ̈ =
5g

7R
sin θ − 5μB

7mR2
sin(φ+ θ).
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Substituting φ̈ = φ̇ dφ̇dφ ,

ˆ φ̇

0
φ̇dφ̇ =

ˆ φ

0

(
5g

7R
sin θ − 5μB

7mR2
sin(φ+ θ)

)
dφ

φ̇2

2
=

5g

7R
φ sin θ +

5μB

7mR2
cos(φ+ θ)− 5μB

7mR2
cos θ

φ̇ =

√
10g

7R
φ sin θ +

10μB

7mR2
cos(φ+ θ)− 10μB

7mR2
cos θ

=

√
10g

7R
φ sin θ +

10πNIB

7m
cos(φ+ θ)− 10πNIB

7m
cos θ.

19. Charge and Wire**

Consider the set-up in cylindrical coordinates with the axis aligned with the

wire. Let the radial, azimuthal and longitudinal unit vectors be r̂, φ̂ and k̂

respectively. Define the origin to be at the point on the wire such that the

z-coordinate of the particle is zero. The magnetic field at a radial distance r is

B =
μ0I

2πr
φ̂

by Ampere’s law. The force on the particle is then

F = qv ×B

= q
(
ṙr̂ + rφ̇φ̂+ żk̂

)
× μ0I

2πr
φ̂

=
qṙμ0I

2πr
k̂ − qżμ0I

2πr
r̂.

A crucial observation is that this force does not lead to a torque in the

longitudinal direction. Therefore, this component of angular momentum is

conserved and the particle does not acquire an azimuthal velocity. When the

particle is at the greatest or shortest distance away from the wire, its radial

velocity must be zero — implying that its longitudinal speed is v0 as the

kinetic energy of the particle must be conserved (the magnetic force does no

work). Writing the equation of motion of the particle in the z-direction,

Fz = mz̈ =
qṙμ0I

2πr
.

Applying the impulse-momentum theorem in the z-direction,

mΔż =

ˆ
Fzdt =

ˆ r

r0

qμ0I

2πr
dr =

qμ0I

2π
ln

r

r0
,
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where Δż is the change in the z-component of the particle’s velocity when

it is currently at a radial distance r. When the particle attains the greatest

distance rmax away from the wire, Δż = v0 since its initial longitudinal

velocity is zero (this direction is correct as the force is evidently initially

positive in the z-direction as ṙ ≥ 0). Then, substituting r = rmax at this

juncture,

rmax = r0e
2πmv0
qμ0I .

After the particle reaches rmax, it will acquire a negative radial velocity and

hence experience a force in the −k̂ direction. Its final z-velocity at the point

of closest approach with the wire is −v0. Substituting Δż = −v0 into the

impulse-momentum equation,

rmin = r0e
− 2πmv0

qμ0I .

20. Two Identical Charges**

The equations of motion of the two particles are

mr̈1 =
q2

4πε0r3
r + qṙ1 ×B,

mr̈2 = − q2

4πε0r3
r + qṙ2 ×B.

Adding the two equations together and using the fact that rCM = r1+r2
2 ,

2mr̈CM = 2qṙCM ×B

r̈CM =
q

m
ṙCM ×B.

This is analogous to the equation of motion of a positive charge q in a uniform

magnetic field! Since the motion of the two charges is confined to the xy-

plane, there must not be a component of the velocity of the center of mass

parallel to the magnetic field. Then, the center of mass simply undergoes

circular motion with the cyclotron frequency ωCM = qB
m ! The radius of

rotation is indeterminate with arbitrary initial velocities.

Next, subtracting the equation of motion of the second particle from that

of the first yields

mr̈ =
q2

2πε0r3
r + qṙ ×B.

Now, if the distance between the two particles is a constant r = d, the sepa-

ration vector r can only rotate. Suppose that it rotates at an initial angular
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velocity ω (this must be in the z-direction). Then, from the kinematics of

rotations,

ṙ = ω × r =

⎛
⎝0

0

ω

⎞
⎠×

⎛
⎝rxry

0

⎞
⎠ =

⎛
⎝−ωry
ωrx
0

⎞
⎠

ṙ ×B =

⎛
⎝−ωry
ωrx
0

⎞
⎠×

⎛
⎝ 0

0

B

⎞
⎠ =

⎛
⎝ωBrxωBry

0

⎞
⎠ = ωBr.

The second time derivative of r is

r̈ =
d (ω × r)

dt
=
dω

dt
× r + ω × ṙ =

dω

dt
× r − ω2r.

The angular velocity vector cannot possibly change in direction as that would

imply that the motion of the charges at a later instance no longer lies in the

xy-plane. Then, the time derivative of the angular velocity vector can only

be due to its change in magnitude.

dω

dt
=
dω

dt
k̂.

Substituting the expressions for r̈ and ω × r into the previous differential

equation in r,

m

(
dω

dt
k̂ × r − ω2r

)
=

q2

2πε0r3
r + qωBr.

Observe that the first term is perpendicular to r while all other terms are

parallel to r. As r cannot be the null vector, dωdt must be zero! That is, the

angular velocity of the separation vector is a constant. Then,

q2

2πε0r3
r + qωBr +mω2r = 0.

Simplifying and since r = d,

ω2 +
qB

m
ω +

q2

2πmε0d3
= 0

ω =
− qB

m ±
√

q2B2

m2 − 2q2

πmε0d3

2
.
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For ω to be real, the discriminant must be larger than or equal to zero. This

implies that

q2B2

m2
≥ 2q2

πmε0d3

d ≥ 3

√
2m

πε0B2
.

When d is minimum, the discriminant is zero and the angular velocity of

the separation vector is ω = − qB
2m . The negative sign indicates that the

separation vector rotates clockwise. Consider the initial set-up in the xy-

plane in Fig. 7.29.

Figure 7.29: Initial y-velocities (x-velocities not shown)

In the context of the problem, there must be no y-component of velocity

of the center of mass which implies that the first and second particles travel

at initial y-velocities ωd
2 and −ωd

2 upwards (so that the separation vector

instantaneously rotates at angular velocity ω clockwise). Now suppose that

the center of mass has an initial velocity rightwards (the other situation

is similar), the center of mass then undergoes circular motion at clockwise

angular velocity ωCM = qB
m about a center O, located below the initial

position of the center of mass, A in Fig. 7.30. At the same time, the separation

vector undergoes a rotation at angular velocity ω = qB
2m clockwise.

Figure 7.30: Trajectory of center of mass

Now, consider a point P along the trajectory of the center of mass, after

the center of mass has rotated a clockwise angle θ. At this juncture, the
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separation vector would have rotated a clockwise angle θ
2 . Therefore, in order

to show that the original position of mass and the instantaneous positions

of the two particles are collinear, we simply have to show that the line AP

subtends an angle θ
2 with respect to the horizontal via some geometry. As

�AOP is isosceles,

∠OAP = ∠OPA =
π − θ

2
,

∠APB = π − π

2
− ∠OAP =

θ

2
,

hence proving the claim that these three points are always collinear.

21. Two Opposite Charges***

The equations of motion of the two charges are

mr̈1 = − q2

4πε0r3
r + qṙ1 ×B,

mr̈2 =
q2

4πε0r3
r − qṙ2 ×B.

The instantaneous position vector of the center of mass is r1+r2
2 . Adding the

two equations of motion,

2mr̈CM = qṙ ×B.

Subtracting the second equation from the first,

mr̈ = − q2

2πε0r3
r + 2qṙCM ×B.

To decouple the two differential equations above, integrate the former with

respect to time

2m(ṙCM − v0
CM ) = q(r − r0)×B,

where v0
CM and r0 are the initial velocity of the center of mass and the initial

separation vector respectively. Substituting the expression for ṙCM obtained

from this equation into the second differential equation,

r̈ = − q2

2πmε0r3
r +

q2

m2
[(r − r0)×B]×B +

2qv0
CM ×B

m
.

Applying the BAC-CAB rule to (r ×B)×B = −B × (r ×B),

(r ×B)×B = B(B · r)− r(B ·B) = −B2r
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since r is perpendicular to B. A similar statement holds for (r0 ×B)×B.

Therefore, the above can be rewritten as

r̈ =

(
− q2

2πmε0r3
− q2B2

m2

)
r + c,

where c is the constant vector given by

c =
q2B2

m2
r0 +

2qv0
CM ×B

m
.

Now, we impose the condition that the separation vector can only rotate at

a constant angular velocity. Then, r̈ must only correspond to the centripetal

acceleration.

r̈ = −ω2r.

Substituting this expression for r̈,(
ω2 − q2

2πε0mr3
− q2B2

m2

)
r = −c.

Note that the left-hand side involves a variable vector r (though its magni-

tude is constant) while the right-hand side involves a constant vector c. For

this equation to be valid at all instances, c must be the null vector. This

implies that

q2B2

m2
r0 +

2qv0
CM ×B

m
= 0.

Let the constant magnitude of r be d. Furthermore, without any loss of

generality, suppose that r0 is in the x-direction. Substituting r0 = (±d, 0, 0),
v0
CM = (v0CMx, v

0
CMy, 0) and B = (0, 0, B) yields

q2B2

m2

⎛
⎝±d

0

0

⎞
⎠ = −2q

m

⎛
⎝v0CMx

v0CMy

0

⎞
⎠×

⎛
⎝ 0

0

B

⎞
⎠ = −2q

m

⎛
⎝ Bv0CMy

−Bv0CMx

0

⎞
⎠,

v0
CM =

⎛
⎝ 0

∓ qB
2md

0

⎞
⎠.

Moving on, since c is a null vector, we must have

ω2 − q2

2πε0md3
− q2B2

m2
= 0.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch07 page 507

Magnetism 507

Solving for d,

d = 3

√
2πε0m

q2

(
ω2 − q2B2

m2

)
.

For d to be positive,

|ω| ≥ qB

m
.

22. Magnetic Lens****

Let the point P at which the magnetic field is to be determined be at (r, 0, z)

in Cartesian coordinates (i.e. we choose the x and y-axes such that its y-

coordinate is zero). We will determine the magnetic field at point P by inte-

grating over the solenoid in cylindrical coordinates. Consider an infinitesimal

surface element on the solenoid of sides Rdφ and dh at radial distance R,

azimuthal angle φ and z-coordinate h. The separation vector between this

element and P is

r′ =

⎛
⎝r0
z

⎞
⎠−

⎛
⎝R cosφ

R sinφ

h

⎞
⎠ =

⎛
⎝r −R cosφ

−R sinφ

z − h

⎞
⎠.

Note that we use r′ to denote the separation vector, instead of r whose

symbol (the scalar) has been used to denote the radial coordinate of P.

The surface current density along the surface of the solenoid is K =

ηI(− sin φ, cosφ, 0) in the azimuthal direction. Applying Biot-Savart’s law

and integrating over the entire solenoid, the magnetic field at P is

B =
μ0
4π

¨
KdA× r̂′

r′2

=
μ0ηI

4π

ˆ l

0

ˆ 2π

0

Rdφdh

[R2 − 2Rr cosφ+ r2 + (h− z)2]
3
2

×
⎛
⎝− sinφ

cosφ

0

⎞
⎠
⎛
⎝r −R cosφ

−R sinφ

z − h

⎞
⎠

= −μ0ηI
4π

ˆ l

0

ˆ 2π

0

Rdφdh

[R2 − 2Rr cosφ+ r2 + (h− z)2]
3
2

⎛
⎝(h− z) cos φ

(h− z) sin φ

r cosφ−R

⎞
⎠.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch07 page 508

508 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

We are only interested in the longitudinal and radial components which are

Bz and Bx, respectively.

Bz = −μ0ηI
4π

ˆ l

0

ˆ 2π

0

R(r cosφ−R)

[R2 − 2Rr cosφ+ (h− z)2]
3
2

dφdh

= −μ0ηI
4π

ˆ l

0

ˆ 2π

0

R(r cosφ−R)

[R2 + (h− z)2]
3
2

(
1− 2Rr cosφ

R2+(h−z)2
) 3

2

dφdh

≈ −μ0ηI
4π

ˆ l

0

ˆ 2π

0

R(r cosφ−R)

[R2 + (h− z)2]
3
2

(
1 +

3Rr cosφ

R2 + (h− z)2

)
dφdh,

where we have used the binomial expansion and discarded second order and

higher terms in r
R . The integral of cos φ over an entire period yields zero.

Therefore, the above integral reduces to (after discarding another second

order term in r
R)

Bz =
μ0ηI

4π

ˆ l

0

ˆ 2π

0

R2

[R2 + (h− z)2]
3
2

dφdh

=
μ0ηI

2

[
l − z√

z2 + (l − z)2
+

z√
R2 + z2

]
,

which is just the magnetic field along the axis of the solenoid that we have

previously computed in Problem 8. To determine the radial component of

the magnetic field at point P, we need to evaluate Bx (we purposely defined

P to be along the x-direction).

Bx = −μ0ηI
4π

ˆ 2π

0

ˆ l

0

R(h− z) cos φdhdφ

[R2 − 2Rr cosφ+ (h− z)2]
3
2

.

It is easier to integrate over h first. Making the substitutions u = R2 −
2Rr cosφ+(h− z)2 and du = 2(h− z)dh, the radial magnetic field (we shall

use Br to denote this now) is

Br = −μ0ηI
4π

ˆ 2π

0

ˆ R2−2Rr cosφ+(l−z)2

R2−2Rr cosφ+z2

R cosφ

2u
3
2

dudφ

=

ˆ 2π

0

μ0ηIR cosφ

4π
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×
[

1√
R2 − 2Rr cosφ+ (l − z)2

− 1√
R2 − 2Rr cosφ+ z2

]
dφ

=

ˆ 2π

0

μ0ηIR cosφ

4π

×

⎡
⎢⎣ 1√

R2 + (l − z)2
(
1− 2Rr cosφ

R2+(l−z)2
) 1

2

− 1
√
R2 + z2

(
1− 2Rr cos φ

R2+z2

)1
2

⎤
⎥⎦ dφ

≈
ˆ 2π

0

μ0ηIR cosφ

4π

[
1 + Rr cos φ

R2+(l−z)2√
R2 + (l − z)2

− 1 + Rr cosφ
R2+z2√

R2 + z2

]
dφ

=
μ0ηIR

2r

4

[
1

[R2 + (l − z)2]
3
2

− 1

(R2 + z2)
3
2

]
,

as the integral of cosφ and cos2 φ over a single period yield 0 and π respec-

tively. To estimate the magnitude of v0 required for the charges’ radial coor-

dinate to remain approximately constant throughout the solenoid, observe

that the azimuthal and radial forces on the charges at a radial coordinate r

are approximately

Fφ ≈ qv0Br,

Fr ≈ qvφBz,

where we have assumed that the radial velocity is negligible. The azimuthal

acceleration is thus

aφ =
qv0Br
m

.

Since the time required for the particle to exit the solenoid is of the order of
l
v0
, the azimuthal velocity is of the order

vφ ≈ qBrl

m
.

The radial acceleration is then approximately

ar =
qvφBz
m

≈ q2BrBzl

m2
.
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The radial distance covered by the particle, during its time is the solenoid,

is then of order

|Δr| ≈
∣∣∣∣q2BrBzlm2

· l
2

v20

∣∣∣∣ =
∣∣∣∣q2BrBzl3m2v20

∣∣∣∣.
This must be much smaller than r for the radial distance to be approximately

constant. Furthermore, we know from the expressions for the components of

the magnetic field that

|Br| ≈ μ0ηIR
2r

l3
,

Bz ≈ μ0ηI

for l 	 R. Then, the required condition is that

q2l3

m2v20
· μ

2
0η

2I2R2r

l3
� r

v0 	 qμ0ηIR

m
.

Now to analyze the focusing of charges, we must first determine the impact

of the magnetic field on the velocities of the charges. We first prove that the

azimuthal velocity of a charge is still zero after it has left the solenoid. The z-

component of torque is qrżBr. By the angular-impulse-momentum theorem,

the z-component of angular momentum at the top end of the solenoid is

Lz =

ˆ
qrżBrdt

=

ˆ l

0
qrBrdz

=

ˆ l

0

μ0ηIqR
2r2

4

[
1

[R2 + (l − z)2]
3
2

− 1

(R2 + z2)
3
2

]
dz,

where we have used the fact that the initial z-component of angular

momentum is zero. At this point, we claim that this integral is zero as´ l
0

1

[R2+(l−z)2] 32
dz =

´ l
0

1

(R2+z2)
3
2
dz. This is due to the fact that

ˆ b

a
f(x)dx =

ˆ b

a
f(a+ b− x)dx

for any function f(x), as one can easily show via a substitution. Then,

ΔLz = 0
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which means that the final azimuthal velocities of the particles are still zero!

However, note that the azimuthal velocities are not zero at intermediate

points within the solenoid. To determine φ̇ within the solenoid, we integrate

the above with more general limits,

Lz =

ˆ z

0

μ0ηIqR
2r2

4

[
1

[R2 + (l − z)2]
3
2

− 1

(R2 + z2)
3
2

]
dz

=
μ0ηIqr

2

4

(
l√

l2 +R2
− l − z√

(l − z)2 +R2
+

z√
R2 + z2

)
,

where the integrations can be performed via a substitution. Since Lz = mrφ̇

where φ̇ is the azimuthal angular velocity,

φ̇ =
μ0ηIqr

4m

(
l√

l2 +R2
− l − z√

(l − z)2 +R2
+

z√
R2 + z2

)
.

Moving on, there is a change in the radial velocity of the particles (small

but non-negligible in the context of the particles’ motion after leaving the

solenoid, which can possibly last indefinitely). To compute this, we apply

the impulse-momentum theorem to the radial direction.

Δpr =

ˆ
qrφ̇Bzdt =

ˆ l

0
qrφ̇Bz

dt

dz
· dz ≈

ˆ l

0

qrφ̇Bz
v0

dz.

Substituting the expressions for Bz and φ̇ and integrating from z = 0 to

z = l would yield

Δpr = −μ
2
0η

2I2q2R2r2l

2mv0
√
R2 + l2

(√
R2 + l2 −R

)
.

Again the integrations in this step can be vastly simplified by finding pairs

of the form
´ b
a f(x)dx−

´ b
a f(a+ b−x)dx = 0. The above expression implies

that the final radial velocities of the charges after leaving the solenoid are

vr = − μ20η
2I2q2R2r2l

2m2v0
√
R2 + l2

(√
R2 + l2 −R

)
.

This radial velocity is directed radially inwards. The time t required for these

particles to coincide with the z-axis is then

t =
r

|vr| =
2m2v0

√
R2 + l2

μ20η
2I2q2R2rl

(√
R2 + l2 −R

) .



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch07 page 512

512 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

This set-up would not function as a good lens as the distance above the top

end of the solenoid at which charges with initial radial coordinate r coincide

with the z-axis is roughly v0t which is inversely proportional to r. Therefore,

charges with different initial radial coordinates are focused to different points

along the z-axis.
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Chapter 8

Currents and EMI

In the previous chapter, we used steady currents as our fundamental build-

ing blocks to generate magnetic fields. In this chapter, we will analyze how

currents actually arise in media and how they are related to electromagnetic

induction engendered by time-varying electric and magnetic fields. We will

be considering a more general system beyond stationary charges (electro-

statics) and steady currents (magnetostatics).

8.1 Voltage

The voltage between points A and B along a certain path L is defined as

VAB = −
ˆ
L
E · ds (8.1)

where E(r, t) is the electric field permeating the relevant space. Now,

the above expression looks inordinately similar to the potential difference

between two points in an electrostatic field. However, they are really two

different concepts as the electric field E in the above expression may not

be due to an electrostatic system (we are considering a more general case).

Then, the line integral of the electric field may actually depend on the path

of integration taken and an electric potential function cannot be assigned

to the system. As a result, we define the voltage in such a way that it may

be dependent on the path of integration, in order to accommodate such a

possibility.

Finally, some authors interpret the above as the work done per unit

charge by an external force against the electric field E in bringing a test

charge from points A to B along path L, without a change in kinetic energy,

but such a definition is slightly misleading in this case where E(r, t) is a

513
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function of time.1 This is because the act of moving a test charge implies

that the electric field should be evaluated progressively in time but the line

integral above must be computed at a particular time t where the electric

field is “paused”!

8.2 Current

An electrical current refers to the flow of charges, transported by charge

carriers which are usually electrons in a circuit and possibly ions in certain

cases (e.g. inside an electrochemical cell). By convention, a positive current

is defined in the direction of positive charge flow, contrary to the direction

of the flow of electrons.

There are a few conditions that must be satisfied in order for a current to

flow in a branch of a circuit. Firstly, the circuit components in branches which

transport currents must possess mobile charge carriers that are capable of

carrying charge. This in turn affects a quantity known as the conductivity of

a material which describes its ability to carry a current. Metals are generally

good conductors as they possess a multitude of free electrons in their elec-

tron clouds and thus high conductivities while insulating materials, such as

plastic, have low conductivity and “obstruct” current flow as their electrons

are tightly bound to the nuclei.

Next, there must be a net external force on charges in any non-ideal

conductor to sustain their motion as the charges are constantly redirected

by their collisions with each other and the atoms of the conductor, which lead

to the random redirection of velocities. Usually, this force is not mechanical

as we do not have access to charges inside the wire. Instead, the force is

electromagnetic and the force due to an electric field usually dominates the

magnetic force due to the relative magnitudes of the electric permittivity

and magnetic permeability, coupled with the slow average velocity of charge

carriers (as we shall see). Therefore, an electric field must usually be present

inside a non-ideal conductor — implying that there needs to be a voltage

across any two points of a non-ideal conductor.

Lastly, there must be a cyclic conducting path in a circuit for a non-zero,

steady current to flow. A steady current refers to a current that is unvarying

with respect to time and requires no charge to accumulate at any point in the

circuit. To understand the physical reason behind this cyclic requirement,

consider Fig. 8.1.

1You may recall that we adopted a similar interpretation of the electric potential but
that was possible because electrostatic fields do not change over time.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 515

Currents and EMI 515

Figure 8.1: Accumulated charges at ends.

Assume that there is already an electric field that is driving charges from

one end of the non-cyclic circuit to the other. A transient flow of charges may

occur but in a short amount of time, charges, with appropriate signs, will

accumulate at the ends of the circuit to produce an electric field that cancels

out the initial electric field. Compounded with the fact that the electric field,

which drives charges in a conductor, is usually small, there will no longer

be any net current flowing in this non-cyclic circuit almost instantaneously.

When there is a closed conducting path in the circuit, charges are no longer

accumulated at any point in the circuit and a steady current can flow when

the rates of charge entering and leaving each section of the circuit are the

same.

The above situation is analogous to pumping air into a soccer ball. As

more fluid is pumped into a container, the pressure of the fluid inside the con-

tainer is increased until it eventually attains the same pressure of the pump,

after which no more net transfer of fluid will occur. However, if another hole

is made on the container, a dynamic equilibrium (with a constant influx of

fluid) can be attained when the rate of fluid escaping the hole is equal to

that entering the container.

Interestingly, the above mechanism is actually responsible for the smooth

flow of current in a closed conducting loop. Despite its cyclic nature, a loop

would not be able to carry a steady current if the charges were to be “lost”

at the bends. So how do the charges know that they must turn at specific

locations? Well, it is definitely not due to a messenger “informing” them

of a predetermined route at an earlier instance, as a bend can be made at

any juncture (even after the charges have started moving). The answer to

this question is the existence of charges on the surface of the wire. Though

the wire may be neutral as a whole, charges can be redistributed on various

surfaces such that the wire is not entirely neutral, but positively charged in

certain regions and negatively charged in others as long as the total charge is
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zero. When a bend is made and a current initially flows, some charge is piled

up at the bends in this transitory period — creating their own electric fields

which provide the necessary centripetal force for future charges to make the

turn!

As a physical quantity, the current intensity, which is often denoted as

just the current, is the rate of flow of charge across a surface.

I =
dQ

dt
. (8.2)

Now, this is a scalar quantity with no mention of the direction of the

velocities of charges whatsoever. In light of the three-dimensional motion

of charges, the current density should be considered. The current density,

J , is defined as the electric current per unit perpendicular area at a given

point in space and is a vector quantity whose direction points in the direc-

tion of positive charge flow. The total current through a surface S is then

the surface integral of current density J over S.

I =

¨
S
J · dA. (8.3)

Lastly, there is an important, intuitive property regarding the above current

density integral in the context of steady currents. Referring to Fig. 8.2,

consider two surfaces S1 and S2 which are bounded by the same contour C;

we claim that the current across each surface will be identical in the case of

steady currents.

Figure 8.2: Surfaces S1 and S2 bounded by the same contour C

Observe that gluing the two surfaces forms a closed surface. Since a

steady current dictates that charge cannot accumulate anywhere, the current

entering surface S1 must be equal to the current leaving surface S2 for the

amount of charge confined in the combined closed surface to remain constant.

Therefore, we conclude that the integral in Eq. (8.3) is only dependent on

the contour that bounds the surface and not the exact surface itself, in the

case of steady currents.
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8.2.1 Microscopic View

Let us analyze the constitution of a current density microscopically. Consider

a region of charges with charge q traveling at a velocity u with a number

density n. What is the total current crossing an arbitrary rectangular surface

with area vector A?

Figure 8.3: Moving charges that pass through a given area

In time dt, the volume of charge that would have cut through the surface

is given by the parallelepiped in Fig. 8.3. Its volume is

dV = uA cos θdt = u ·Adt.
The net amount of charge passing through this surface in the time interval

is then the volume of this parallelepiped multiplied by the number density

n of the charges and the common charge q carried by each particle.

dQ = nqu ·Adt.
The current that is transported across the rectangular surface is then

I =
dQ

dt
= nqu ·A.

In general, a region consists of charged particles with varying u and n (but

usually with the same charge such as −e in the case of electrons). Let the ith

class of such charges have velocity ui and number density ni and let there

be k classes of charges in total. Then,

I = Aq ·
k∑
i=1

niui.
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For an infinitesimal A (i.e. dA), the above implies that the current density

at a point is

J = q ·
k∑
i=1

niui.

Finally, we define the average velocity of the charges, which is also known

as the drift velocity, and the total number density of the charges to be

vd =

∑k
i=1 niui

n
,

n =

k∑
i=1

ni,

respectively. We can then rewrite the current density as

J = nqvd. (8.4)

Hence, the current density at a point on a surface is directly proportional

to the number density and the drift velocity of charges in the infinitesimal

section surrounding the surface when the particles possess equal charge.

8.2.2 Drude’s Model of Conduction

In this section, we will develop a simple model for the drift velocity of charged

particles. We assume that the force on the charges (if any) is due to the most

common cause — the electric field. In the absence of an electric field in a

conductor, electrons travel randomly in all directions, resulting in no net

average velocity and thus no net charge transfer.

As we shall show, a constant electric field2 is required to drive a constant

current through any non-ideal conductor, under certain assumptions. Now

this should set off some bells ringing in your mind. The above statement

implies that an electric field causes the charges to travel at a constant aver-

age velocity. This is contrary to the common expectation that the average

velocity of the charges should be increasing as they are accelerated! Actu-

ally, the presence of an electric field is mandated by the frequent collisions of

charges with surrounding atoms, ions and each other, which cause them to

lose the “memory” of their previous velocity distributions. In the ideal case,

2You may now recall that the electric field should be zero inside a conductor at elec-
trostatic equilibrium. However, in this case, the conductor may not have attained static
equilibrium yet, either because it is in the process of redistributing charges or because it
achieves a state of dynamic equilibrium.
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the resultant velocity of a charge after a collision is along a random direc-

tion. Then, these charges are accelerated by the electric field for a certain

period of time before undergoing collisions again. This process repeats itself

indefinitely so we can associate a mean velocity averaged over all particles

at all times, which is the drift velocity.

Let u
aft
i denote the velocity of the ith charged particle of mass m and

charge q immediately after its last collision in a certain section of the circuit.

Let ti denote the time elapsed since its last collision and N be the total

number of particles. If the charges are placed in a region of uniform electric

field E, the velocity of the ith particle at this instant, unow
i , is given by the

impulse-momentum theorem as

munow
i = muaft

i + qEti.

Thus the average velocity of the particles in a certain section at this instant is

ūnow = ūaft +
qE

Nm

N∑
i=1

ti.

1
N

∑N
i=1 ti is the average time elapsed between the current instance and a

particle’s last collision under the influence of E, but for small values of E

(which is usually the case), it can also be deemed as that when E is absent.

The latter is equal to the average time between consecutive collisions of a

particle3 which is known as the mean free time, τ . Note that τ is a constant

that depends on the properties of the medium or material that contains the

charges.

Moving on, the average velocities of the particles immediately after their

last collision, ūaft, should be zero as there are abundant particles which

travel in random directions after their last collision. Thus,

vd = ūnow =
qτ

m
E. (8.5)

We conclude that the drift velocity of the charges and thus, current density

should be proportional to the local electric field from the above analysis.

3A rigorous proof of this requires some probabilistic analysis (this can be obtained from
the fact that the probability of a collision at time t follows the exponential distribution,
similar to our estimation of the mean free time of gas molecules in kinetic theory). For the
exact value of the mean free time, we would need to know the distribution of speeds among
the electrons. However, a rough idea of why this claim should be valid can be obtained if
we imagine observing a particle to collide at this instant. We do not know exactly when
its previous collision was and only know its probabilistic distribution. Then, the average
time elapsed between the current instant and the particle’s last collision should be equal
to the average time between consecutive collisions as the particle collides at this instant.
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Substituting this expression for the drift velocity into the current density

in Eq. (8.4), the above model suggests that the current density is directly

proportional to the net electric field.

J =
nq2τ

m
E. (8.6)

Now, a typical order of magnitude of the drift velocity of electrons in a

conductor can be millimeters per second. In response to this, some may think

of the following apparent paradox. If the electrons are traveling so slowly,

how is that a light bulb lights up almost instantaneously when a battery

is connected via long wires far away? In fact, there is even a more glaring

“paradox” in the context of AC circuits — if the electrons are traveling

so slowly, they are confined to an extremely small region due to their tiny

amplitudes of oscillations! How is it possible for a current to flow along

the circuit? Well, this confusion is best clarified by the following analogy

involving an open, hollow cylinder packed with metal balls.

Figure 8.4: Cylinder of balls

The cylinder in Fig. 8.4 represents the wire while the balls represent the

stationary (on average) electrons which are already present in the wire before

any external battery is connected to the set-up. Now, in this mechanical

analog, give the left ball a slight push. The right ball moves and falls off

almost instantaneously though the left ball has hardly moved. Therefore,

it is not the speed of the left ball that determines how fast the right ball

responds to the push — it is the speed of force propagation in this case.

Similarly, in the case of a wire which is suddenly connected to an external

battery, it is not the speed of electrons in one region that determines when

the electrons in another region respond and start moving — it is the speed of

the propagation of the electric field inside the wire which can be on the order

of one-tenth of the speed of light! Therefore, the crux of this resolution is

that the electrons were already in the wire in the first place (so as to respond

to an incoming electric field and propagate it) and that it is the speed of

propagation of the electric field that determines when current begins to flow

in a region of the wire.

To resolve the paradox regarding how a current can flow in an AC circuit,

observe that since we have established the fact that “electromagnetic news”

spreads rapidly, the electrons in a circuit are approximately always moving
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in the same direction (clockwise or anti-clockwise along the circuit), even

though they are confined to a certain region. Therefore, even though each

electron only moves a tiny distance, the entire group of electrons moving for

a small distance looks as if a current is flowing on the large scale!

8.2.3 Ohm’s Law

The model in the previous section was in fact developed to explain the

following experimental rule which holds for most materials. It is empirically

observed that the current density at a point J in a medium is proportional

to the force per unit charge f on charged particles at that point.

J = σf . (8.7)

The constant of proportionality σ is known as the conductivity of the mate-

rial. The magnitude of σ is large for a conductor, which implies that f need

not be very large. This force f is usually electromagnetic in nature, with the

magnetic force often being negligible. The Lorentz force law then gives

J = σE. (8.8)

The above empirical law is known as Ohm’s law and states that current

density at each point in a general material is proportional to the electric field

at that point. This equation, in a certain sense, is the microscopic version

of the common form of Ohm’s law as it describes the current density at any

single point in some material, instead of the total current across a surface.

The magnitude of E need not be very large in conductors as σ is large.

Figure 8.5: Wire with constant cross section

Now, consider a uniform wire of length l and a constant cross sectional

area A of an arbitrary shape, with one of its ends located at the origin and

with its axis pointing in the z-direction in Fig. 8.5. The wire carries a steady

current. We will first consider the case where this current is driven by a

strictly electrostatic field. Ultimately, our objective is to relate the current

flowing through the cross section to the potential difference across the ends.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 522

522 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Firstly, what constitutes a wire? A conducting wire must be enveloped

by an insulator so that an isolated conducting path can be defined. Thus,

current will not flow out of the surface of the wire. This gives us a boundary

condition for all points on the surface on the wire, less the two terminals. At

these points, there must not be any normal component of current and hence

electric field. The partial derivatives of the electric potential with respect to

the normal direction at these points are then zero.

Next, the two terminals correspond to equipotential surfaces as the ends

of the wire are usually connected to a perfect conductor. Let the reference

potential of the end at the origin be V0 and the potential of the other end

be 0. Combining this boundary condition regarding the potentials at the

ends with the previous requirement, the boundary conditions of the volume

enclosed by the wire are completely specified.

Moving on, let us analyze what a steady current implies for the charge

distribution within the wire. Consider an infinitesimal box element inside the

wire. The steady current conditions mandates that the surface integral of the

current density over this box is zero. Since the current density at a point is

proportional to the electric field at that point, the previous statement implies

that the surface integral of the electric field (i.e. electric flux) over the box

is zero4! Therefore, the charge contained within the infinitesimal box must

be zero by Gauss’ law. Since this holds for all infinitesimal boxes, there is

no net charge anywhere within the wire.

It turns out that specifying the charge distribution inside the wire and

the boundary conditions afore is sufficient to guarantee a unique potential

function for the wire.5 Now, let us guess a solution to the potential function

which satisfies these boundary conditions. An obvious guess would be

V (x, y, z) = V0 − V0
l
z.

One can easily check that this solution satisfies the boundary conditions.

Since this must be the correct solution, the electric field in the wire is directed

4This conclusion requires the premise that the conductivity is uniform over the box. If
this does not hold (e.g. at the interface of two different materials), the surface integral
of the electric field is generally not zero and some charge is stored at the interface. We
cannot conclude from the nullity of the surface integral of the current density that the
surface integral of the electric field is also zero as the constant of proportionality changes
over different surfaces.

5This can be seen as a combination of the first and third uniqueness theorems (see
solution to Problem 11 in Chapter 6).
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solely along the z-axis and is uniform.

E = −∇V =
V0
l
k̂.

It follows directly that

J =
σV0
l

k̂.

Thus, it can be concluded that the current density and electric field are

identical at all points in the wire. Then, the current I through the wire and

the decrease in potential V across the wire can be evaluated trivially in terms

of the “microscopic quantities” — current density and electric field.

I = JA,

V = El,

where we have dropped the vector notations. Using the relation J = σE, we

obtain the most common form of Ohm’s law for a uniform wire.

V =
l

σA
I.

1
σ is known as the resistivity of the material, ρ. It can be seen that the

potential drop across the wire is proportional to the current flowing through

it. This constant of proportionality is known as the resistance of the wire

and is defined as

R =
ρl

A
. (8.9)

Thus, the relationship between the decrease in potential across the wire and

the steady current through it is given by

V = IR (8.10)

where R is the resistance of the wire. This equation is valid for a general

resistive circuit component with a constant cross sectional area as we could

have easily forgone the assumption of a wire. However, note that the expres-

sion for R is invalid for a component with a non-uniform cross sectional area

as the current density may vary at different points, both in magnitude and

direction. Despite this, the potential across two surfaces is, in general, also

proportional to the current flowing through them, in the form of Eq. (8.10),

as the current density is proportional to the electric field. This pervasive

relationship is also commonly known as Ohm’s law. However, note that the

resistance has to be derived via more fundamental methods, as we shall see

later.
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As an aside, the equivalent resistances of k resistors connected in series

and parallel are respectively

Req =
k∑
i=1

Ri, (8.11)

1

Req
=

k∑
i=1

1

Ri
. (8.12)

These can be easily proven by applying Ohm’s law and exploiting the facts

that the currents through circuit components are the same in a series con-

nection and that the potential differences across parallel branches are the

same in a parallel connection.

Now, what about the case where the force on the charge carriers in a

resistor with a uniform cross section is no longer purely electrostatic? If the

cross section is small enough, the force per unit charge f is usually uniform

throughout the wire. Then, the current density is also uniform over the wire

by Eq. (8.7). Therefore,

I = JA = σAf.

Since the line integral of f from one end of the resistor to the other is simply6´
f · ds = fl = l

σAI where l is the length of the resistor,ˆ
f · ds = IR (8.13)

with R = ρl
A . Most notably, if f is purely electrical and consists of electro-

static and non-electrostatic fields, the decrease in voltage (note that V is no

longer the decrease in potential) is

V =

ˆ
E · ds = IR (8.14)

where E represents the total electric field. However, a caveat here is that the

notion of an equivalent resistance for parallel connections no longer exists

because the voltage across parallel branches need not be identical (since the

line integral of a non-electrostatic field is generally path-dependent).

Finally, the instantaneous power P dissipated in a resistor R carrying

a steady current I at any given time is the rate of work done by f on

the charges traveling through the resistor at that time. This is because,

since the circuit does not gain any energy overall, the rate of work done

6Note that the line integral is path-independent as f is uniform in the relevant region.
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on these charges by f must be equal to the rate of heat generated by the

resistor! Consider a cross section of the wire with an infinitesimal thickness

ds. Suppose that a total charge dq crosses this cross section in time dt,

traversing a displacement ds. The work done on this set of charges is

dW = dqf · ds,
such that the power delivered to these charges is

dP =
dq

dt
f · ds = If · ds,

which is also the contribution to the instantaneous power dissipated in the

resistor. Summing the above over different cross sections, the total instanta-

neous power dissipated in the resistor is thus

P =

ˆ
If · ds = I ·

ˆ
f · ds. (8.15)

Equation (8.15) is sometimes incorrectly stated as the work done per unit

charge in bringing a charge through the resistor (for which
´
f · ds is mis-

takenly7 used) multiplied by the rate of charge flowing through it (I). Such

a definition suggests that we are evaluating the work done on a single group

of charges as it moves through the resistor but we can see from the above

process that we are actually summing the powers delivered to various groups

of charges at different cross sections within the resistor at a particular time.

After all, the term “instantaneous” in instantaneous power means that we

do not have the privilege of waiting for a particular group of charges to pass

through the entire resistor. Moving on, by Eq. (8.13),

P = I2R. (8.16)

This can be expressed in three equivalent forms via Ohm’s law in case where

f is electrical in nature.

P = V I =
V 2

R
= I2R (8.17)

where V is the voltage across the ends of a resistor. Moving on, let us return

to an example about determining the resistance of a more general configu-

ration.

Problem: Two thin, conducting spherical shells are concentric and have

radii a and b with a < b. The gap between them is filled by a material of

7See Section 8.1.
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conductivity σ. Then, the two shells are maintained at a constant potential

difference with respect to each other such that a steady current flows between

them. Determine the “resistance” between the two shells.

Let the charge stored in the inner shell be Q. This charge should be

distributed evenly over the surface of the inner shell due to the isotropic

nature of the set-up. Next, a crucial observation is that due to the steady

current condition, the net electric flux cutting through the surfaces of an

infinitesimal box element within the mediating material (similar to the case

of the wire with a constant cross sectional area earlier) is zero. Therefore,

there must be no net charge stored anywhere within the mediating material.

Then, the electric field at a radius r (a ≤ r ≤ b) from the common center is

given by Gauss’ law to be

E =
Q

4πε0r2
.

The current density is thus

J(r) =
σQ

4πε0r2
.

Therefore, the current through each spherical shell, which should be identical

for all spherical shells due to the steady current condition, is

I = J(r) · 4πr2 = σQ

ε0
.

The potential drop from the inner shell to the outer shell is

V =

ˆ b

a
E dr =

ˆ b

a

Q

4πε0r2
dr =

Q

4πε0a
− Q

4πεb
.

Note the absence of a negative sign in front of the line integral as we are now

determining the decrease in potential. Observe that V is related to I by

V = I · 1

4πσ

(
1

a
− 1

b

)
.

The resistance of this set-up, which is evidently only dependent on the phys-

ical properties of the shells and mediating material and independent of the

potential difference and current, is then

R =
1

4πσ

(
1

a
− 1

b

)
.

Alternatively, consider a spherical shell of conducting material with radius

r and thickness dr. Since the electric field is normal at each point on the

surface of this spherical shell, we can see the entire configuration as spherical
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shells with radii ranging from a to b, connected in series. When we claim that

resistors are connected in “series”, the qualification in the previous sentence

must be checked for as we need to ensure that the surfaces of individual

resistors (to be joined) are firstly equipotential, as the notion of resistance

is based on the fact that the two terminals of the resistor in question are,

foremost, equipotential. Having clarified this, because the flow of current

is radially outwards and essentially one-dimensional,8 we can apply R = ρl
A

with the “area” of a spherical shell, with radius r being 4πr2 and its thickness

being dr. The resistance of a spherical shell is hence

dR =
ρl

A
=

dr

σ4πr2
.

The total “resistance” between the two shells is then
´
dR by the rule for

computing the equivalent resistance of resistors in series.

R =

ˆ b

a

dr

σ4πr2
=

1

4πσ

(
1

a
− 1

b

)
.

This is similar to what we have discussed in the chapter on heat conduction.

8.3 Electromotive Force

A force is required to drive charges around a closed conducting path and to

sustain a constant average velocity due to the frequent collisions of charges

with the molecules and ions of a conductor. However, the force on the charges

cannot be purely electrostatic throughout the entire loop. This is because

an electrostatic field will be directed from a point of higher potential to a

point of lower potential. There needs to be a non-electrostatic force to bring a

positive charge from a lower potential to a higher potential and vice-versa for

a negative charge. This force can either be due to a non-conservative electric

field or a non-electrical force altogether. Therefore, a component is needed

to maintain a voltage while circulating the charges. Such a component is

known as an electromotive force source or emf source for short.

The electromotive force (emf) in a loop is defined as the closed loop

integral of the total force per unit charge along the entire loop at a certain

8More rigorously, the equation of concern is J = σE = −σ∇V where V is the potential.
For a strictly one-dimensional flow in the case of a uniform wire along the z-direction,
J = −σ dV

dz
. In this case, the set-up is isotropic such that ∇V = dV

dr
r̂ and J = −σ dV

dr
. It is

thus evident that these two equations have analogous solutions if the boundary conditions
are analogous (which is indeed true as we are imposing the potentials at the extreme z
and r values in the two set-ups).
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instance. Letting the instantaneous force per unit charge due to an emf

source be f along an infinitesimal segment ds of the loop of concern, the

emf in a loop is

ε =

˛
f · ds. (8.18)

Note that the integral is evaluated over the relevant loop at a specific instance

where it is paused — the motion of the loop is ignored. For a loop with

multiple emf sources, ε on the left-hand side should be replaced with the

sum of the individual emfs of the sources but we shall only consider a single

emf source for now. In light of the previous discussion, the force on a charge

along a closed path comprises both electrostatic and non-electrostatic forces,

which include non-conservative electric fields and other forms of interactions.

Then, f can be divided into the electrostatic and non-electrostatic parts.

ε =

˛
Eelec · ds+

˛
fnon · ds

where Eelec is the electrostatic field. Since the closed loop integral of an

electrostatic field is zero,

ε =

˛
fnon · ds. (8.19)

Usually if the emf source has distinct terminals, the non-electrostatic forces,

such as chemical forces, are confined within the region of the source while

the electrostatic forces exist everywhere. Therefore, the integral of the non-

electrostatic force can be performed solely inside the source.

ε =

ˆ B

A
fnon · ds (8.20)

where A and B refer to the terminals of the source, if they exist. Now, in an

ideal emf source, the net force per unit charge in its interior is zero so that

it is just able to bring charges across itself without any waste of additional

resources. Since the total force inside the source comprises both electrostatic

and non-electrostatic forces,

fsource = Eelec + fnon = 0

=⇒ fnon = −Eelec,

where Eelec is the electrostatic electric field inside the source. The emf in

the direction from terminal A to B of the source can then be written as

ε = −
ˆ B

A
Eelec · ds = VB − VA. (8.21)
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Thus, we see that a bounded emf source produces a potential difference

(not voltage) across its ends in accordance with its emf. This relationship,

coupled with Ohm’s law, enables us to compute the current flowing in a

circuit consisting of resistors and emf sources via the fact that the sum of

potential differences Vp along a loop is zero.∑
Vp = 0. (8.22)

The potential difference across an emf source with terminals is simply its emf

while the potential drop across the ends of a resistor carrying current I is IR

in the direction of the current. Finally, the instantaneous power delivered,

P , by an emf source with terminals, transporting a steady current I, can be

derived in a similar manner as Eq. (8.15) to be

P = εI. (8.23)

Now, what about the case where certain emf sources are unbounded? A good

example would be a conducting circuit moving through a magnetic field.

Evidently, it is no longer the case that the net force on the charges is zero

throughout the loop (recall that a net force is required to sustain a current

in most cases). Then, we cannot generally determine the potential difference

across each circuit component. We must return to the more fundamental

definition of the emf in Eq. (8.18). For multiple emf sources in a loop,∑
ε =

˛
f · ds. (8.24)

The left-hand side includes all emfs (both with terminals and without termi-

nals). For the right-hand side, the line integral of the force per unit charge

through a resistor carrying current I is IR in the direction of the current

while the force per unit charge through an ideal emf source with terminals

is zero. The current through resistors can then be determined by specifying

all ε and R.

In the case where f is purely electrical in nature,∑
ε =

˛
E · ds

where E is the total electric field (both electrostatic and non-electrostatic).

Shifting the line integral to the left and using the definition of voltage being

the negative line integral of the electric field,∑
ε+

∑
V = 0 (8.25)

where V is the voltage across each component and the sum is evaluated

over the entire loop. Note that the voltage across an ideal emf source with
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terminals, which produces a non-electrostatic field, is zero due to the lack of a

net force on charges within itself and hence the absence of a net electric field.

The voltage drop across a resistor carrying current I is IR in the direction

of the current, by Eq. (8.10), given that the non-electrostatic field is uniform

over the resistor.

8.4 Motional Emf

A conductor moving in a magnetic field can be an electromotive source —

such emfs are known as motional emfs. Consider a metal rod moving with

a velocity v in a magnetic field, B, that is not time-varying. However, the

magnetic field may vary across different points in space.

Figure 8.6: Rough illustration of the deflected charges

Charges of different signs experience magnetic forces in opposite direc-

tions and hence diverge. In the particular case of Fig. 8.6, the positive charges

will be deflected upwards while the negative charges will be deflected down-

wards. Assuming that the system eventually attains an equilibrium state,9

this process will ensue until the electric field caused by the redistribution of

charges produces a conservative Coulomb force that equalizes the magnetic

force. In general, the velocity of charges in a conductor arises from their

motion along the conductor and the motion of the conductor itself. In this

situation, there should no longer be any movement of charges in the direc-

tion of the rod at static equilibrium. Therefore, the magnetic force on the

charges will solely be due to the horizontal velocity v imposed by the rod.

The emf due to the two ends of the conductor is consequently

ε =

ˆ B

A
fnon · ds =

ˆ B

A
v ×B · ds

9There can only be a static equilibrium state and not a dynamic one as there is no cyclic
path for the charges to circulate to produce steady currents.
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as the non-electrostatic force in this case is the magnetic force. A and B

represent the terminals of the rod. Given the exact function for B, we can

evaluate the emf. Note that the integral is performed over the required path

inside the rod at a particular instance in time — that is, a snapshot of the

system is taken. Moving on, we can say much more about this set-up. For

example, an interesting question to ask would be whether this motional emf

depends on the path of integration between the two terminals. Applying

the condition for static equilibrium, we balance the forces on the charges in

the rod.

q(E + v ×B) = 0

E = −v ×B (8.26)

whereE is the electrostatic field stemming from the redistribution of charges.

This equation is valid for all points on the conductor and for conductors of

arbitrary shapes, given that a static equilibrium state exists. We can verify

that the potential difference between the ends of the conductor is equal to

the emf.

ΔV = −
ˆ B

A
E · ds =

ˆ B

A
v ×B · ds = ε.

Since E is conservative, the potential difference is independent of the path

taken such that the motional emf follows suit! The moral of the story is

that we have not analyzed any new laws of physics — the above result

is merely derived from the Lorentz force law and the condition for static

equilibrium. Besides the path independence of the emf, another defining

feature of a motional emf source is that it can possess terminals, as its

carrier is a conductor which is not necessarily cyclic.

Problem: A conducting disk of radius R rotates about a vertical axis

through its center (defined as the positive z-axis) with an angular veloc-

ity ω while placed in a uniform magnetic field B in the positive z-direction.

Find the emf between the center and the edge of the disk. Assuming that a

static equilibrium state exists (relative to the disk), find the potential differ-

ence between these two points and show that the line integral of the electric

field between these two points under such an assumption is indeed path-

independent. For the second part, neglect the centripetal force required for

the charges to rotate as their masses are negligible.

Set the origin at the center of the disk and define r as the position vector

of the current infinitesimal displacement dr along the path in the conductor
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that we are integrating over. The velocity of the conducting element at this

position is

v = ω × r

where ω is the angular velocity of the disk (pointing along the axis).

Therefore,

ε =

ˆ R

0
v ×B · dr

=

ˆ R

0
(ω × r)×B · dr

= −
ˆ R

0
B × (ω × r) · dr

=

ˆ R

0
(ω ·B)r · dr −

ˆ R

0
(r ·B)ω · dr

by the BAC-CAB rule. Since the plane of the conductor is perpendicular to

its axis, r ·B = 0 — only the first term survives. Next, observe that

r · dr =
1

2
d(r · r) = 1

2
d(r2) = rdr.

Since ω is parallel to B, ω ·B = ωB. Then,

ε =

ˆ R

0
ωBrdr =

ωBR2

2

which is independent of the path of integration taken inside the disk. Assum-

ing that a static situation exists, the electric field at an arbitrary point within

the conductor is

E = −v ×B.

Therefore, the potential difference between the center and the rim is

ΔV = −
ˆ R

0
E · dr

=

ˆ R

0
v ×B · dr

=
ωBR2

2
,

which is path-independent as the line integral of v×B is path-independent.
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Now, let us not get carried away by the assumption that a static equilib-

rium always exists. Consider the set-up in Fig. 8.7, which blatantly violates

such a claim.

Figure 8.7: Loop in magnetic field

A rectangular conducting loop of height h travels perpendicularly to the

magnetic field produced by an infinite wire at a constant horizontal speed

u. We know that the magnetic field at a radial distance r due to a long wire

carrying a steady current I is μ0I
2πr . The only locations at which part of the

magnetic force is directed along the loop are the vertical edges — meaning

that only the vertical sides contribute to the emf. The contribution to the

clockwise emf in the loop along the left vertical edge is

εl =

ˆ 2

1
v ×B · ds =

ˆ 2

1
uB(r1)ds =

μ0Iuh

2πr1
.

It is paramount to understand that v refers to the net velocity of charges

and possibly has a vertical component (which constitutes a current). How-

ever, the magnetic force due to this vertical component is in the horizontal

direction and thus does not contribute to the line integral — enabling us to

write the second equality. Similarly, the contribution to the clockwise emf

by the right vertical edge is

εr =

ˆ 4

3
v ×B · ds = −

ˆ 4

3
uB(r2)ds = −μ0Iuh

2πr2

where the negative sign stems from the fact that we are integrating along

the opposite direction now (from 3 to 4 instead of from 4 to 3) such that the

component of v×B along the loop now opposes the direction of integration.

The total clockwise emf in this loop is then

ε = εl + εr =
μ0Iuh

2π

(
1

r1
− 1

r2

)

which is non-zero. Now, we shall prove by contradiction that a static situa-

tion does not exist. If the electrostatic field produced by the charges indeed
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balanced the magnetic force at all locations,

E = −v ×B.

Then, the clockwise closed loop integral of E is simply −ε which is non-zero.

However, we know that the closed loop integral of an electrostatic field must

be zero — leading to a contradiction! In such a situation, a dynamic equilib-

rium exists. You might think that this emf ε circulates infinite current along

the conducting loop but we have neglected another effect of current loops.

A changing current in a cyclic conductor induces a time-varying magnetic

field which then generates an induced emf through itself (this is another

form of emf that shall be explored later)! This phenomenon is known as

self-inductance. In fact, the correct condition in such cases of perfectly con-

ducting loops is that no net emf is generated within the loop. What occurs in

this set-up is that a finite amount of current circulates within the loop such

that the total magnetic flux through the loop is constant! We shall delve

further into this in the section on perfect conductors.

Besides the precursors to the later sections, a point to be made here is

that the obvious drawback of such a dynamic equilibrium is that we can

no longer determine the electrostatic field at each point in the loop via

Eq. (8.26). If we let E denote the net electric field (comprising both electro-

static and non-electrostatic components) however, Eq. (8.26) is still valid in

perfect conductors.

Flux Rule for Motional Emf in a Loop

Speaking of loops, there is an elegant rule for the motional emf produced

in a conducting loop moving in a time-independent magnetic field. Recall

that the magnetic flux ΦB through a surface S is the surface integral of the

magnetic field over S.

ΦB =

¨
S
B · dA. (8.27)

Now, there is an important property of the magnetic flux. Because the mag-

netic flux over a closed surface is guaranteed to be zero, the magnetic flux

over an open surface is only dependent on the contour C bounding the sur-

face and is the same over all surfaces that span the same contour C (a similar

property was established for the current flux in Section 8.2).

We claim that the motional emf induced in a conducting loop moving

through a magnetic field is simply the negative rate of change of magnetic
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flux through the loop.

ε = −dΦB
dt

.

Now, how do we specify the direction of ε and the area vector in evalu-

ating the magnetic flux? The answer is the right-hand-grip rule as always.

Choose a particular direction (clockwise or anti-clockwise) to evaluate the

motional emf for. Then, curl your fingers in this direction and straighten

your thumb — your thumb will point in the positive direction of the area

vectors to use for the magnetic flux integral. Another more intuitive way of

finding the direction of ε is Lenz’s law, but we shall postpone its discussion

till later as it is usually associated with Faraday’s law. Moving on, for a coil

with N densely wound turns,

ε = −N dΦB
dt

. (8.28)

The quantity NΦB is known as the magnetic flux linkage through a coil.

Therefore, the motional emf generated in a coil is the negative rate of change

of magnetic flux linkage.

Proof: Let u be the instantaneous velocity of a segment on the conducting

loop of interest at time t. Consider the loop at times t and t+ dt, indicated

by contours C and C ′. Define the magnetic fluxes at these two instances to

be ΦC and ΦC′ respectively (recall that the fluxes are only dependent on the

boundaries). In the time interval dt, the loop sweeps an infinitesimal strip

that is shaded in Fig. 8.8.

Figure 8.8: Flux at two instances

The magnetic flux through this surface, denoted as dΦis, can be com-

puted via

dΦis = (dΦis +ΦC′)− ΦC′ .

When evaluating the magnetic fluxes in this section, we will choose the

anti-clockwise direction as our reference direction and apply the right-hand-

grip rule to determine the positive direction of the infinitesimal area vec-

tors. Observe that dΦis +ΦC′ is simply the magnetic flux through a surface
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bounded by contour C. Replacing this expression with ΦC ,

dΦis = ΦC − ΦC′ = −dΦ,

where dΦ is the change in magnetic flux through the physical conducting

loop. Then, we can evaluate dΦis to find dΦ. The former is the magnetic

flux through the infinitesimal strip

dΦis =

¨
strip

B · dA.

The infinitesimal area dA swept by an infinitesimal segment ds on the loop

can be expressed as

dA = −u× dsdt

where u is the instantaneous velocity of the particular loop segment. We

include a negative sign to ensure that the infinitesimal area vectors point

outwards, in accordance with the anti-clockwise direction. We can then inte-

grate over ds (i.e. the entire loop) to determine the surface integral. Then,

dΦ

dt
= −dΦis

dt
=

˛
B · (u× ds).

Now, let the net velocity of the charges in a particular segment ds of the

loop be v and the velocity of the charges along the loop at that segment be

w. Then,

v = u+w,

as the net velocity comes from both the velocity of the conductor and the

velocity of the charges flowing along the conductor. Since w is parallel to ds

such that ω × ds = 0,

dΦ

dt
=

˛
B · (v × ds).

We can rewrite the above via the scalar product rule a·(b×c) = c ·(a×b) as

dΦ

dt
= −

˛
(v ×B) · ds.

The expression in brackets is simply the magnetic force per unit charge on

the charges in the loop. The closed loop integral of that gives the motional
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emf. Thus,

dΦ

dt
= −ε

ε = −dΦ
dt
.

The motional emf for a coil with N turns follows accordingly. A paramount

point to understand is that we have not introduced any new law at all.

Equation (8.28) is only a neat way of expressing the line integral of the

magnetic force per unit charge along a loop, which gives the motional emf in

such set-ups. Now, the potency of this expression arises from the fact that

we have not assumed anything about the motion of the loop or the geometry

of the loop. Equation (8.28) is valid when the conducting loop translates,

rotates or even expands (as we did not impose the rigid body condition on

u). It is also valid regardless of whether the loop is planar or non-planar.

Emf due to a Rotating Planar Loop

A classic application of the flux rule entails a rotating planar coil of area A

in a region uniform magnetic field B.

Figure 8.9: Front and top view of rotating loop

Referring to the left diagram of Fig. 8.9, when the loop is tilted at an

angle θ with respect to the vertical, the magnetic flux crossing the loop is

ΦB = −BA cos θ.

Therefore, the anti-clockwise motional emf (this is anti-clockwise because we

chose the area vector to point to the left in the left figure) is

ε = −N dΦB
dt

= −NBA sin θθ̇

if the coil has N turns and where θ̇ is its instantaneous angular velocity. At

this point, we notice an interesting application of this set-up. If the loop is

not completely closed and is instead connected to an external circuit through

wires that form a small gap in the loop, the rotating loop can function as an

alternating-current generator, if maintained at a constant angular velocity!
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Now, let us assume that this coil is a perfect conductor and connect it to

an external resistor R via long, ideal wires. The clockwise current that flows

in this circuit is

I =
ε

R
=
NBA sin θθ̇

R
.

The power dissipated in the resistor is

P = I2R =
N2B2A2 sin2 θθ̇2

R
.

Now, where does this power come from? Fret not, we have not violated the

conservation of energy. Recall that a current loop forms a magnetic dipole

which experiences a torque (but no net force) due to an external magnetic

field. The torque experienced by the loop is given by

τ = μ×B

where μ = NIA is the magnetic dipole moment and A is the area vector

of a single turn, whose direction is determined by applying the right-hand-

grip rule to the current loop. Since θ is the angle between A and B, the

magnitude of the magnetic torque on the rotating loop is

τ = −N
2B2A2 sin2 θθ̇

R

whose direction opposes the current rotation of the loop. Since the instanta-

neous angular velocity of the loop is θ̇, the power delivered by this torque is

P = τ θ̇ = −N
2B2A2 sin2 θθ̇2

R
,

which is commensurate with the instantaneous power dissipated in the resis-

tor. Therefore, if no external mechanical force is exerted to sustain the

motion of the loop, its rotation slows down while the resistor heats up, in

accordance with the conservation of energy. On the other hand, this implies

that if we deliver N2B2A2 sin2 θθ̇2

R amount of external mechanical power via an

external torque to maintain the angular velocity of the loop at a constant

θ̇, we are converting mechanical work to electrical energy (followed by less

useful heat).

Finally, you may notice a more fundamental issue here. How is it that

the magnetic force seemingly does work through the torque produced? The

answer is that we have divided the magnetic force into two components and

calculated their individual works. The net velocity of the charges in the coil

has two causes — due to the rotation of the loop and due to the component
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along the loop (which constitutes current). The magnetic force is perpendic-

ular to this net velocity and does no work. However, the rotational velocity of

the loop leads to a component of magnetic force along the loop — generating

the emf and producing a power N2B2A2 sin2 θθ̇2

R that is dissipated in the resis-

tor. Meanwhile, the latter part of the velocity leads to a force perpendicular

to the segments and hence a torque which delivers the power −N2B2A2 sin2 θθ̇2

R

calculated above. These components each perform work individually but the

sum of their works must obviously add to zero as they are quintessentially

manifestations of the magnetic force.

8.5 Induced Emf

We have deduced that a moving conductor in a magnetic field that is not

time-varying at each point in space can be a potential emf source. For exam-

ple, motional emf will be produced when a coil is moved closer towards a

stationary magnet. However, we can also view this situation from the per-

spective of the coil. In the coil’s frame, it is stationary while the magnet

moves towards it — the notion of a motional emf is no longer a suitable

explanation for the emf generated in the coil.10 However, observe that this

situation is also slightly different from the coil’s frame in another way — the

magnetic field is no longer steady at each point in space as it “translates”

through space, with the magnet. This hints at the fact that the induced emf

has something to do with the time-varying magnetic field.

Proceeding with this investigation, it is natural to ask if an emf is induced

in a conducting loop that is either moving or stationary in a time-varying

10Actually, special relativity dictates that a magnetic field in one frame transforms into
an electric field in another. In the case of a conducting rod moving in a uniform but time-
independent magnetic field in the lab frame, an external, uniform electric field exists in
the frame of the conductor. This uniform electric field (which is conservative) then leads
to the redistribution of charges (seen previously) and produces the emf. In fact, for non-
relativistic speeds of the conductor in the lab frame, the external electric field at a point
in its frame is Eext = v × B, where v and B are the velocity of the conductor and the
magnetic field at the same point in the lab frame — a quantity that makes sense as we
know that electric field produced by the redistribution of charges within the conductor
is E = −v × B such that the net electric field within the conductor is E + Eext = 0
in order for electrostatic equilibrium to be attained. This is the correct explanation for
the motional emf as seen from the rod’s frame. However, in the case of a conducting loop
moving in a non-uniform but time-independent magnetic field in the lab frame, a solely
conservative electric field in the loop’s frame is not a plausible explanation as it would
imply zero emf in the loop when a non-zero emf is observed. This second situation is of
concern here as we seek to delve further into the non-conservative electric field produced.
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magnetic field. Faraday observed through his experiments that the two sit-

uations above indeed produced currents which deflected his galvanometers.

This led to his ingenious hypothesis that a changing magnetic field induces

a non-conservative electric field in space. Faraday’s law states that the emf

induced in an imaginary contour C in space is given by

ε = −dΦB
dt

,

where ΦB refers to the magnetic flux through a surface, S, that spans the

contour C. There may be myriad such surfaces but the magnetic flux through

them will be the same in light of the discussion previously. Such emfs engen-

dered by a time-changing magnetic field are known as induced emfs.

Now, the nature of the induced emf is a non-conservative electric field

Enon. That is, a changing magnetic field produces a non-conservative electric

field. Therefore, there are really two forms of electric fields — one produced

by electrostatic charges and one produced by a changing magnetic field. In

light of this phenomenon, the emf induced can be expressed as

ε =

˛
Enon · ds =

˛
E · ds

where E is the total electric field along the contour C, since the closed loop

integral of a conservative electric field is zero. A pivotal difference between

motional and induced emfs is the fact that induced emfs are produced inde-

pendently of the presence of a conductor. The contour C need not be con-

tained within a conductor, contrary to the case of applying the flux rule to

motional emfs. This is because the non-conservative electric field is simply

generated in space due to a changing magnetic field and is not associated

with the movement of charges in a conductor (which leads to a magnetic

force).

In conclusion, for a stationary coil withN densely wound turns, Faraday’s

law states that the emf induced in the coil is proportional to the rate of

change of magnetic flux linkage.

ε = −N dΦB
dt

. (8.29)

However, note that the line integral of the electric field is unquestionably

not reliant on N . ˛
E · ds = −dΦB

dt
(8.30)

as the emf increases with the number of turns only because the turns stack up

along the non-conservative electric field. The non-conservative electric field
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is most definitely not amplified by more turns as it must be independent of

the coil.

Similarly, there is now an ambiguity regarding the direction of the electro-

motive force. More specifically, the direction of the infinitesimal area vector

dA in calculating the magnetic flux is vague for a given reference direction

for the emf. Technically, its direction can again be specified using the right-

hand-grip rule. That said, a much more intuitive alternative approach can

be utilized. It is observed that nature detests the change in magnetic flux.

Thus, an emf will tend to be induced in a direction such that it generates a

current (if a conductor were to be placed there) and thus a magnetic field

that opposes the initial change in flux. This is known as Lenz’s law. There-

fore, one can determine the direction of an induced emf by leveraging on this

empirical fact.

Now, there is a haunting similarity between Faraday’s law and the flux

rule for motional emfs (we shall reserve the term “Faraday’s law” for induced

emfs) which are fundamentally different. The former is a new physical law

which ascribes a non-conservative electric field to every point in space with

a time-varying magnetic field while the latter is simply a convenient way

of expressing the motional emf generated in a conducting loop moving in a

magnetic field. However, since the emfs produced by these disparate effects

have similar forms, we can combine Eqs. (8.28) and (8.29) into a “universal

flux rule”. The total emf generated in a conducting loop withN turns moving

through a possibly time-varying magnetic field can be computed as follows.

Let the contour delineating the conducting loop be C and consider the time

interval between t and t+ dt where the conducting loop moves from C(t) to

C(t + dt). The emf induced in the conducting loop at time t is the sum of

the induced and motional emfs

ε = εind + εmot.

By Faraday’s law, the induced emf along the location of the loop at t is

εind = −N lim
Δt1→0

ΦB,C(t)(t+Δt1)− ΦB,C(t)(t)

Δt1

where ΦB,C(t)(t) and ΦB,C(t)(t + Δt1) refer to the magnetic fluxes through

C(t) (the location of the loop at time t) at times t and t+Δt1. Do not brood

too much over the sign of Δt1 as it could be positive or negative, as long as

ΦB,C(t)(t + Δt1) lies in an interval where ΦB,C(t) is differentiable. Further-

more, do not worry too much about the physical meaning of ΦB,C(t)(t+Δt1).

Even though the physical loop may not be at C(t +Δt1) at time t, we are
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pre-empting its movement in a certain sense, to compute the induced emf

through it at time t. Next, the flux rule for motional emf states that

εmot = −N lim
Δt2→0

ΦB,C(t+Δt2)(t)− ΦB,C(t)(t)

Δt2
.

Note that both fluxes are computed at time t, as you can tell from the

fundamental expression for the motional emf (ε =
¸
(v × B) · ds) that it

only relies on the magnetic field at the current instance where we pause

the loop to evaluate the line integral (it does not know that the magnetic

field may change at the next instance). Correspondingly, the total emf in the

conducting loop at time t is

ε = −N lim
Δt1→0

ΦB,C(t)(t+Δt1)− ΦB,C(t)(t)

Δt1

−N lim
Δt2→0

ΦB,C(t+Δt2)(t)− ΦB,C(t)(t)

Δt2
.

In particular, we can set Δt1 = −Δt2 = −dt such that

ε = −N lim
dt→0

ΦB,C(t)(t)− ΦB,C(t)(t− dt) + ΦB,C(t+dt)(t)− ΦB,C(t)(t)

dt

ε = −N lim
dt→0

ΦB,C(t+dt)(t)− ΦB,C(t)(t− dt)

dt
= −N dΦB,cond

dt
,

where
dΦB,cond

dt is the rate of change of magnetic flux cutting across the

physical conducting loop. This reveals a very important point in applying

the universal flux rule — the loop that we choose to compute the magnetic

flux over must be “attached” to the physical conductor such that they travel

together. This makes sense as it signifies that an isolated, current-carrying

loop that is moving cannot generate an emf through itself. Ultimately, we

conclude that the total emf generated in a conducting loop is the rate of

change of magnetic flux linkage through it, even in regions with time-varying

magnetic fields.

Analogy between Non-Conservative Electric Field

and Magnetostatic Field

It turns out empirically that Gauss’ law is valid (where the electric field

now comprises both conservative and non-conservative fields) even in the

presence of a non-conservative electric field. This implies that the surface

integral of a non-conservative electric field is always zero over any arbitrary
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surface.

‹
Enon · dA = 0.

Now, there is an interesting parallel between the magnetic field due to a

steady current and the induced electric field. The former obeys

˛
C
B · ds = μ0

‹
S
J · dA

‹
B · dA = 0.

The first equation is Ampere’s law, after replacing the current I on the right

hand side with the surface integral of the current density (where S is a surface

that spans contour C). On the other hand, the induced electric field obeys

˛
C
Enon · ds = −

‹
S

∂B

∂t
· dA

‹
Enon · dA = 0.

It turns out that the closed loop and surface integrals of a field are suffi-

cient in uniquely defining a vector field, provided that it vanishes at infinity.

Therefore, since the above laws are similar, Enon and B have analogous

solutions, with the rate of change of magnetic field dB
dt playing the role of a

“current density” (more technically, −μ0J). Then, we can transfer all of our

tools from magnetostatics in determining the induced electric field.

Problem: A long solenoid of radius R has its axis aligned with the z-axis.

A time-varying current runs through it such that a varying magnetic field,

given by the expression B = αt in the positive z-direction (out of the page in

Fig. 8.10), is generated within itself. Determine the non-conservative electric

field everywhere.

The induced electric field should be azimuthal as the rate of change of

magnetic field is parallel to the solenoid axis (the induced field should be

similar to the magnetic field generated by a thick current carrying wire). As

always, there are two regions to consider — the interior and the exterior of

the solenoid. We begin with the latter. Draw a circular loop of radius r ≥ R

outside of the solenoid, with its axis aligned with the axis of the solenoid.

By Faraday’s law, the closed loop integral of the non-conservative electric
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Figure 8.10: Changing magnetic flux in long solenoid

field in the anti-clockwise direction along the loop is

Enon · 2πr = −dΦB
dt

= −dB
dt

· πR2 = −απR2.

Therefore,

Enon =
−αR2

2r

in the azimuthal direction. The negative sign indicates that it should be

clockwise for positive α and anti-clockwise for negative α. This direction can

also be swiftly determined from Lenz’s law. Without the loss of generality,

assuming that α is positive, the magnetic flux coming out of the page through

the loop increases with time. Therefore, a clockwise emf tends to be induced

to produce a clockwise current to oppose this increase in magnetic flux. The

argument for negative α is also similar.

Next, for the interior region, we draw a similar circular loop of radius

r ≤ R and apply Faraday’s law. However, the loop this time does not enclose

the entire cross section of the solenoid.

Enon · 2πr = −dB
dt

· πr2 = −απr2

Enon = −αr
2

in the anti-clockwise azimuthal direction.

8.6 Self-Inductance

Armed with the idea of induced electric fields, we can refine our analysis of

current-carrying loops. The current through a coil, I, generates a magnetic

flux, ΦB, through its own turns. Thus, a change in the loop’s current I will

lead to a change in the magnetic flux linkage through itself — which in turn,

engenders an induced emf to oppose this change in flux linkage. The emf
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induced is known as a back emf as it tends to oppose the change in the

current I by Lenz’s law. Since the magnetic flux, ΦB, through the system is

proportional to I, the total magnetic flux linkage NΦB through the coil is

proportional to NI where N is the number of turns of the coil. Therefore, if

we define the self-inductance L of the system as

L =
NΦB
I

, (8.31)

the back emf in the system can be expressed as

ε = −N dΦB
dt

= −N d
(
LI
N

)
dt

= −LdI
dt

(8.32)

assuming that L remains constant. The positive direction of ε is defined to

be aligned with I. The self-inductance of a system is purely a geometric

quantity that depends only on intrinsic factors such as the number of turns

and the shape of the loop. It does not depend on the amount of current that

the loop carries, as the linear relationship between ΦB and I leads to the

cancellation of I in Eq. (8.31).

Energy Stored in an Inductor

Since a varying current generates a back emf ε in a loop, work must be done

against the back emf in increasing the current through it. Concretely, we

need to deliver −Iε amount of power when the system is carrying a current

I to overcome the back emf ε which delivers Iε amount of power. Thus,

we can ascribe a potential energy stored in an inductor, from increasing its

current from an initial state 0 to a final state I, as

U =

ˆ
−Iε dt =

ˆ I

0
LI dI =

1

2
LI2. (8.33)

The reason behind the necessity of external work in producing a current

should be apparent by now. Even though the initial and final configura-

tions may lead to purely magnetic fields (which do no work), the process of

changing a current induces a non-electrostatic field which can do work! This

argument holds even when there are multiple coils and non-steady currents.

The above deposited energy is associated with the magnetic field of the

coil and must be consistent with integrating the magnetic energy density

uB = B2

2μ0
over all space. Such a component which stores energy in its mag-

netic field is known as an inductor.

Finally, as energy should only be a function of state, the energy stored in

an inductor is independent of how the system evolved to carry current I and

solely depends on the current configuration (pun intended) of the system.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 546

546 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Problem: A long solenoid of radiusR has η turns per unit length. Determine

its self-inductance per unit length l.

By Ampere’s law, if we draw an Amperian loop that encloses all turns

of the solenoid,

B = ημ0I.

The magnetic flux through the solenoid is then

ΦB = B · πR2 = ημ0IπR
2.

Thus, the self-inductance of the solenoid per unit length is

l =
ηΦB
I

= η2μ0πR
2,

which, as expected, is independent of I and is only affected by the physical

parameters of the solenoid.

8.7 Mutual Inductance

Now, consider a set-up comprising two current-carrying loop systems which

generate magnetic fields. Let us call them systems 1 and 2. The current

in system 2, I2, produces magnetic field lines that cut through the loops

in system 1. Thus, if there is a change in I2, there will be a change in the

magnetic flux of system 1 and thus an emf induced in system 1. Furthermore,

the magnetic flux linkage through the N1 loops in system 1 due to system 2,

N1ΦB12, is proportional to I2. Thus, if we define the mutual inductance of

system 1 due to a change in the current of system 2, M12, as the positive

ratio of the magnetic flux linkage in the N1 loops of system 1 to I2,

M12 =

∣∣∣∣N1ΦB12

I2

∣∣∣∣
=⇒ N1ΦB12 = ±M12I2,

we can express the induced emf in system 1 due to a change in current in

system 2 as

ε1 = −N1
dΦB12

dt
= ∓M12

dI2
dt
,

where ε1 is positive in the direction of the proposed positive direction of the

current I1 flowing through system 1 (it doesn’t matter if I1 = 0 currently as

we can still assign a positive direction for it). The ambiguity in sign stems

from the fact that M12 is coerced to be a positive value and thus cannot

reflect the sign of magnetic flux.
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Next, the emf in system 2 due to a change in the current of system 1 is

similarly

ε2 = −N2
dΦB21

dt
= ∓M21

dI1
dt
,

where ε2 is defined to be positive in the positive direction ascribed to I2.

The signs of ∓ in front of ε1 and ε2 must be identical (this is most obvious if

we express the magnetic field of a magnetic dipole in terms of its magnetic

dipole moment). Given the proposed positive directions of I1 and I2 (which

determine the positive directions of the infinitesimal area vectors on the

respective surfaces spanning these loops by the right-hand-grip rule for the

computation of magnetic flux), we can determine the appropriate sign to use

in ε1 and ε2.

The mutual inductance between two systems is, once again, a purely

geometric quantity which depends on factors such as the physical parameters

of the systems and their relative orientations.

Reciprocity Theorem

You might think that we need two calculations to determine M12 and M21.

However, the reciprocity theorem saves us a lot of effort as it states that

these two mutual inductances are in fact equal.

M12 =M21 =M.

Thus, we will drop the subscripts and just refer to the mutual inductance

between two systems as M , henceforth.

Proof: We can exploit the fact that the energy stored in a system of two

inductors should only be a function of state (i.e. the final currents). Let

the final currents in systems 1 and 2 be I1 and I2 respectively. We will

determine the amounts of work required to bring an initial configuration

with zero current for both systems to the final configuration through two

different processes. In the first process, we begin by increasing the current

in system 1 from 0 to I1 while maintaining the current in system 2 at zero.

Since the external power required to maintain a current I in the presence of

an opposing emf ε is −Iε, it takes zero work to maintain a current at zero.

The total amount of work required in this step is thus 1
2L1I

2
1 where L1 is the

self-inductance of the first system. Next, we bring the current in system 2

from 0 to I2 while maintaining I1 current in system 1. Now, in addition

to overcoming the back emf in system 2 (which requires 1
2L2I

2
2 amount of

energy), notice that changing the current in system 2 also induces an emf
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ε = ∓M12
dI2
dt in system 1. Then, the total energy needed in maintaining I1

current in system 1 is
´ −εI1dt = ´ I20 ±M12I1dI2 = ±M12I1I2. Thus, the

overall external energy delivered to these two systems is

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 ±M12I1I2.

We can then reverse the order of incrementing the currents (i.e. raise the

current in system 2 before raising that in system 1). The overall external

work delivered this way would be

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 ±M21I1I2.

Since energy is only a function of state, these two energies must be equal —

implying that

M12 =M21 =M,

whereM is the unequivocal mutual inductance of the two systems. The total

potential energy stored in these two systems is thus

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 ±MI1I2. (8.34)

Relationship between Mutual and Self-Inductances

Since M12 =M21 =M , observe that

M2 =M12M21 =
N1ΦB21

I1
· N2ΦB12

I2
.

If the magnetic fluxes through both systems, due to the magnetic field of

system 1, are identical such that ΦB21 = ΦB11 where ΦB11 is the magnetic

flux through the first system due to its own magnetic field and ditto for the

magnetic field of system 2 (i.e. ΦB12 = ΦB22), the above can be rewritten as

M2 =
N1ΦB11

I1
· N2ΦB22

I2
= L1L2

M =
√
L1L2.

Under such conditions, the two systems are known to be perfectly coupled.

Usually, some of the flux produced by one system is not captured by other.

Thus, the mutual inductance is usually written as

M = k
√
L1L2, (8.35)

where 0 ≤ k ≤ 1 is known as the coupling constant which describes how

well the fluxes produced by the coils are linked to each other. The fact that
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the mutual inductance must be smaller than the geometric mean of the

self-inductances can be deduced from the following physical arguments. The

energy of the two systems can be written as

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 ±MI1I2 =

1

2
L1

(
I1 ± M

L1
I2

)2

+
1

2

(
L2 − M2

L1

)
I22 ,

and is valid for any values of I1 and I2. Most notably, we can choose the

particular value I2 = ∓L1I1
M such that the potential energy is

U =
1

2

(
L2 − M2

L1

)(
L1I1
M

)2

.

Now, it is highly unlikely that the total potential energy of two carrying-

current systems is negative as that would imply that it can act as a source

of energy (it can deliver power and produce more current at the same time).

More formally, the potential energy of two inductors is “stored” in the mag-

netic field in all space. Since the magnetic energy density must be non-

negative, we expect U ≥ 0 such that

M2 ≤ L1L2

M ≤
√
L1L2.

Problem: Two circular loops of radius r1 and r2, with r1 � r2, are centered

at two points along the z-axis and are perpendicular to the z-axis. If the two

loops are separated by a perpendicular distance z, determine their mutual

inductance.

The small loop produces a relatively complicated magnetic field around

it, causing the magnetic flux through the large loop to be more tedious to

calculate. On the other hand, the magnetic field due to the large loop through

the small loop is approximately uniform due to its small size. Therefore, we

can calculate the mutual inductance of the small loop due to a change in

current in the large loop as we have the prerogative of choosing the loop

whose current we want to vary in calculating the mutual inductance, by

virtue of the reciprocity theorem.

Assume that a current I1 flows through the large loop of radius r1. Now,

the magnetic field due to a ring of radius R, carrying a current I, at a height

z along the central axis of the ring was computed in the previous chapter

(Section 7.2) as

Bz =
μ0IR

2

2(R2 + z2)
3
2

.
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Therefore, the magnetic field at the center of the small loop (which is along

the z-axis) due to the current I1 in the large loop is

Bz =
μ0I1r

2
1

2(r21 + z2)
3
2

.

The magnetic flux through the small loop is simply the above multiplied by

its area as the magnetic field throughout the entire region encased by it can

be assumed to be that at the center.

ΦB21 = Bz · πr22 =
μ0I1πr

2
1r

2
2

2(r21 + z2)
3
2

,

M =
ΦB21

I1
=

μ0πr
2
1r

2
2

2(r21 + z2)
3
2

.

8.8 Ampere–Maxwell Law

As highlighted in the chapter on magnetostatics, Ampere’s law is only valid

for steady currents and cannot be applied to non-steady situations. Consider

the following instructive set-up illustrated in Fig. 8.11. A capacitor is con-

nected to a battery and a current I flows through the circuit. We would like

to determine the magnetic field along a circular loop around the wire at a

point in space.

Figure 8.11: Circuit with a capacitor (contour C is the boundary of the white circle)

Suppose we draw the above circular Amperian loop C, what is the

enclosed current? If we choose the simplest surface — which is the pla-

nar surface demarcated by the loop, S1 — to compute the enclosed current,

Ienc = I. Applying Ampere’s law along C and integrating the current density
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over this surface then yields
˛
C
B · ds = μ0I.

Now, we wish to obtain a more general law that holds for all situations

(beyond magnetostatics). Ideally, we hope to find a law that yields the same

result for any surface S that spans the loop C. Evidently, Ampere’s law is

not the right choice here. If the semi-ovoid surface S2 shown above is chosen

instead, Ienc = 0 as no current flows between the capacitor plates — leading

to the contradictory conclusion that
¸
B ·ds = 0! This discrepancy arises due

to charges piling up somewhere, namely the capacitor plates, which causes

the current to be non-steady. Ampere’s law has only worked so far because

of the steady current condition which ensures that the surface integral of the

current density is independent of the surface chosen.

To rectify this error, Maxwell devised a correction to Ampere’s law which

then came to be known as the Ampere–Maxwell Law which is also valid for

non-steady systems. Its integral form states that
˛
C
B · ds = μ0

(
Ienc + ε0

¨
S

∂E

∂t
· dA

)
,

where the surface integral on the right-hand side is performed over a surface

S that spans the contour C on the left-hand side and Ienc =
˜
S J ·dA is the

current flowing across the same surface S. The second term in the brackets

is known as the displacement current.

Id = ε0

¨
S

∂E

∂t
· dA.

It is the rate of change of electric flux through the surface S, multiplied

by ε0. Maxwell’s correction leads to an appealing symmetry. A changing

electric field also generates a magnetic field!

Let us see how this correction resolves the discrepancy in the situation

above. For the simple surface S1, Id = 0 as there should be no electric

field (and hence change in electric field) outside of the capacitors in the

ideal case. If we choose the contour C to be anti-clockwise relative to the

leftwards direction,
˛
C
B · ds = μ0I.

To find the corresponding equation for the semi-ovoid surface S2, we first find

the electric field between the plates which are assumed to be close together.
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The standard result is

E =
Q

Aε0

where Q is the instantaneous charge on the plates and A is the surface area

of a plate. Then,

Id = ε0

¨
S2

∂E

∂t
· dA = ε0

¨
S2

I

Aε0
k̂ · dA,

where I is the current in the wire connecting the plates. Note that the

positive directions of the infinitesimal area elements dA are such that their

horizontal components point leftwards (apply the right-hand-grip rule to the

contour C which we define to be anti-clockwise relative to the left again). In

writing the second equality, we have asserted that the rate of change of elec-

tric field only stems from the part of S2 that is sandwiched between the two

plates, as the electric field beyond the two plates is virtually zero. The unit

vector k̂ is along the perpendicular direction pointing from the positively

charged plate to the negatively charged plate (i.e. leftwards). The integral´
k · dA over the portion of S2 in between the plates yields the projection

of this portion onto the capacitor plates, which is just the area of a plate A.

Therefore,

Id = ε0

¨
S2

I

Aε0
k̂ · dA = I.

On the other hand, Ienc = 0 for surface S2. Thus, we arrive at the same

result as previously derived.˛
C
B · ds = μ0(Ienc + Id) = μ0I.

In conclusion, similar to how there are two forms of electric fields, there are

now two forms of magnetic fields — namely, one type is produced by currents

while the other is produced by time-varying electric fields. It turns out that

even with this modification, the closed surface integral of the total magnetic

field (of both types) is empirically determined to always be zero.‹
B · dA = 0.

Summary of Maxwell’s Equations

We have officially assembled all the pieces of Maxwell’s equations — the fun-

damental laws which describe all of electromagnetism — and are no longer
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restricted to laws which are only valid in the realm of electrostatics or mag-

netostatics, such as Coulomb’s law and Ampere’s law. Maxwell’s equations

in integral form are summarized below. For electric fields,

‹
S
E · dA =

qenc
ε0

, (Gauss)

˛
C
E · ds = −

¨
S

∂B

∂t
· dA. (Faraday)

For magnetic fields,

‹
S
B · dA = 0, (no name)

˛
C
B · ds = μ0

(¨
S
J · dA+ ε0

¨
S

∂E

∂t
· dA

)
, (Ampere–Maxwell)

where E and B encapsulate both forms of electric and magnetic fields. Fur-

thermore, we have the Lorentz force law and Ohm’s law (which is not a rig-

orous law and only a rule of thumb) which describe the response of charges

to the fields governed by Maxwell’s equations.

F = q (E + v ×B) . (Lorentz Force)

J = σf = σ (E + v ×B) . (Ohm)

8.9 Perfect Conductors and Superconductors

Let us now apply our knowledge of electrodynamics to perfect conductors

and superconductors. A perfect conductor refers to one whose conductivity is

infinite. For finite volume current densities,11 Ohm’s law implies that inside

the conductor,

J = σ(E + v ×B)

=⇒ E + v ×B = 0

as limσ→∞
|J |
σ = 0 for finite |J |. Note that both E and B refer to the electric

and magnetic fields inside the conductor. Now, we can perform a closed loop

integral along a contour that lies entirely within the conductor (the loop has

11Note that it is very difficult for infinite current to flow in a perfect conductor, however
counter-intuitive it may seem, due to the self-inductance of the conductor.
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to be inside the “meat” of the conductor but the surfaces that it bounds

do not).

˛
E · ds+

˛
(v ×B) · ds = 0.

Observe that the first and second terms correspond to the induced and

motional emfs along the loop. Applying the universal flux rule, we obtain

dΦB
dt

= 0

where ΦB is the magnetic flux through the loop.

=⇒ ΦB = c.

That is, the magnetic flux through a loop in a conductor is constant. Be wary

that in applying the universal flux rule, the loop is “attached” to the conduc-

tor such that it follows the conductor if the conductor is moving. Before we

revisit a familiar set-up below, it should be noted that if a perfect conductor

is stationary (such that the motional emf is zero), the above implies that the

magnetic field must not vary at any point within the conductor (else there

will be an induced emf).

Problem: In Fig. 8.12, an infinitely long wire carries a constant current I1
upwards. A conducting rectangular loop of self-inductance L has side lengths

h and a which are in the axial and radial directions with respect to the long

wire. Initially, the loop is stationary, with its left edge at a distance l from

the wire, and does not carry any current. Subsequently, you bring the loop

to infinity, without increasing its kinetic energy. What is the final current

in the loop I2? What is the total work delivered to the system comprising

the wire and the loop in this process, and what external agent(s) is(are)

responsible for this work?

Figure 8.12: Rectangular loop and current-carrying wire



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 555

Currents and EMI 555

The magnetic field as a function of radial distance r from the wire is

B(r) =
μ0I1
2πr

by Ampere’s law. Now, denote s as the instantaneous radial distance between

the left edge of the loop and the wire. The magnetic flux through the loop,

solely due to the magnetic field of the wire, as a function of s is

ΦwireB (s) =

ˆ s+a

s

μ0I1h

2πr
dr =

μ0I1h

2π
ln
(
1 +

a

s

)
.

Originally, the conducting loop had zero current when s = l. Therefore, the

total magnetic flux through the loop, which must be constant, is ΦwireB (l).

When the wire is subsequently moved to infinity, the magnetic flux through

the loop due to the wire is zero — implying that the total magnetic flux

through the loop must be maintained entirely by its final current I2.

LI2 =
μoI1h

2π
ln
(
1 +

a

l

)

=⇒ I2 =
μoI1h

2πL
ln
(
1 +

a

l

)
where I2 is positive clockwise (take note of the direction to ensure that the

magnetic flux is correct). The total work done in this process is the increase

in mechanical energy of the system comprising the wire and the loop. Since

the wire and the loop can be considered as isolated systems once the loop is

at infinity, the increase in energy is simply that associated with the loop’s

magnetic field.

W = ΔU =
1

2
LI22 =

μ20I
2
1h

2

8π2L

[
ln
(
1 +

a

l

)]2
.

The external agents responsible for this work are you and the external source

used to maintain the current in the long wire at I1 (as it too experiences an

induced emf when the loop moves away from it).

Meissner effect

Superconductors have an additional property, known as the Meissner effect,

that is distinct from perfect conductors. Superconductors expel magnetic

fields from their interior such that B = 0 inside them. Furthermore, this

superconducting property only occurs when the superconductor is cooled

below a certain critical temperature, Tc; so in a certain sense, there is an

“on-off” switch for a superconductor.
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In a manner analogous to how the absence of a net electric field inside

a stationary perfect conductor implies zero net volume charge within it,

the lack of magnetic fields within a superconductor implies that there are

no volume currents within it. This can be easily proven by drawing small

Amperian loops within the superconductor — the closed loop integral of the

magnetic field yields zero, insinuating that the net current passing through

the loop is zero by the Ampere–Maxwell law, assuming that there are no

time-varying electric fields in the superconductor (this assertion should hold

when a steady state has been reached). Since this argument applies to small

loops in all directions, the volume current at a point within a superconductor

must be zero. Therefore, only surface currents can exist on the boundaries

of a superconductor.

Moving on, we can deduce certain properties about the magnetic field

directly outside the surface of a superconductor. Drawing a small pillbox

which straddles the surface at a certain point and exploiting the fact that

the closed surface integral of a magnetic field is zero, we can conclude that

the normal component of magnetic field at the surface of a superconductor

is zero, i.e.

B⊥ = 0,

since the normal component of magnetic field within the conductor is zero.

This is an extremely important boundary condition, as we shall soon see.

Meanwhile, similar to the boundary condition in magnetostatics, the mag-

netic field vector directly above (as in outside) a point on the surface of the

superconductor, tangential to the surface, is related to the surface current

density K at that point by

B‖ = K × n̂,

where n̂ is the normal unit vector that points outwards from the supercon-

ductor at that point. Note that this is valid even when there is a changing

electric field immediately outside the superconductor, as the displacement

current through our small Amperian loop is negligible.

Problem: A long, thin cylindrical shell of radius R is made of supercon-

ducting material. Initially, it is above its critical temperature Tc and placed

in a region of uniform external magnetic field B0 in the positive z-direction,

parallel to the cylindrical axis. If it is subsequently cooled below Tc, deter-

mine the current distribution on the shell. Finally, while the shell is still
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maintained in its superconducting state, the external field is removed. What

is the current distribution on the shell now?

When the superconducting state is first “switched on”, the superconduc-

tor must expel the uniform magnetic field B0 within itself. This is achieved

by inducing a −B0 magnetic field in itself via the surface currents that flow

on the shell. It is easy to spot a current distribution that produces such a uni-

form axial field — the current in an infinite solenoid. This suggests that we

introduce a uniform azimuthal surface current Kouter throughout the outer

surface of the cylindrical shell. By Ampere’s law, this outer surface current

generates a magnetic field

Bouter = μ0Kouter

within the cylindrical shell. For Bouter = −B0, we must have

Kouter = −B0

μ0
.

Now, this cannot be the only surface current as the magnetic flux through

a cross section of the shell must be maintained. To correct this, we can

introduce an azimuthal surface current on the inner surface of the shell.

Kinner =
B0

μ0
.

With these currents, the conditions imposed by the superconductor are sat-

isfied. However, how do we know that this must be the correct answer?

The answer, as always, is a uniqueness theorem. Observe that our boundary

conditions for the volumes inside and outside the shell are that the normal

component of magnetic field must be zero along the surfaces of the shell.

Furthermore, the net magnetic field is subject to the following conditions.

Firstly, because there are no currents anywhere in the regions that are not

within the superconductor, we must have

˛
C
B · ds = 0

for any closed contour C. Furthermore, the closed surface integral of the

magnetic field is always zero for any arbitrary surface S.

‹
S
B · dA = 0.
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Now, compare these equations with those of the electric field in a region

devoid of net charges. ˛
C
E · ds = 0,

‹
S
E · dA = 0,

where the first equation is Faraday’s law (with no changing magnetic field

everywhere) and the second equation is Gauss’ law with no net charge every-

where. In a volume V subjected to such conditions, we know that if we define

the normal component of electric field throughout the surface bounding this

volume, the third uniqueness theorem guarantees the uniqueness of the elec-

tric field. Observing that these are the exact conditions on the magnetic field

in the current situation, the magnetic field that satisfies such conditions must

be unique! Since we can determine K from B‖ = K × n̂, we conclude that

our proposed solution must be correct since the magnetic field is ensured to

be valid.

When the external magnetic field is removed, the magnetic field in the

shell must still be zero while the magnetic flux through a cross section must

be constant. Therefore, the outer surface current is dispersed while the inner

surface current is retained such that

Kouter = 0,

Kinner =
B0

μ0
.

8.10 Force on Inductors

Having analyzed the energies stored by self-inductors and mutual inductors,

it is imperative that we devise a way to compute forces via the principle of

virtual work. In doing so, it is important to note that we are free to connect

external entities — such as batteries or current sources — to our set-up or

vary the resistance of our inductors, as long as the instantaneous currents

flowing in them are consistent.

How can we be sure that these tweaks do not change the forces experi-

enced by the inductors? Well, the forces on inductors are purely magnetic

in nature and thus only depend on the instantaneous currents (and not the

future currents) carried by the inductors. External entities such as batteries

and current sources only affect the future currents carried by inductors (the

current may change as we will be deforming our inductors) and hence do not
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change the instantaneous forces experienced by them. Ultimately, we only

care about the instantaneous current distribution and not how the currents

got there.

8.10.1 Pressure on Self-Inductor

As an object cannot exert a net force on itself, a self-inductor can only

produce a magnetic pressure on itself. If the symmetry of the inductor assures

that this magnetic pressure is uniform, the magnetic pressure on an inductor

with self-inductance L and current I can be computed via the principle of

virtual work. Naturally, we want this process to be as simple as possible (by

performing the optimal tweaks to the system). Intuitively, we would want

our inductor to be perfectly conducting to eliminate the energy dissipated

as heat. Furthermore, our first intuition may hint at connecting a current

source, a circuit component which maintains the current in the inductor at

a constant value (by producing an appropriate emf), to the inductor so that

we do not need to worry about changes in current. Let’s try that.

Connecting a Current Source to a Perfect Conductor

Firstly, introduce an external pressure p (possibly varying with location) on

the self-inductor to counteract the magnetic pressure such that the internal

tension in the inductor is zero everywhere (else, we have to include the vir-

tual work performed by this internal tension later). Next, connect a current

source to maintain the current in the inductor, which we presume to be per-

fectly conducting, at I. Now, suppose that the inductor expands in a certain

manner such that its self-inductance changes by δL.

To start off, there is virtual work performed by the external pressure

δWext. Next, there is a (net) virtual work performed by the inductor which is

negative of the change in energy stored in the magnetic field of the inductor.

δWind = −δUind = −1

2
δLI2

as Uind =
1
2LI

2 for an inductor and I is constant. Finally, there is a virtual

work δWcc performed by the current source. When the inductor expands,

its magnetic flux linkage due to its own magnetic field changes — inducing

a back emf ε that the current source needs to counteract to maintain the

current in the inductor at I. For the sake of illustration, suppose that the

expansion of the inductor occurs in time dt (the expansion is virtual and

should really take no time). The total energy delivered by the current source

is δWcc = −εIdt as it must produce a counter-emf −ε (so that the net emf
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is zero as a perfect conductor does not require a non-zero emf to carry a

current). Moreover, we know from the universal flux rule that

ε = −dΦ
linkage
B

dt

where ΦlinkageB is the magnetic flux linkage through the inductor. Hence,

δWcc = δΦlinkageB I.

Now, we know from the definition of self-inductance that

L =
ΦlinkageB

I

such that, as I remains constant,

δΦlinkageB = δLI

=⇒ δWcc = δLI2.

By the principle of virtual work, the sum of all forms of virtual work must

be equal to zero as the inductor was originally in static equilibrium.

δWext + δWind + δWcc = 0

=⇒ δWext = −1

2
δLI2.

By choosing a suitable expansion, one can in principle compute Wext in

terms of the external pressure p and solve for p through the above equation

if it is uniform. Then, one can take the negative of p to determine the mag-

netic pressure everywhere. Another way to see this is that the virtual work

performed by the magnetic pressure must be negative of the virtual work

performed by the external pressure, which opposes the magnetic pressure

everywhere.

δWmagp = −δWext =
1

2
δLI2.

Note that even though a real magnetic force produces no work, it can pro-

duce virtual work as we are considering a virtual displacement that is not

necessarily parallel to the instantaneous velocity of the charge that the mag-

netic force acts on. At this juncture, one might raise the following question:

why is δWmagp different from δWind = −1
2δLI

2 that we have computed

previously? That is, couldn’t we have computed δWmagp directly from the

virtual work performed by the inductor which is also the negative change in
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energy stored in the inductor, δWind = −δUind? The answer to the latter

query is yes and no.

It is paramount to understand that δWind = −δUind is the net work

done by the inductor and comes from various factors, of which the virtual

work due to magnetic pressure is merely one. δWind depends on the actual

configuration of the system (e.g. the external connections) while δWmagp

does not (which enables us to consider various set-ups). In this case, the

presence of the current source changes the net virtual work performed by

the inductor as it delivers energy to the inductor. Therefore, if we want to

compute δWmagp from the net virtual work done by the inductor, we must

consider a separate set-up where the only virtual work performed by the

inductor is due to precisely magnetic pressure — this requires there to be

no external connections to the inductor. It seems that we have dug a hole

for ourselves with our first intuition as we not only have to include the work

done by the current source, δWmagp is no longer related to δWind. In light

of this, let us now consider an isolated, perfectly conducting inductor.

Isolated Perfect Conductor

Consider a separate set-up where the inductor is now isolated (i.e. no external

entity is connected) and perfectly conducting (to ensure that no energy is

dissipated as heat) such that the only forms of virtual work are due to

the external pressure exerted to balance the magnetic pressure and due to

the inductor itself. The virtual work performed by the magnetic pressure

is the negative of the former factor such that the principle of virtual work

ensures that δWmagp = δW ′
ind, where δW

′
ind is the virtual work performed

by the inductor in this set-up due to a virtual change in its self-inductance

δL.

δW ′
ind = −δU ′

ind = −1

2
δLI2 − LIδI

where the current I in the inductor can also vary now (due to the lack of a

connected current source). We can relate δL and δI by using the fact that

the magnetic flux linkage through a perfect conductor must be constant.

ΦlinkageB = LI = c

δLI + LδI = 0 =⇒ LδI = −δLI.
Therefore,

δWmagp = δW ′
ind =

1

2
δLI2,
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and we arrive at the same answer. We emphasize that we should unequivo-

cally obtain the same answer, regardless of the tweaks we impose, as long as

we compute the virtual work correctly.

Constant Emf Source Connected to Resistive Inductor

As another (ludicrously complicated) example, suppose that we connect a

constant emf source ε0 to the inductor, which we now presume has a cer-

tain finite resistance, that generates the current I in it. If we vary the self-

inductance of the inductor by δL in a time interval dt while assuming that

its resistance remains approximately constant, the virtual work performed

by the inductor is now

W ′′
ind = −1

2
δLI2 − (ε0 + ε)Idt

where the first term is its change in potential energy and the second term

is the heat dissipated due to its resistance (its potential difference ε0 + ε

multiplied by the constant current I, where ε is the induced emf due to the

expansion of the inductor). Note that even though there is an abrupt increase

in the net emf through the inductor, the current through the inductor can

no longer instantaneously change due to its self-inductance, coupled with its

resistance. Now, there is also virtual work performed by the emf source

Wemf = ε0Idt

such that by the principle of virtual work,

Wext +W ′′
ind +Wemf = 0

Wext =
1

2
δLI2 + εIdt

where εdt = −δΦlinkageB = −δLI again.

Wext = −1

2
δLI2

=⇒ Wmagp = −Wext =
1

2
δLI2,

and we yet again retrieve the same answer. All in all, the moral of these three

examples is that it is usually the easiest to apply the principle of virtual work

by assuming that our set-up is an isolated, perfect conductor! Let us finally

apply this result to a concrete example.

Problem: Determine the magnetic pressure on a long solenoid with η turns

per unit length that is carrying a current I.
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Firstly, let us grasp some intuition about the origin of this magnetic

pressure. We know that a solenoidal current produces an axial magnetic field

within it. This axial magnetic field exerts a radially outwards force on the

turns of a solenoid — generating the magnetic pressure. However, note that

we cannot simply take the magnetic field inside the solenoid multiplied by the

current per unit length ηI of the solenoid to compute the magnetic pressure

on the solenoid as the magnetic field is discontinuous across the surface of the

solenoid (we must multiply ηI by the magnetic field at the solenoid surface).

This can be achieved by imposing the boundary conditions on the magnetic

field,12 similar to how we computed the force felt by a charged surface, but

we shall solve this using the principle of virtual work instead.

Due to the axial symmetry and the infinite nature of the solenoid, the

magnetic pressure p should be uniform throughout its surface. Let the radius

of the solenoid be R. We have previously computed the self-inductance per

unit of a solenoid as

l = η2μ0πR
2,

which implies that if we expand the solenoid radially by δR,

δl = 2η2μ0πRδR.

Applying the previous result, the work done per unit length of the solenoid

by the magnetic pressure, due to this virtual expansion is

wmagp =
1

2
δlI2 = η2μ0I

2πRδR.

Another expression for wmagp is

wmagp = p · 2πRδR

as the work done by magnetic pressure on a cross section of the solenoid of

thickness ds in pushing it radially outwards by distance δR is p · 2πRds · δR
such that the work per unit length is 2πpRδR. Equating the two expressions

for wmagp,

p =
1

2
η2μ0I

2.

12In fact, you will similarly find out that the magnetic field at the solenoid windings is
the average of the fields on its two sides.
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8.10.2 Force Between Mutual Inductors

In a similar vein, there is an elegant way of computing the force between two

mutual inductors with mutual inductance M that carry currents I1 and I2
respectively via the principle of virtual work.

Having learnt our lesson from the previous section, we propose that the

two inductors are perfect conductors in computing our virtual works. Sup-

pose that we wish to compute the force on inductor 2 due to inductor 1.

Exert an external force F ext on inductor 2 to ensure that it is in static equi-

librium. Subsequently, consider a virtual displacement δr of inductor 2. The

virtual works done are that due to the external force

δWext = F ext · δr
and that due to the system of inductors

δWsys = −δUsys.
We know that for a system of two mutual inductors, their total potential

energy is

Usys =
1

2
L1I

2
1 +

1

2
L2I

2
2 ±MI1I2,

where L1 and L2 are the respective self-inductances of inductors 1 and 2.

Since the self-inductances remain constant as the shapes of the inductors are

unchanged,

δUsys = L1I1δI1 + L2I2δI2 ± δMI1I2 ±MδI1I2 ±MI1δI2.

Now, we can relate some of these terms by imposing the condition that

the magnetic flux linkages through the inductors must be invariant. The

magnetic flux linkages through inductors 1 and 2 are respectively

L1I1 ±MI2 = c1 =⇒ L1δI1 ± δMI2 ±MδI2 = 0,

L2I2 ±MI1 = c2 =⇒ L2δI2 ± δMI1 ±MδI1 = 0,

where c1 and c2 are constants. Multiplying the first equation by I1 and

adding it to the second equation multiplied by I2,

L1I1δI1 ± δMI1I2 ±MI1δI2 + L2I2δI2 ± δMI1I2 ±MδI1I2 = 0

=⇒ δUsys ± δMI1I2 = 0

δUsys = ∓δMI1I2.
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Therefore, from the principle of virtual work,

δWext + δWsys = 0

F ext · δr = δUsys = ∓δMI1I2.

Since the force F 21 exerted on inductor 2 by inductor 1 must be negative of

the external force required to balance it,

F 21 · δr = ±δMI1I2.

The sign on the right-hand side depends on the linkage of fluxes between

the inductors. Given the positive directions of I1 and I2, if a positive cur-

rent I1 flowing in inductor 1 generates a magnetic flux through inductor 2

that reinforces the magnetic flux produced by the positive current I2 in the

inductor through itself, we choose the positive sign. Otherwise, we choose

the negative sign.

By choosing δr wisely and computing the change in mutual inductance

subsequently, one can determine the components of F 21 and thus solve for it!

We can now combine the tricks on our table to solve the following

problem — a feat that usually requires considerable vector calculus and

seems intractable otherwise.

8.10.3 Distant Magnetic Field of Magnetic Dipole

Our objective in this section is to derive the distant magnetic field of a

stationary magnetic dipole (i.e. a current loop) with magnetic dipole moment

μ. Define the positive z-axis to be aligned with μ and the origin at the

infinitesimal magnetic dipole as shown in Fig. 8.13.

Figure 8.13: Magnetic dipole

The magnetic dipole moment is depicted by the white arrow. For dis-

tances much larger than the length dimension of the magnetic dipole, this set-

up is axially symmetric about the z-axis. Therefore, by applying Ampere’s

law to a circle centered at and perpendicular to the z-axis, we can conclude
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that the azimuthal component of magnetic field is zero everywhere, as all of

such circles enclose zero current.

To proceed further, we start by first assuming that we are working with

a planar magnetic dipole. Recall that for a planar loop with N turns and

current I, its magnetic dipole moment is defined as

μ = NIA

where A is its area vector whose positive direction can be determined by

applying the right-hand-grip rule along its current I. Now, imagine that we

place a circular conducting loop perpendicular to the z-axis, centered at a

z-coordinate z, and run an anti-clockwise current I ′ through it. We have

previously computed the mutual inductance between a large circular ring

of radius r1 and a parallel small circular ring of radius r2 � r1 that are

separated by a perpendicular distance z as

M =
μ0πr

2
1r

2
2

2(r21 + z2)
3
2

.

One can repeat the same procedure to show that if we replace the small ring

with a parallel planar coil, of an arbitrary shape, small area A and N turns,

the mutual inductance is

M =
Nμ0Ar

2
1

2(r21 + z2)
3
2

.

Therefore, the mutual inductance between our imaginary ring and the planar

magnetic dipole in this case is

M =
Nμ0AR

2

2(R2 + z2)
3
2

.

We known from the previous section that the z-component of the magnetic

force experienced by the circular ring due to the magnetic dipole is

Fzδz = δMII ′

where δM is the virtual change in mutual inductance if we increase the z-

coordinate of the ring by δz. We have chosen the positive sign as the magnetic

fluxes of the two loops reinforce each other. For example, the anti-clockwise

current in the magnetic dipole generates a magnetic field at the imaginary

ring with an upwards component — bolstering the upwards magnetic flux
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produced by its own anti-clockwise current I ′. We can compute δM as

δM =
∂M

∂z
δz = − 3Nμ0AR

2z

2(R2 + z2)
5
2

δz

=⇒ Fz = −3Nμ0II
′AR2z

2(R2 + z2)
5
2

.

This force only comes from the component of magnetic field on the imaginary

ring, perpendicularly outwards from the z-axis, Bρ at the ring (this must be

uniform throughout the ring due to axial symmetry). Therefore,

Fz = −BρI ′ · 2πR

Bρ =
3Nμ0IARz

4π(R2 + z2)
5
2

=
3μ0μ sin θ cos θ

4πr3
,

where r is the distance between a point on the rim and the origin and θ is the

angle defined in the figure above. To determine the axial magnetic field (in

the z-direction) Bz, we can use the following trick. Label the magnetic dipole

as inductor 1 and the imaginary ring as inductor 2. From the definition of

mutual inductance,

M =
ΦB21

I

where ΦB21 is the magnetic flux through inductor 2 due to the magnetic field

of inductor 1. Now, suppose that we slightly increase the radius of the ring

by δR while maintaining the currents in the two inductors (we do not care

about how we do this) such that the mutual inductance changes by δM .

δM =
∂M

∂R
δR =

(
Nμ0AR

(R2 + z2)
3
2

− 3Nμ0AR
3

2(R2 + z2)
5
2

)
δR.

We know that

δM =
δΦB21

I

where δΦB21 is the change in magnetic flux through the ring, due to the

magnetic field of the dipole, caused by the expansion of the ring’s radius by

δR. However, δΦB21 is simply the z-component of magnetic field at the rim

of the ring, Bz, multiplied by the circular shell of area 2πRδR. Therefore,

Bz · 2πRδR
I

=
∂M

∂R
δR =

(
Nμ0AR

(R2 + z2)
3
2

− 3Nμ0AR
3

2(R2 + z2)
5
2

)
δR
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Bz =
Nμ0IA

2π(R2 + z2)
3
2

− 3Nμ0IAR
2

4π(R2 + z2)
5
2

Bz =
μ0μ

2πr3
− 3μ0μ sin

2 θ

4πr3
.

Therefore, if we are interested in the magnetic field at a point with position

vector r relative to the origin, we can consider the plane containing r and

the z-axis and define the polar coordinate system as shown in the figure

above. Then, the magnetic field can be resolved into r̂ and θ̂ components as

Br = Bz cos θ +Bρ sin θ =
μ0μ

2πr3
cos θ,

Bθ = Bρ cos θ −Bz sin θ =
μ0μ

4πr3
sin θ.

In vector form, the magnetic field at the point of interest is

B =
μ0μ

4πr3
(2 cos θr̂ + sin θθ̂), (8.36)

B =
μ0
4πr3

[3(μ · r̂)r̂ − μ]. (8.37)

For a magnetic dipole that takes the form of a non-planar loop, we can

divide it into many planar loops and apply the principle of superposition (see

Problem 16 in Chapter 7) to retain the above expression for the magnetic

field, except that

μ = NIA = NI

¨
S
dA

now. A is now replaced by the vector area of the dipole loop C — it is the

integral of dA (infinitesimal area vectors) over a surface S that spans the

dipole loop C.

Gilbert’s Model of Magnetic Monopoles

Astute readers may observe that the previous expression for the distant

magnetic field of a magnetic dipole is analogous to the distant electric field

of an electric dipole after the substitutions E → B, p → μ and 1
ε0

→ μ0.

Does this mean that we can model a magnetic dipole, as two “magnetic

charges” qm and −qm separated by a distance d such that qmd = μ, as in

the case of an electric dipole?

Well, not really. The existence of “magnetic charges” or magnetic

monopoles is forbidden by one of Maxwell’s equations:
‚

B · dA = 0 over
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any closed surface. In nature, no magnetic monopoles have hitherto been dis-

covered. Therefore, even though the above model, known as Gilbert’s model,

is rather accurate for large distances away from the magnetic dipole, it is

fundamentally wrong. This difference is amplified when we approach the

magnetic dipole on scales comparable with its length dimensions such that

the answers we obtain from Gilbert’s model are completely wrong. For exam-

ple, based on Gilbert’s analogy between magnetic and electric dipoles, we

would expect the force on a magnetic dipole μ due to an external magnetic

field B to be

F = (μ · ∇)B.

However, the correct force (obtained from simplifying I
¸
ds×B, where the

integral is performed over the magnetic dipole loop, via some vector calculus)

is actually

F = ∇(μ ·B). (8.38)

This discrepancy evidently stems from the fact that we need to consider the

true local structure of the magnetic dipole, which is a current loop (known

as Ampere’s model), in computing the force it experiences. That said, we

can rewrite the second expression as

F = ∇(μ ·B) = (μ · ∇)B + μ× (∇×B),

so the discrepancy vanishes when the curl of the magnetic field ∇×B = 0

or when μ is parallel to ∇ × B. The former condition is more commonly

adopted as we want the force to be correct for any orientation of the dipole.

It turns out that the differential form of the Ampere–Maxwell law is

∇×B = μ0J + μ0ε0
∂E

∂t
,

so we require the right-hand side to disappear for Gilbert’s model to be

correct in determining forces. To this end, we usually require there to be no

external current (the magnetic dipole is so small that it produces no current

density) and changing electric field at the location of the dipole.

Having said all of this, Gilbert’s model is usually proscribed as it is

fundamentally invalid. However, if one insists on applying it, the following

are some rules of thumb that should be obeyed. Firstly, the magnetic field

due to Gilbert’s model is only valid at distances much larger than the length

dimensions of the dipole. Secondly, if we want to compute the magnetic force
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on a dipole with Gilbert’s model, we must ensure that there are no volume

currents or changing electric fields at its location. Finally, even though this

has not been discussed before, it is best to not talk about the potential

energy of a magnetic dipole (whether using Gilbert’s or Ampere’s model) as

there are many subtleties involved. Refer to Problem 19 in this chapter for

an example.
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Problems

Currents

1. Interface*

Consider a thin, long cylindrical shell branching along its axis. Half of the

shell is filled with a material of resistivity ρ1 while the other half is filled with

one of resistivity ρ2 (the cross section of the shell is uniform). If a steady

and uniform current density J flows from the former material to the latter,

parallel to the axis of the cylindrical shell, determine the surface charge

density of the charges trapped at the interface.

2. Cylindrical Current**

Consider two thin, concentric cylindrical shells, made of conducting material,

that have length l and radii a and b, with a < b. The gap between the

two shells is filled with a material with conductivity σ(r) = k
r where r is

the perpendicular distance from the axis. The inner and outer shells are

maintained at a constant potential difference V0 with the inner shell having

the higher potential. Determine the resistance of this set-up when a steady

current flows between the shells. Determine the electric field between the

two shells and hence the charge density ρ everywhere within the mediating

material.

3. Four Point Probe**

A homogeneous matter of unknown resistivity ρ fills the region x ≥ 0. Physi-

cists then work in the other half-space to determine ρ. They draw a pale

square with corners A, B, C, D at coordinates (0,−a
2 ,

a
2 ), (0,

a
2 ,

a
2 ), (0,

a
2 ,−a

2 ),

(0,−a
2 ,−a

2 ). Subsequently, they inject a steady current I into point A and

withdraw the same amount from point B via tiny electrodes. If the (positive)

potential difference between points C and D is measured as V , determine ρ.

Hint: apply the principle of superposition.

4. Leaking Charge**

If a volume V is filled with a conducting material of uniform conductivity σ,

determine the total electric charge q(t) enclosed by the volume V, given that

the total initial charge inside V is q0.
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Emfs

5. Flipping Switch*

Two bulbs are connected to opposite sides of a circular loop of wire, as

shown in the figure below. A changing magnetic field (confined within the

loop) induces an emf in the loop that causes the two bulbs to light at first.

All wires lie in the same plane. When the switch is closed, what happens

to the bulbs? Subsequently, the wires containing the closed switch remain

connected at points A and B and are lifted up (out of the page) and moved

gradually towards the other side, until the configuration in the right figure

is finally attained (where all wires again lie in the same plane). Describe the

responses of the bulbs throughout this process.

6. Voltmeters*

There are two long solenoids that are encircled by loops with two resistors

R1 and R2, as shown in the figure below. The right solenoid produces a

magnetic flux ΦrB = αt out of the page through itself where t is the time

elapsed from a reference point while the left solenoid produces a magnetic

flux ΦlB = βt out of the page through itself. The voltmeters are ideal and

possess infinite resistance. If each voltmeter measures the voltage across its

ends via a path through itself, determine the readings of the voltmeters.
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7. Compressing Square Loop*

Imagine a square loop of edge length 3.00m and resistance 10.0Ω in this

page. It is placed in a uniform external 0.100T magnetic field that is directed

perpendicularly into this page. The loop is then compressed (the lengths of

the edges remain unchanged but the angles between them may vary) into a

rhombus in the same plane, with a separation 3.00m between two opposite

vertices. Note that the edges can possibly protrude out of this page en route

but they must still remain in this page in the final configuration. If this

process takes 0.100s, what is the average current generated in the loop? What

is its direction? Remember to account for the self-inductance of the loop.

8. Voltage due to Solenoid*

A long solenoid of radius R produces a magnetic field B(t) = B0 sinωt out of

the page (defined as the positive z-axis). Now, consider two points A and B

in the plane of the cross section of the solenoid. If points A and B are outside

the solenoid and their position vectors from the center of the solenoid in the

current plane subtend an angle θ, determine the voltage from points A to

B along any line that does not cut through the solenoid. B is located anti-

clockwise of A, where the anti-clockwise direction is determined by applying

the right-hand-grip rule to the positive z-direction.

9. Moving Loop*

A rectangular loop of dimensions l and h moves with a constant velocity

u away from a long wire that carries a steady current I1 in the plane of

the loop. The total resistance of the loop is R. Derive an expression for the

current I2 in the loop at the instant the closer side of the loop is a distance

r from the wire. We have done a similar problem before but use the flux rule

this time. Notice that the resistor heats up. What is providing this energy

or rather, doing work on the system? The magnetic force seems to be doing

work! Resolve this apparent paradox.
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10. Loop Exiting Magnetic Field*

A square loop is exiting a constant and uniform magnetic field B with a

constant velocity v perpendicular to the magnetic field. Find the emf induced

in the loop when the left end of the loop is at a distance x from the right

boundary of the magnetic field. Find the force required to maintain the

velocity of the loop. The loop has resistance R and negligible self-inductance.

11. Rotating Wheel*

A wheel with six spokes is placed in a perpendicular magnetic field B = 0.5T

as shown in the figure. The field is directed into the plane of the paper and

permeates the entire wheel. The external wires are connected to the wheel’s

center and a point on its rim. When the switch S is closed, there is an

initial current of 6A through the battery and the wheel begins to rotate.

The resistance of the spokes and the rim may be neglected. You may find

the result of Problem 5 (Chapter 7) to be helpful in the following questions.

(a) What is the direction of rotation of the wheel? Explain.

(b) The radius of the wheel is r = 0.2m. Calculate the initial torque on the

wheel about its center.

(c) Describe qualitatively the angular velocity of the wheel as a function of

time. Let the emf of the battery be ε = 1V.

12. Coil in Magnetic Field**

A loop of width w and self-inductance L is exiting a constant and uniform

magnetic field B, that is perpendicular to the plane of the loop. An external

force is exerted on the loop to sustain its velocity at a constant v. Determine
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the current in the loop as a function of time t if there was no initial current.

Determine the external force required to maintain the loop at a constant

velocity as a function of time. Lastly, verify that the power delivered by the

external force to the coil is consistent with the rate of increase in energy in

all other entities, except that which exerts the external force.

13. Rotating Ring**

A ring with mass m, radius r and resistance R is rotating about a diameter

in a region of constant and uniform external magnetic field B. Initially, the

magnetic field passes through the ring perpendicularly, resulting in maximum

flux through the ring, and the ring rotates with initial angular speed ω0.

Neglect the self-inductance of the ring.

(a) Find the relation between the total angle φ that the ring rotates before

it stops, and the other given variables.

(b) Find the number of complete rounds that the ring manages to rotate

when it initially spins at 8 rotations per second, m = 1kg, R = 1Ω,

r = 30cm, and B = 1T.

14. Railgun**

A bar of massm and resistance R slides without friction in a horizontal plane

that is perpendicular to a constant and uniform magnetic field B, moving

on parallel rails as shown. The perfectly conductive rails are separated by

a distance d and a battery maintains a constant ε between these two rails.

Assuming that the bar starts from rest at t = 0, find the speed of the bar as

a function of t. Neglect the self-inductance of this set-up.
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15. Inclined Loop**

A uniform external magnetic fieldB is directed vertically downwards, passing

through the slope of an inclined plane which supports a wire loop as shown

in the figure. A rod, of mass m, length l and resistance R3 is sliding down

without friction, starting from rest. The wire loop behaves like a “rail” for

the rod. Neglect all self- and mutual inductances in this set-up.

(a) When the rod has an instantaneous velocity v (positive down the slope),

find the magnitude and direction of the induced current flowing in each

wire segment.

(b) Find the magnitude and direction of the magnetic force acting on the

rod.

(c) Find the velocity and acceleration of the rod as functions of time.

(d) Find the instantaneous “power” of the magnetic force13 on the rod. You

can leave the expression in terms of v.

(e) Show that the rate of change of the total mechanical energy of the rod

equals to negative of the dissipated power.

16. Magnetic Wave**

A rectangular loop of width h and length l is currently traveling in the xy-

plane (the length is aligned with the x-direction). The resistance of the entire

loop is R. A magnetic field B = B0 cos(kx−ωt), where k and ω are constants,

in the positive z-direction (out of the page) permeates all space. Given that

the only possible force on the loop is the magnetic force, determine the

condition for the loop to be able to travel at a constant velocity in the

positive x-direction at all possible velocities. When the previous condition is

13We really mean the power delivered by the component of magnetic force caused by
the current in the rod.
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not met, there is a terminal velocity of the loop when the loop is given an

initial velocity in the x-direction. Determine this terminal velocity. Neglect

the self-inductance of the loop.

17. Pulling a Solenoid**

An outer solenoid of cross sectional area A1, η1 turns per unit length and

anti-clockwise current I1 (relative to the positive z-axis defined along its

solenoid axis) encloses an inner, coaxial solenoid of cross sectional area A2,

η2 turns per unit length and anti-clockwise current I2. The currents in both

perfectly conducting solenoids are maintained at their respective values by

current sources. If the inner solenoid is now pulled out of the outer solenoid at

a constant velocity v in the positive z-direction, determine the emfs produced

by the current sources. You may assume the individual magnetic fields of the

solenoids to be uniform inside them and zero outside of them. Determine the

ratio of these emfs and explain why it makes sense.

18. Ring on Ring**

On a smooth, insulating and neutral large ring of radius R, there is a small

ring of mass m which carries charge q. The large ring is placed in a uniform

magnetic field of strength B(t) and perpendicular to the plane of the ring

(xy-plane), B(t) = B0 + αt in the positive z-direction. Find the force of the

small ring acting on the big ring thereafter and describe the motion of the

small ring. (Singapore Physics Olympiad)

19. Work Done on Magnetic Dipole**

A coil carrying a constant current I with N densely wound rounds of area

A is placed in a region of uniform magnetic field B. Define θ to be the angle

between the magnetic dipole moment and the magnetic field. Determine the

external mechanical work required to rotate the magnetic dipole from θ = π
2

to a general angle θ along a single axis of rotation, without any increase

in kinetic energy. Now, there is an apparent paradox as the dipole does

not gain any energy, and yet we are supplying (possibly negative) external

work to it. Furthermore, we know that the magnetic force cannot perform

any work on the coil (to counteract the mechanical work). Where does this

external mechanical work then go? Note that we have analyzed a similar

set-up before.
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Inductance

20. Rectangular Toroid*

Find the self inductance of a N -turn toroid which has a rectangular cross

section with inner radius r1, outer radius r2 and height h.

21. Solenoid in Solenoid**

A finite solenoid of length l, radius r and N turns is placed in a long solenoid

with turns per unit length η and radius R, r � R. The axes of the solenoids

coincide. Find the mutual inductance of this system.

22. Inductance of Tetrahedron Sides**

If the self-inductance of an equilateral triangle loop of side length l is L,

determine the self-inductance of the loop shown in the figure below. It is

akin to two sides of a tetrahedron formed by four equilateral triangles of

length l.

23. A Neat Mutual Inductance**

If the self-inductance of an equilateral triangle loop of side length l is L,

determine the mutual inductance of the two loops that are placed side by

side as shown in the figure below. One loop is an equilateral triangle of length

l while the other loop is a rhombus formed by joining two of such equilateral

triangles together (and removing the common side).

24. Transformer**

A primitive transformer is made by overlapping two solenoids of the same

length and radius (that are not connected) and inserting an iron core within
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them to ensure that the magnetic fluxes through the turns of the solenoids

are identical. The primary circuit is connected to one solenoid with N1 turns

while the secondary circuit is connected to the other solenoid with N2 turns.

To specify the direction of coupling of the mutual inductors, define I1 to be

the clockwise current in the primary circuit and I2 to be the anti-clockwise

current in the secondary circuit. The magnetic flux through the secondary

solenoid due to a positive current I1 in the primary solenoid reinforces the

magnetic flux through the secondary solenoid due to its own positive cur-

rent I2 — the converse statement holds as well. Show that the ratio of the

emfs produced by the two solenoids in the primary and secondary circuits is
ε2
ε1

= N2
N1

.

Now, you may think that this set-up violates the conservation of energy

as we can ramp up the emf in the secondary circuit by increasing N2. To ease

your worries, consider the situation where the primary solenoid is connected

to an AC source with a clockwise emf ε = ε0 cosωt (i.e. no resistance in the

primary circuit) while the secondary solenoid is connected to a resistor R.

Find the steady state currents in the two circuits. Show that the conservation

of energy holds in the steady state situation by computing the various rates

of changes of energy. You may have to define some quantities of your own.

25. Magnetic Field of Point Charge**

By applying Ampere–Maxwell law, show that the magnetic field (in the

non-relativistic approximation v � c) due to a point charge q traveling at a

constant velocity v is

B =
μ0qv × r̂

r2

where r is the instantaneous vector joining the point charge to the location

at which the magnetic field is of concern. You may assume that the electric

field due to the moving charge is still given by Coulomb’s law in the non-

relativistic regime.

Perfect Conductors and Superconductors

26. Bringing Two Loops*

Two identical square loops that are made of perfectly conducting material

initially carry currents I1 and I2 when they are infinitely far apart. They

are then brought closer such that the second loop now carries current I ′2.
Determine the current I ′1 in the first loop at this juncture.
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27. Exiting Conducting Loop**

A conducting rectangular loop of self-inductance L and mass m is initially

stationary at the edge of a region of uniform magnetic field B (pointing out

of the page) as shown in the figure below. The length of the loop along the

vertical is l. The loop initially carries no current. If you now displace the

loop towards the right, describe the motion that the loop will undergo. You

do not need to solve the equation of motion of the loop.

28. Levitating Magnet**

Defining the z-axis to be positive upwards, the region z ≤ 0 is covered with

an infinite superconducting material. A small magnet, which can be modeled

as a small magnetic dipole with a magnetic dipole moment μ that is pointing

in the positive z-direction, is currently levitating at a z-coordinate h. If the

mass of the magnet is M , determine h.

29. Magnetic Compression***

Consider a finite solenoid, with η turns per unit length, that is carrying a

current I. The length of its cylindrical axis squared is much larger than its

cross sectional area A. Argue qualitatively why this finite solenoid should

experience a compressive force in the axial direction, in addition to the mag-

netic pressure discussed in Section 8.10.1. Determine the magnitude of this

compressive force via the principle of virtual work. Finally, determine the

force between two of such solenoids with their ends placed near each other

and their axes aligned. The two solenoids carry currents I1 and I2, which

are not necessarily in the same direction.
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Solutions

1. Interface*

We know that the electric field and current density at a point inside a mate-

rial are related by

E = ρJ

where ρ is the resistivity. Thus, the electric fields inside the two materials

are E1 = ρ1J and E2 = ρ2J respectively. Finally, we know from the chapter

on electrostatics that the discontinuity in the normal component of electric

field ΔE is related to the surface charge density of the surface charges σsurf
on a sheet (which, in this case, is the interface) by

ΔE =
σsurf
ε0

.

Thus,

σsurf = ε0ΔE = ε0J(ρ2 − ρ1).

2. Cylindrical Current**

As the conductivity is now non-uniform, there will be charges located in

the mediating material (we cannot conclude that the surface integral of the

electric field over an infinitesimal cube is zero from the fact that the surface

integral of the current density over the cube is zero due to the steady current

condition). However, we can still exploit the steady current condition and

the axial symmetry of the set-up. Let the total current flowing between the

shells be I — this must be the current flowing out of every cylindrical shell

of radius r, a < r < b. Due to axial symmetry, the current density is

J =
I

2πrl

at a radial distance r, radially outwards. The electric field is thus

E(r) =
J

σ
=

I

2πkl

radially outwards. The potential drop from the inner shell to the outer shell

is then

V =

ˆ b

a
Edr =

ˆ b

a

I

2πkl
dr =

I(b− a)

2πkl
.
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Evidently, the resistance between the shells is

b− a

2πkl
.

From above, when the potential difference is V = V0, the current flowing

between the shells is

I =
2πklV0
b− a

.

The current density and electric field at a radius r are thus

J =
I

2πrl
=

kV0
(b− a)r

,

E =
J

σ
=

V0
(b− a)

radially outwards. Now, consider a small box element in cylindrical coordi-

nates at a radial distance r, with side lengths dr, dz and rdθ where θ is the

azimuthal angle. The total electric flux through this box only stems from

the faces perpendicular to the radial direction.

ΦE = E(r + dr) · (r + dr)dθdz − E(r) · rdθdz.

Since E(r) = V0
(b−a) is a constant,

ΦE =
V0

(b− a)
drdθdz.

Let the volume density of the infinitesimal box element be ρ. Then, the total

charge stored in this box is

Q = ρrdθdzdr.

By Gauss’ law,

ΦE =
Q

ε0

which implies that

ρ =
ε0E

r
=

ε0V0
(b− a)r

.
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3. Four Point Probe**

We can apply the principle of superposition by considering the two following

set-ups. Firstly, inject current I into A and withdraw it from infinity (x →
+∞). The current I will be dispersed uniformly in a hemispherical shape

such that the current density, as a function of radial distance r from A, is

J(r) =
I

2πr2

radially outwards from A in this first set-up. By Ohm’s law, the electric field

strength E(r) is

E(r) = ρJ(r) =
ρI

2πr2
.

The potential difference between C and D in this set-up is

VDC = VC − VD = −
ˆ a

√
2a

ρI

2πr2
dr =

ρI

2π

(
1

a
− 1√

2a

)

where we have exploited the path independence of the line integral of an

electrostatic field to integrate along a strictly radial path. We have also used

the fact that C and D are radial distances a and
√
2a away from A.

Now, consider a separate set-up where current I is injected at infinity

(x → +∞) and withdrawn from B. The current density, as a function of

radial distance r from B, is similarly

J ′(r) = − I

2πr2

where the negative sign indicates that the J ′ is radially inwards with respect

to B.

E′(r) = − ρI

2πr2
.

The potential difference between C and D in this set-up is

V ′
DC = V ′

C − V ′
D = −

ˆ √
2a

a
− ρI

2πr2
dr =

ρI

2π

(
1

a
− 1√

2a

)

where C and D are now radial distances
√
2a and a away from B. Finally,

we can superpose these set-ups to obtain a combined set-up where current

I is injected into A and withdrawn from B (i.e. our original set-up). The

currents injected at and withdrawn from infinity in the two set-ups nullify
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each other. The potential difference between C and D in the original set-up

is hence

VDC + V ′
DC = 2× ρI

2π

(
1

a
− 1√

2a

)
= V

ρ =

√
2πaV

(
√
2− 1)I

.

4. Leaking Charge**

The rate of charge flowing out of an infinitesimal surface element dA on the

surface bounding the volume V is σEndA by Ohm’s law, where En is the

normal component of electric field at that surface element. Therefore,

q̇ = −
‹
S
σEndA = −σ

‹
S
EndA

where S is the surface bounding volume V. Observe that the last integral

is simply the total electric flux cutting across S! We know from Gauss’ law

that this must be q
ε0
. Thus,

q̇ = − σ

ε0
q.

Separating variables and integrating,ˆ q

q0

1

q
dq = −

ˆ t

0

σ

ε0
dt

=⇒ q = q0e
− σ

ε0
t
.

This result is extremely surprising in that we have not assumed anything

about the shape of volume V!

5. Flipping Switch*

Denote the segments connecting each of bulbs 1 and 2 between A and B as

segments 1 and 2. Denote the external wire containing the switch between

A and B as segment 3. When the switch is closed, there is no emf induced

in the loop formed by segments 2 and 3, as there is no rate of change of

magnetic flux. Therefore, by Eq. (8.25), the voltage across bulb 2 is zero (as

there is no emf in the loop and the voltage across an ideal wire is zero) and it

is extinguished. However, applying the same argument to the loop formed by

segments 1 and 3, in which the emf is non-zero, would lead to the conclusion

that a non-zero voltage exists across bulb 1 — causing it to be illuminated.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 585

Currents and EMI 585

When segment 3 is in the midst of being flipped, applying the previous

argument would yield non-zero voltage across both bulbs — implying that

they are both lit up (note that the gradual movement of segment 3 implies

that any motional emf is negligible). However, once segment 3 reaches the

final state, there would be zero voltage across bulb 1 and non-zero voltage

across bulb 2. Therefore, bulb 1 is extinguished while bulb 2 is illuminated.

6. Voltmeters*

Applying Faraday’s law to the middle loop, the anti-clockwise emf through

this loop is

ε = −dΦ
r
B

dt
= −α.

By Eq. (8.25), the clockwise current through the resistors is

I =
α

R1 +R2
.

Therefore, the voltage drops across the resistors are

V1 = IR1 =
αR1

R1 +R2

from the bottom to top end and

V2 = IR2 =
αR2

R1 +R2

from the top to bottom end. Now, consider the right-most mesh. Since there

is no changing magnetic flux through this loop, the total induced emf is

zero — implying that the sum of voltages along this loop is zero. If the

voltage across the voltmeter is Vvolt2 when going from the bottom terminal

to the top terminal,

Vvolt2 − V2 = 0

when applying Eq. (8.25) to an anti-clockwise loop.

Vvolt2 = V2 =
αR2

R1 +R2
.

Next, the anti-clockwise emf induced in the left-most mesh is −β. Hence, if
we let the voltage across the left voltmeter be Vvolt1 from the top to bottom
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terminal, applying Eq. (8.25) in the anti-clockwise direction to the left-most

loop yields

−β − V1 + Vvolt1 = 0

Vvolt1 = β +
αR1

R1 +R2
.

7. Compressing Square Loop*

Let the instantaneous self-inductance and current of the loop be L and I

respectively. By the universal flux rule, the total clockwise emf through the

loop is

ε = −dΦB
dt

− d(LI)

dt
.

The first term is the motional emf caused by the loop being compressed in

the presence of the external magnetic field while the second term is the emf

(partly motional due to the loop being compressed under its own field and

partly induced due to its varying current) caused by the loop itself. Denoting

the loop’s resistance as R = 10.0Ω, the clockwise current I through the

loop is

I =
ε

R
.

The average anti-clockwise current is thus

〈I〉 = − 1

R

〈
dΦB
dt

〉
− 1

R

〈
d(LI)

dt

〉

= − 1

R
· ΔΦB

Δt
− 1

R

Δ(LI)

Δt

= −B
R

· ΔA
Δt

= 0.121A (3sf),

where ΔA is the change in the loop’s area and B = 0.100T is the external

magnetic field. We have used the fact that the initial and final currents

through the loop are both zero in writing the third equality and substituted

B = 0.100T, R = 10.0Ω, ΔA = 9(
√
3
2 − 1)m2 (since the area of the rhombus

is 32 · sin 60◦ = 9
√
3

2 m2) and Δt = 0.100s in the last step. The positive value

indicates that the current is clockwise.
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8. Voltage due to Solenoid*

In the cross section of the solenoid that contains A and B, draw two straight

lines OA and OB from the center of the solenoid O and consider an arbitrary

path joining A and B, AB, that does not cross the solenoid. From Faraday’s

law, we know that the total emf ε induced along the loop produced by these

three lines is simply the rate of change of magnetic flux through the circular

sector of angle θ. Since the area of the sector is θ
2R

2, the anti-clockwise emf

induced is

ε = −dB
dt

· θ
2
R2

ε = −θB0ωR
2

2
cosωt.

Now, we know from Eq. (8.25) that

ε+ VOA + VAB + VBO = 0.

We know from the axial symmetry of the solenoid that the induced non-

conservative electric field should only be directed in the azimuthal direction.

Therefore, VAB = VBO = 0 as the paths are purely radial. Then,

VAB = −ε = θB0ωR
2

2
cosωt.

9. Moving Loop*

Ampere’s law gives the magnetic field at a distance x from the wire as

B =
μ0I1
2πx

.

Thus, the total magnetic flux through the loop is

ΦB =

¨
B · dA

= h

ˆ r+l

r

μ0I1
2πx

dx

=
μ0I1h

2π
ln
r + l

r
.
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The emf is then

ε = −dΦB
dt

= −μ0I1h
2π

· r

r + l
· − l

r2
· dr
dt

=
μ0I1lhu

2πr(r + l)

as dr
dt = u. Lastly, by Eq. (8.25),

I2 =
ε

R
=

μ0I1hlu

2πr(r + l)R
.

The answer to the second part is that you, or whatever entity is pulling the

loop, are providing the work by exerting a force in maintaining the loop’s

velocity! Consider a charge in the left end of the loop. The top and bottom

parts of the loop have no net effect on the loop as the magnetic force on

them cancels out.

Figure 8.14: Magnetic force on left edge

A charge travels at a velocity w along the wire but actually travels with

a velocity v = u+w as the wire is also moving. Thus, the magnetic force is

perpendicular to v and is in the direction as shown in Fig. 8.14. At equilib-

rium, the vertical component of the magnetic force provides the emf to drive

the current. Thus, you must supply a force that is equal to the horizontal

component of the magnetic force on the charge. The horizontal component

of the magnetic force on the left part of the loop is simply given by

Fxleft = −B · I2 · h = −μ0I1
2πr

· I2 · h,
as I2 is defined to be the current along the loop. Similarly, for the right part

of the loop (take note of the direction),

Fxright =
μ0I1

2π(r + l)
· I2 · h.
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The external force needed to maintain the loop at a constant velocity is

Fext = −(Fxleft + Fxright) =
μ0I1I2hl

2πr(r + l)
.

The power delivered by the force is

P = Fext · u =
μ0I1I2hlu

2πr(r + l)
= εI2

which is the power dissipated in the resistor.

10. Loop Exiting Magnetic Field*

The magnetic flux as a function of x is

ΦB = B · A = Bx2.

Thus,

ε = −dΦB
dt

= −2Bx
dx

dt
= 2Bxv

as v = −dx
dt . As shown in the chapter on magnetism, the magnetic force on

a current-carrying wire of an arbitrary shape in a uniform magnetic field is

simply given by

Fmag = BIh,

where h is the linear distance between the terminals of the wire. Its direction

is akin to that of the force on a straight wire carrying current I from the

start point to the end point. In this case, the terminals of the wire are

the two intersections of the loop with the boundary of the magnetic field.

The distance between them is then h = 2x. Thus,

|Fext| = |Fmag| = B · ε
R

· 2x =
4B2x2v

R
.

The direction of the external force is along the velocity of the loop as the

emf generated tends to reduce the velocity of the exiting loop.

11. Rotating Wheel*

(a) Applying the result of Chapter 7, Problem 5, the torque about the center

of the wheel is opposite in direction to the external magnetic field so the

wheel rotates clockwise. A more intuitive explanation is that closing the

switch generates a current in the wheel and thus a magnetic flux. The wheel

will subsequently try to reduce this increase in magnetic flux by decreasing
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the current via a motional emf, across the center and the rim, that opposes

the emf of the battery. The wheel must hence rotate clockwise to produce

such a motional emf.

(b) Applying the result of Chapter 7, Problem 5,

τ = −BIr
2

2
= −0.5 · 6 · 0.22

2
= −0.06Nm,

where the negative sign indicates that the torque about the center is clock-

wise.

(c) The clockwise angular velocity of the wheel increases at a decreasing

rate until it reaches a steady value ω = 2ε
Br2

= 2·1
0.5·0.22 = 100s−1. Firstly, the

clockwise angular velocity of the wheel increases due to the clockwise torque

about its center. However, as the angular velocity of the wheel increases, the

motional emf produced across the center and the rim increases and opposes

the emf of the battery to a greater extent — causing the current flowing in

the wheel to decrease and thus the torque to decrease. Therefore, the wheel’s

clockwise angular velocity increases at a decreasing rate. The wheel’s angular

velocity will cease to change once the motional emf across its center and rim,
ωBr2

2 (identical to that previously computed for a rotating disk), balances

the emf ε of the battery such that no current flows in the wheel. Therefore,

the terminal angular velocity of the wheel is ω = 2ε
Br2 = 2·1

0.5·0.22 = 100s−1.

12. Coil in Magnetic Field**

The induced emf in the coil is

ε = −dΦB
dt

− L
dI

dt
= Bwv − L

dI

dt

where ΦB is the magnetic flux due to the external field (coming out of the

page). We take all quantities to be positive anti-clockwise. Furthermore, by

Eq. (8.25),

ε = IR

where I is the anti-clockwise current.

dI

dt
=
Bwv

L
− R

L
I.
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Separating variables and integrating,

ˆ I

0

1

I − Bwv
R

dI = −
ˆ t

0

R

L
dt

ln

∣∣∣∣∣I −
Bwv
R

Bwv
R

∣∣∣∣∣ = −R
L
t.

Observe that since I = 0 at t = 0, I ≤ Bwv
R for all subsequent times. Then,∣∣∣ I−Bwv

R
Bwv
R

∣∣∣ = Bwv
R

−I
Bwv
R

.

I =
Bwv

R
(1− e−

R
L
t).

The magnetic force pulling the loop back into the magnetic field is

Fmag = −BIw = −B
2w2v

R
(1− e−

R
L
t).

The external force required to oppose this magnetic force is equal in mag-

nitude and opposite in direction. Therefore, the power delivered by this

external force is

P = −Fmagv =
B2w2v2

R
(1− e−

R
L
t).

Now, let us compare this with the rate of increase in energy of the other

entities. Energy is mainly dispersed as heat to the external surroundings

and stored in the magnetic field of the inductor. Thus, the rate of increase

in energy of the other entities is

dE

dt
= I2R+

d
(
1
2LI

2
)

dt
,

= I2R+ LI
dI

dt
,

=
B2w2v2

R
e−

2R
L
t +

B2w2v2

R
− 2B2w2v2

R
e−

R
L
t,

+L
Bwv

R
(1− e−

R
L
t)
Bwv

L
e−

R
L
t

=
B2w2v2

R
− B2w2v2

R
e−

R
L
t

which is consistent with the power delivered by the external force.
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13. Rotating Ring**

(a) Define θ as the angle between the magnetic field vector and the area

vector of the ring. There are two possible choices for the area vector, so choose

the one that produces the maximum positive flux initially. The magnetic flux

through the ring when it has rotated an angle θ is

ΦB = Bπr2 cos θ.

The emf through the ring is thus

ε = −dΦB
dt

= Bπr2θ̇ sin θ.

The current through the ring is then

I =
ε

R
=
Bπr2

R
θ̇ sin θ.

As such, the magnetic dipole moment of the ring is

μ = I · πr2n̂ =
Bπ2r4

R
θ̇ sin θn̂,

where n̂ is the unit vector in the direction of the area vector that we have

defined previously. The torque on the ring is

τ = μ×B

or

τ = −μB sin θ = −B
2π2r4

R
θ̇ sin2 θ,

where the negative sign reflects the fact that the torque tends to reduce

the angular velocity of the ring in order to oppose the rate of change of

magnetic flux. Applying τ = Mθ̈ about the axis of rotation of the ring,

where M = 1
2mr

2 is the moment of inertia of a ring with respect to an axis

passing through a diameter,

1

2
mr2θ̈ = −B

2π2r4

R
θ̇ sin2 θ.

Another way to obtain this equation is to directly equate the rate of change

of kinetic energy of the loop with the negative of the power dissipated due
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to resistive heating.

d
(
1
2Mθ̇2

)
dt

=Mθ̇θ̈ = −I2R

1

2
mr2θ̇θ̈ = −B

2π2r4

R
θ̇2 sin2 θ

=⇒ 1

2
mr2θ̈ = −B

2π2r4

R
θ̇ sin2 θ.

Rearranging,

ˆ 0

ω0

dθ̇ =

ˆ φ

0
−B

2π2r2

mR
(1− cos 2θ)dθ

ω0 =
B2π2r2

mR

(
φ− sin 2φ

2

)

2φ− sin 2φ =
2mRω0

B2π2r2
.

(b) Substituting ω0 = 2π · 8 = 16π and the other parameters given in the

problem,

2mRω0

B2π2r2
=

3200

9π
= 113.2 (3sf).

Defining x = 2φ, we require

x− sinx =
2mRω0

B2π2r2
.

Let f(x) = x − sinx, then f ′(x) = 1 − cosx which shows that f(x) is an

increasing function, as cos x ≤ 1. This implies that there will only be a

unique solution to our equation (if a solution exists). Now, observe that

36π < 113.1 <
3200

9π

40π > 125 >
3200

9π
.

Since f(x) is continuous, the desired solution x to our equation satisfies

36π < x < 40π

=⇒ 18π < φ < 20π

so the ring only rotates 9 complete rounds.
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14. Railgun**

The bar experiences a magnetic force leftwards of magnitude

Fmag = BId.

The current through the bar is given by

I =
ε+ εind
R

where εind refers to the motional emf induced.

εind = −dΦB
dt

.

The magnetic flux through the loop when the bar is at a distance x from the

battery is

ΦB = Bxd.

Thus,

εind = −Bddx
dt

= −Bdv,

Fmag =
Bd

R
(ε−Bdv),

mv̇ =
B2d2

R

( ε

Bd
− v
)
,

ˆ v

0

1
ε
Bd − v

dv =

ˆ t

0

B2d2

mR
dt

[
− ln

∣∣∣ ε
Bd

− v
∣∣∣]v

0
=
B2d2

mR
t.

From the expression for v̇, it is evident that v is always smaller or equal to
ε
Bd at all later times if v = 0 at t = 0. Then, |

ε
Bd

−v
ε

Bd
| =

ε
Bd

−v
ε

Bd
.

ε
Bd − v

ε
Bd

= e−
B2d2

mR
t

v =
ε

Bd

(
1− e−

B2d2

mR
t

)
.
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15. Inclined Loop**

(a) Let v denote the instantaneous velocity of the rod. The motional emf

across the rod is

ε =

ˆ
(v ×B) · ds = vBl cos θ

where the line integral runs from the left end to right end of the rod, so that

the rod acts as a battery of emf ε, with the positive terminal at its right

end. Now, let I1 and I2 denote the currents flowing through R1 and R2 from

their right to left ends. Then, the current in the rod is I1 + I2 from its left

to right end for no charge to accumulate anywhere in the circuit. Applying

Eq. (8.25) to the two loops containing one of R1 or R2 and the rail,

I1R1 + (I1 + I2)R3 = ε,

(I1 + I2)R3 + I2R2 = ε.

Solving,

I1 =
εR2

R1R2 +R1R3 +R2R3
=

R2

R1R2 +R1R3 +R2R3
vBl cos θ,

I2 =
εR1

R1R2 +R1R3 +R2R3
=

R1

R1R2 +R1R3 +R2R3
vBl cos θ,

I1 + I2 =
ε(R1 +R2)

R1R2 +R1R3 +R2R3
=

R1 +R2

R1R2 +R1R3 +R2R3
vBl cos θ,

= kvBl cos θ,

where we have let

k =
R1 +R2

R1R2 +R1R3 +R2R3
.

(b) Since the current in the rod is perpendicular to the external magnetic

field, the magnetic force on the rod is

F = −B(I1 + I2)l = −kvB2l2 cos θ

in the horizontal direction (parallel to the flat ground from the side view of

the inclined plane). The negative sign indicates that F is leftwards in the

figure.
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(c) The component of F along the slope is

F‖ = F cos θ = −kvB2l2 cos2 θ.

By Newton’s second law, the equation of motion of the rod is

mv̇ = mg − kvB2l2 cos2 θ.

Separating variables,

ˆ v

0

1

v − mg
kB2l2 cos2 θ

dv =

ˆ t

0
−kB

2l2 cos2 θ

m
dt

ln

∣∣∣∣kB2l2 cos2 θv

mg
− 1

∣∣∣∣ = −kB
2l2 cos2 θ

m
t.

Due to the facts that v is initially zero, v̇ > 0 only when v < mg
kB2l2 cos2 θ and

v̇ ≤ 0 otherwise, kB2l2 cos2 θv
mg ≤ 1 so we must take the negative value of the

argument in removing the absolute value brackets. Rearranging,

v =
mg

kB2l2 cos2 θ

(
1− e−

kB2l2 cos2 θ
m

t

)

a = v̇ = ge−
kB2l2 cos2 θ

m
t.

(d)

Pmag = F · v = −Fv cos θ = −kv2B2l2 cos2 θ.

(e) By the work-energy theorem, the rate of change of mechanical energy of

the rail is the total power delivered by non-conservative forces which is simply

that due to F in this case. Thus, we just have to show that −Pmag = P ,

where P is the rate of heat dissipated in the resistors.

P = I21R1 + I22R2 + (I1 + I2)
2R3

=
ε2

(R1R2 +R1R3 +R2R3)2
(R2

2R1 +R2
1R2 +R2

1R3 +R2
2R3 + 2R1R2R3)

=
ε2(R1 +R2)

R1R2 +R1R3 +R2R3

= kv2B2l2 cos2 θ

= −Pmag.
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16. Magnetic Wave**

Let the left and right ends of the loop be at x-coordinates x and x+ l. The

total magnetic flux through this loop at the current instance is

Φb = h

ˆ x+l

x
B0 cos(kx− ωt)dx

=

[
hB0

k
sin(kx− ωt)

]x+l
x

=
hB0

k
[sin [k(x+ l)− ωt]− sin(kx− ωt)].

The rate of change of magnetic flux through this loop is

dΦB
dt

= hB0v[cos[k(x+ l)− ωt]− cos(kx− ωt)]

−hB0ω

k
[cos[k(x+ l)− ωt]− cos(kx− ωt)]

= hB0

(
v − ω

k

)
[cos [k(x+ l)− ωt]− cos(kx− ωt)]

where v = ẋ is the loop’s instantaneous x-velocity (remember that x changes

with time too as the loop moves). We can immediately conclude now that

the condition for the loop to travel at a constant velocity is for the above

expression to be zero such that no emf, and thus no current, is induced (and

finally no force). However, we shall hold this off for now to see why the loop

tends to a terminal velocity for the second part of the question. The anti-

clockwise emf induced in the loop is simply negative of the above expression.

The anti-clockwise current induced is

I =
hB0

R

(ω
k
− v
)
[cos[k(x+ l)− ωt]− cos(kx− ωt)].

The net force on the loop is due to magnetic force on the two vertical

segments along the y-direction. The end at the larger x-coordinate expe-

riences a force B0 cos [k(x+ l)− ωt] Ih while the other end experiences a

force −B0 cos(kx− ωt)Ih. Therefore, the force in the positive x-direction is

F =
h2B2

0

R

(ω
k
− v
)
[cos[k(x+ l)− ωt]− cos(kx− ωt)]2.

The first condition in the question occurs when

cos [k(x+ l)− ωt] = cos(kx− ωt)

l = n
2π

k
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for some integer n. The second condition occurs when the terms in the round

brackets yield zero. The terminal velocity is

v0 =
ω

k
.

To see why the loop tends to this x-velocity, observe that when v > v0, the

force is negative and when v < v0, the force is positive.

17. Pulling a Solenoid**

The solenoids produce uniform individual magnetic fields B1 = μ0η1I1 and

B2 = μ0η2I2 within themselves. Let us first determine the emf in the outer

solenoid generated by pulling out the inner solenoid. By the universal flux

rule,

ε1 = −dΦ
linkage
B1

dt

where ΦlinkageB1 is the magnetic flux linkage through the outer solenoid. As

the inner solenoid is withdrawn from the outer solenoid (i.e. more of it pro-

trudes outside), the magnetic field that parts of the inner solenoid previously

occupied in the outer solenoid decreases from B1+B2 to B1. In time dt, the

volume in the outer solenoid for which this happens is A2vdt. Therefore, the

change in magnetic flux linkage through the outer solenoid is

dΦlinkageB1 = −η1B2A2vdt

where we have noted that there are η1vdt turns of the outer solenoid that

“experience” this change in magnetic field. Correspondingly,

ε1 = η1B2A2v = η1η2μ0I2A2v.

The current source must supply an emf negative of this −η1η2μ0I2A2v. Simi-

larly, applying the universal flux rule to the inner solenoid, the emf generated

in the inner solenoid due to its motion is

ε2 = −dΦ
linkage
B2

dt
.

During a time interval dt, the magnetic field within η2vdt turns of the inner

solenoid (those which have just left the outer solenoid) decreases fromB1+B2

to B2. Therefore, the change in magnetic flux linkage through the inner
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solenoid is

dΦlinkageB2 = −η2B1A2vdt

ε2 = η2B1A2v = η1η2μ0I1A2v

such that the current source connected to the inner solenoid must deliver an

emf −η1η2μ0I1A2v. The ratio of the emfs delivered by the current sources

to the solenoids is also equal to the ratio of ε1 and ε2.

ε1
ε2

=
I2
I1
.

This makes sense for the following reason. The change in the magnetic flux

linkage of each solenoid is solely due to the magnetic field of the other

solenoid as its self-inductance and current do not vary. Therefore, if the

mutual inductance between the solenoids is M(t),

ε1 = −d(MI2)

dt
= −dM

dt
I2,

ε2 = −d(MI1)

dt
= −dM

dt
I1,

as I1 and I2 are constant.

=⇒ ε1
ε2

=
I2
I1
.

This ratio is hence an innate consequence of the reciprocity of mutual induc-

tance.

18. Ring on Ring**

The key observation is ironically the lack of interaction between the small

ring and the large ring since the large ring is not charged. Thus, the force

that the small ring exerts on the large ring is solely the normal force.

The changing magnetic field induces a non-conservative electric field

which accelerates the charge in the tangential direction. Then, a normal

force is needed to constrain the small ring such that it only moves along the

large ring (circular motion). If we take anti-clockwise to be positive along

the large ring (xy-plane), the negative change in magnetic flux through the



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 600

600 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

ring is

−dΦB
dt

= −d((B0 + αt)πR2)

dt
= −απR2.

Since

ε =

˛
E · ds = E · 2πR

due to the axial symmetry of the system, applying Faraday’s law:
¸
E ·ds =

−dΦB
dt yields the non-conservative electric field as

E = −αR
2
.

Note that E is purely tangential and is taken to be positive anti-clockwise.

Considering the tangential forces on the small ring,

maθ = qE = −qαR
2

=⇒ vθ = −qαRt
2m

,

where vt is the anti-clockwise tangential velocity as a function of time (note

that the radial distance of the ring cannot change — causing the 2mṙθ̇ term

in the equation of motion in polar coordinates to vanish). When the small

ring has a tangential velocity vθ, the magnetic force it experiences is

Fmag = qvθ ×B = −q
2αRtB

2m
r̂

where r̂ is the unit vector directed radially outwards. Lastly, the combination

of the normal force on the small ring by the large ring and the magnetic force

provides the centripetal force required for the small ring to exhibit circular

motion. Thus,

N − q2αRtB

2m
= −mv

2
θ

R
.

Shifting the second term on the left over and substituting B = B0 + αt,

N =
q2αRt

4m
(2B0 + αt).
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19. Work Done on Magnetic Dipole**

The torque on a magnetic dipole with a dipole moment μ in an external

magnetic field B is

τ = −μB sin θ

where μ = NIA. The negative sign comes from the fact that the torque

tends to reduce θ. Then, the external torque required to nullify this magnetic

torque is

τext = −τ = μB sin θ.

The work done by the external torque in rotating the dipole from θ = π
2 to

θ is then

W =

ˆ θ

π
2

μB sin θ = −μB cos θ.

This energy supplied by the mechanical work is used up in maintaining the

current in the coil at a constant I. To see why an entity is required to

maintain the current from a microscopic perspective, notice that when the

coil rotates such that θ increases, the charges in the coil acquire a component

velocity perpendicular to the coil, in additional to a velocity along the coil.

This additional component of velocity leads to a Lorentz force that tends

to changing the velocities of the charges along the coil — hence changing

the current in the coil. Therefore, an external entity or circuit component

is required to sustain the current. We can be quantitative about the power

consumption of such a component by determining the induced emf. The

magnetic flux through a single turn is

ΦB = BA cos θ.

By Faraday’s law, the induced emf is

εind = −N dΦB
dt

= NBA sin θθ̇.

The emf that the circuit component needs to supply is then negative of this.

εext = −NBA sin θθ̇.

The power delivered by this component is then the potential difference across

its ends (which is equal to its emf) multiplied by the current I that it

sustains.

Pext = −NIAB sin θθ̇ = −μB sin θθ̇.
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We compare this with the rate of work done by the external torque.

Ptorque = τextθ̇ = μB sin θθ̇.

The two powers are equal in magnitude and opposite in sign. Therefore,

when the mechanical work is positive, the work performed by the circuit

component in maintaining the current in the coil is negative and perfectly

negates the mechanical work. Vice versa for negative mechanical work.

20. Rectangular Toroid*

Draw a circular Amperian loop inside the toroid of radius r from the center

of the toroid. Applying Ampere’s law, the azimuthal magnetic field (actually,

the magnetic field only has an azimuthal component as we have discussed in

the previous chapter) as a function of radial distance r (for r1 ≤ r ≤ r2) is

B · 2πr = μ0NI

B =
μ0NI

2πr
.

The magnetic flux through a turn of the toroid is

ΦB =

¨
B · dA = h

ˆ r2

r1

μ0NI

2πr
dr =

μ0NIh

2π
ln
r2
r1
.

Thus, the self-inductance is given by

L =
NΦB
I

=
μ0N

2h

2π
ln
r2
r1
.

21. Solenoid in Solenoid**

Since it is difficult to calculate the magnetic field due to the short solenoid,

we shall calculate the mutual inductance of the system due to a change in

current of the long solenoid. Let the current in the long solenoid be I. The

essentially constant magnetic field through the small solenoid due to the long

solenoid is given by Ampere’s law as

B = μ0ηI

and is parallel to the axes of both solenoids. Thus, the magnetic flux through

the small solenoid is

ΦB = B ·A = μ0ηIπr
2.
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The mutual inductance of the system is then given by

M =
NΦB
I

= μ0Nηπr
2.

Note that N refers to the number of turns of the short solenoid while η refers

to the turns per unit length of the long solenoid.

22. Inductance of Tetrahedron Sides**

Suppose that we run an anti-clockwise current in the loop given in the prob-

lem. We can see it as the composition of two anti-clockwise triangular current

loops shown in Fig. 8.15. In this case, the anti-clockwise direction for each

face is defined such that applying the right-hand-grip rule, along the edges of

the face in that direction, produces an area vector normally outwards from

the tetrahedron.

Figure 8.15: Two anti-clockwise current loops

Let the desired self-inductance be L′. By definition of the self-inductance,

L′I must be the total flux through the loop in the problem. This can be

written as

L′I = 2Φself + 2Φneigh,

where Φself is the magnetic flux through a triangular loop due to an anti-

clockwise current I through itself and Φneigh is the magnetic flux through

one triangular loop due to the anti-clockwise current flowing in the other tri-

angular loop. To determine a relationship between Φself and Φneigh, observe

that we can piece together two more anti-clockwise triangular current loops

(on the “missing” sides) to form a tetrahedron with zero net current flowing

through its edges. Since the surface of the tetrahedron is closed, the net mag-

netic flux emanating from it must be zero. Since the magnetic flux through

each face of the complete tetrahedron is Φself + 3Φneigh, we must have

4 (Φself + 3Φneigh) = 0

=⇒ Φneigh = −1

3
Φself

L′I =
4

3
Φself .
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By definition of the self-inductance of a triangular loop, Φself = LI. Thus,

L′ =
4

3
L.

23. A Neat Mutual Inductance**

Run an anti-clockwise current I through the equilateral triangle loop and

divide the rhombus into upper and lower equilateral triangles. Let the mag-

netic flux through the lower and upper portions due to the current I in the

equilateral triangle loop be Φnear and Φfar respectively. We need to deter-

mine |Φnear+Φfar

I | to compute the mutual inductance of this system.

To this end, let us adopt a new perspective to this problem. In light of

the fact that the equilateral triangle and rhombus appear to be part of a

large equilateral triangle of length 2l, let us consider what happens to the

self-inductance of an equilateral triangle loop if we scale its side lengths

by a factor of two. By dimensional analysis, the magnetic flux through an

equilateral triangle current loop due to itself should be proportional to its

length l (magnetic flux has the dimensions of magnetic field, which has an

inverse-length dimension, multiplied by area which has a squared length

dimension). Therefore, the self-inductance of an equilateral triangle of side

length 2l should be 2L.

Next, an equilateral triangle loop of side length 2l and anti-clockwise

current I can be deemed as the combination of four equilateral triangle

loops of side length l that each carry an anti-clockwise current I. Let Φself
denote the magnetic flux through an equilateral triangle loop due to its own

anti-clockwise current I. From this perspective, the magnetic flux through

the equilateral loop of side length 2l should be 4Φself + 6Φnear + 6Φfar
(Φself +Φnear + 2Φfar through each of the three triangles near the vertices

and Φself + 3Φnear through the middle triangle). Since the self-inductance

of an equilateral triangle loop of side length 2l has been asserted to be 2L,

this quantity must be 2LI. Thus,

2LI = 4Φself + 6Φnear + 6Φfar

−2LI = 6Φnear + 6Φfar

as Φself = LI.

Φnear +Φfar = −1

3
LI.
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The desired mutual inductance is hence

M =

∣∣∣∣Φnear +Φfar
I

∣∣∣∣ = 1

3
L.

24. Transformer**

Define L1, L2 and M as the respective self-inductances of the primary and

secondary solenoids and the mutual inductance of the solenoids. The clock-

wise emf in the primary circuit due to the primary solenoid is

ε1 = −L1
dI1
dt

−M
dI2
dt
.

The anti-clockwise emf in the secondary circuit due to the secondary

solenoid is

ε2 = −L2
dI2
dt

−M
dI1
dt
.

In this case, the solenoids are perfectly coupled such that

M =
√
L1L2.

Thus,

ε2
ε1

=

√
L2

L1
.

Now, we assert that the self-inductance of a solenoid is proportional to its

squared number of turns. This can be seen directly from the previous result

in Section 8.6 regarding the self-inductance of a solenoid or from the follow-

ing scaling arguments. When you scale the number of turns of a solenoid

by a factor of k, the magnetic field within itself increases by a factor of k

accordingly while the number of turns that the magnetic field passes through

also increases by a factor of k — causing the magnetic flux linkage of the

solenoid and hence its self-inductance to increase by a factor of k2. This

discussion implies

L1 ∝ N2
1 ,

L2 ∝ N2
2 ,

with all other parameters held constant. Thus,

ε2
ε1

=
N2

N1
.
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In the given set-up, ε1 must be negative of the emf produced by the AC source

as the net emf must be zero along the perfectly conducting primary circuit.

ε1 = −ε0 cosωt

=⇒ ε2 = −N2

N1
ε0 cosωt.

Applying Eq. (8.25) to the secondary circuit, we have

ε2 − I2R = 0

I2 = −N2ε0
N1R

cosωt

=⇒ dI2
dt

=
N2ε0ω

N1R
sinωt.

We know from the previous part that

ε1 = −L1
dI1
dt

−M
dI2
dt
.

Therefore,

L1
dI1
dt

+M
dI2
dt

= ε0 cosωt

dI1
dt

=
ε0
L1

cosωt− M

L1
· N2ε0ω

N1R
sinωt.

Since M
L1

=
√

L2
L1

= N2
N1

, the above is equivalent to

dI1
dt

=
ε0
L1

cosωt− N2
2 ε0ω

N2
1R

sinωt

=⇒ I1 =
ε0
L1ω

sinωt+
N2

2 ε0
N2

1R
cosωt,

where we do not include a constant of integration as we are looking at the

particular solution to the current (which should not depend on initial con-

ditions). We will compute the various rates of changes of energy but leave

out the substitutions of the expressions for I1 and I2 which are unnecessary.

The rate of power delivered by the AC source is

PAC = ε0 cosωt · I1 = ε0I1 cosωt.

The rate of heat dissipated in the resistor R is

PR = I22R.
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The total potential energy stored in the pair of mutual inductors is

U =
1

2
L1I

2
1 +

1

2
L2I

2
2 +MI1I2,

dU

dt
= L1I1

dI1
dt

+ L2I2
dI2
dt

+M
dI1
dt
I2 +MI1

dI2
dt

= I1

(
L1
dI1
dt

+M
dI2
dt

)
+ I2

(
L2
dI2
dt

+M
dI1
dt

)
= −ε1I1 − I2ε2

= ε0I1 cosωt− I22R.

The conservation of energy evidently holds as

PAC =
dU

dt
+ PR.

25. Magnetic Field of Point Charge**

Align the positive x-axis with the charge q′s velocity and suppose that we

wish to determine the magnetic field at an instantaneous distance r from

charge q, whose position vector from the charge subtends an angle θ with

the positive x-axis as shown in Fig. 8.16.

Figure 8.16: Spherical cap of radius r and half-angle θ about q

Due to the axial symmetry of this set-up and because the magnetic field

should solely be azimuthal about the x-axis, we can consider the magnetic

field of all points that are axially symmetric to the current one under consid-

eration. The magnetic field strengths at these points should undertake a com-

mon value B and the direction of the magnetic fields should be azimuthal.

This set of points form the bolded circle above, over which the line integral

of the magnetic field is then B · 2πh. Next, we want to find a convenient

surface that spans this circle to apply the Ampere–Maxwell law to. An intu-

itive surface to choose is a spherical cap of radius r and half-angle θ, centered

about charge q, as depicted in the diagram above. The real current crossing
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this surface is zero but the displacement current crossing it is

Id = ε0
dΦE
dt

,

where ΦE is the electric flux cutting across the spherical cap. We have shown

in the chapter on electrostatics that a spherical cap of half-angle θ captures

sin2 θ2 of the total electric flux emitted by a charge located at its center.

Therefore,

ΦE =
q

ε0
sin2

θ

2
=

q

2ε0
(1− cos θ) =

q

2ε0

(
1− x√

h2 + x2

)
,

where x and h are the distances defined in Fig. 8.16 above.

dΦE
dt

= − q

2ε0

(
1√

h2 + x2
− x2

(h2 + x2)
3
2

)
· dx
dt

=
qh2v

2ε0(h2 + x2)
3
2

,

where we have used the fact that dx
dt = −v.

=⇒ Id =
qh2v

2(h2 + x2)
3
2

.

By the Ampere–Maxwell law,

B · 2πh = μ0Id =
μ0qh

2v

2(h2 + x2)
3
2

=⇒ B =
μ0qhv

4π(h2 + x2)
3
2

=
μ0qv sin θ

4πr2
.

Since the magnetic field is azimuthal and θ is the angle subtended by the

position vector r of the point of concern from the charge and the velocity v

of the charge, the above expression in vector form is

B =
μ0qv × r̂

4πr2
.

26. Bringing Two Loops*

Let the common self-inductance of the loops be L. Initially, the magnetic

fluxes through the loops are

ΦB1 = LI1,

ΦB2 = LI2,

as their mutual inductance is zero when they are infinitely far apart. When

the loops are brought closer together, they will possess a non-negligible
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mutual inductanceM . However, the magnetic fluxes through the loops must

be unchanged as they are perfectly conducting. Therefore,

LI1 = LI ′1 ±MI ′2,

LI2 = LI ′2 ±MI ′1.

Multiplying the former equation by I ′1 and subtracting the latter equation,

multiplied by I ′2, from it,

LI1I
′
1 − LI2I

′
2 = LI ′21 − LI ′22

I ′21 − I1I
′
1 + I ′2(I2 − I ′2) = 0

I ′1 =
I1 ±

√
I21 + 4I ′2(I

′
2 − I2)

2
.

We choose the positive root as I ′1 = I1 when I ′2 = I2.

I ′1 =
I1 +

√
I21 + 4I ′2(I ′2 − I2)

2
.

27. Exiting Conducting Loop**

The magnetic flux through the loop is constant. When the loop is displaced

towards the right by a distance x, the magnetic flux through the loop (pos-

itive out of the page) decreases by Blx. Therefore, for the magnetic flux in

the loop to be maintained, the anti-clockwise current I in the loop must

satisfy

LI = Blx

I =
Bl

L
x.

Since the magnetic field is uniform in the region, the magnetic force on the

loop is BI multiplied by the distance between the two end points of the

loop’s intersection with the magnetic field. Therefore,

F = −BIl,

where the negative sign indicates that the force is directed leftwards. Apply-

ing Newton’s second law,

ẍ = −BIl
m

= −B
2l2

mL
x,



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch08 page 610

610 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

which indicates a simple harmonic motion with angular frequency

ω =
Bl√
mL

.

28. Levitating Magnet**

This set-up should remind you of a point charge placed above an infinite

conducting plane and it can, in fact, be similarly solved via the method of

mirror images. Since we are only interested in the magnetic field in the region

z ≥ 0, what are the boundary conditions that must be satisfied? Well, the

normal component of magnetic field must be zero along z = 0 (technically,

directly above the superconducting plane) by the properties of a supercon-

ductor. The third uniqueness theorem then guarantees the unique solution

to the magnetic field in the region z ≥ 0 as long as we can find a magnetic

field that satisfies this boundary condition. To make the normal component

of magnetic field vanish along z = 0, we can introduce an imaginary mag-

netic dipole moment −μ at a z-coordinate −h, directly below the original

magnetic dipole. The magnetic field in the region z ≥ 0 is hence the superpo-

sition of the fields of the two magnetic dipoles. The force felt by the physical

magnetic dipole is

F = ∇(μ ·B) = (μ · ∇)B

where B is the magnetic field due to the image dipole. The second equality

comes from the fact that there are no currents or changing electric fields

at the location of the physical dipole (see Section 8.10.3). In terms of polar

coordinates centered about the image dipole,

B = − μ0μ

4πr3

(
2 cos θr̂ + sin θθ̂

)
,

Br = − μ0μ

2πr3
cos θ,

Bθ = − μ0μ

4πr3
sin θ,

by Eq. (8.36), where θ is measured from the positive z-axis and r is the

position vector joining the image dipole to the point of concern. Since the

gradient in spherical coordinates is

∇ =
∂

∂r
r̂ +

∂

r∂θ
θ̂ +

∂

r sin θ∂φ
φ̂
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where φ is the azimuthal angle,

F = μ · ∇Br + μ · ∇Bθ
= μ ·

(
3μ0μ

2πr4
cos θr̂ +

μ0μ

2πr4
sin θθ̂

)

+μ ·
(
3μ0μ

4πr4
sin θr̂ − μ0μ

4πr4
cos θθ̂

)
.

When θ = 0 and r = 2h (corresponding to the location of the physical

dipole),

F =
3μ0μ

2

32πh4
k̂.

For force balance,

3μ0μ
2

32πh4
=Mg

h = 4

√
3μ0μ2

32πMg
.

29. Magnetic Compression***

The finite solenoid experiences an axial compression due to the fringe fields

at its ends which have radial components. To determine this compressive

force, cut the solenoid into two parts that are not necessarily identical. The

axial forces on the upper portion are the magnetic compressive force and the

mechanical compressive force T exerted on it by the lower portion to balance

the former. Similar to the section on finding the forces on an inductor, we

can presume the solenoid to be perfectly conducting to simplify the process

of applying the principle of virtual work. Suppose that the upper portion

experiences a virtual displacement δl away from the bottom portion (which

thus undergoes a virtual extension δl). The virtual work performed by the

mechanical force due to the lower portion is Tδl while the virtual work

performed by the magnetic force due to the lower portion is − B2

2μ0
Aδl since

the increase in potential energy stored in its magnetic field is B2

2μ0
dV =

B2

2μ0
Aδl (note that the magnitude of B does not change as there cannot be

a change in magnetic flux14 through a turn of a perfect conductor). By the

14Therefore, what really happens during the virtual extension is that the current in the
solenoid must increase to compensate for the decrease in the number of turns per unit
length.
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principle of virtual work, the sum of all forms of virtual work on the upper

portion must be zero.

Tδl − B2

2μ0
Aδl = 0

T =
1

2
μ0η

2I2A,

where B = μ0ηI by Ampere’s law. This compressive force is uniform

throughout the entire solenoid as we have not assumed anything about the

division of the solenoid into upper and lower portions. The magnetic com-

pressive force also has magnitude T and tends to push any two pieces of the

solenoid together (corresponding to the definition of a compressive force).

For the last part of the problem, observe that the force between the two

solenoids scales with the product of their currents. Furthermore, negating

the direction of one current reverses the direction of the force between them.

Deeming the two solenoids as a complete solenoid of twice their individual

lengths, the force between them is 1
2μ0η

2I2A and is attractive in nature if

the two solenoids carry the same current I in the same direction by the pre-

vious argument. Therefore, the force between the solenoids carrying currents

I1 and I2 is

F =
1

2
μ0η

2I1I2A

and is attractive if the directions of the currents are identical, and repulsive

otherwise. Actually, there is another elegant way of solving this problem —

we shall only show the solution for the first part; the second part should

follow accordingly. We know from Problem 14 in Chapter 7, that if we divide

the solenoid into two portions, the upper portion (where the North pole lies)

has a total magnetic flux of Φ = 1
2μ0ηIA (half the magnetic flux cutting

through its central cross section) leaking from its lateral surface (this leaking

virtually happens entirely at the North pole if the squared length dimension

of the solenoid is much larger than A). Meanwhile, let Br denote the radial

magnetic field as a function of axial coordinate along the upper portion of

the solenoid. If we let the radius of the solenoid be r, the magnetic force on
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the upper portion is

F =

ˆ
ηBr · 2πrIdl = ηI

ˆ
2πrBrdl,

where dl is an infinitesimal length along the axial direction. However, notice

that the right-most integral is simply the magnetic flux leaking through the

lateral surface of the upper portion! Therefore,

F = ηI · Φ =
1

2
μ0η

2I2A.
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Chapter 9

DC Circuits

In this chapter, we will be analyzing the movement of charges in the form

of direct electric currents. Only Direct Current (DC) circuits, in which cur-

rents are constantly unidirectional, will be considered in this chapter. Fur-

thermore, only circuits involving emf sources and resistors will be discussed

in this chapter — other circuit elements such as capacitors and inductors

will be saved for the next chapter. An important assumption in the next two

chapters would be that all sources are presumed to be independent such that

their individual responses do not affect each other’s.

Useful methods in solving circuitry problems will be discussed. It is rec-

ommended for the reader to attempt the problems at the end of the chapter

as they illustrate how different problem-solving methods can be applied and

function as good practice. Besides, they are really fun!

9.1 Kirchhoff’s Laws

Kirchhoff’s laws are a set of rules that govern the macroscopic view of charge

flow in terms of current and voltage instead of current density and electric

field.

9.1.1 Kirchhoff’s Loop Rule

Kirchhoff’s loop rule requires the sum of potential differences (due to a

conservative electric field) along a closed loop to be equal to zero.∑
V = 0. (9.1)

It is basically restating the fact that the closed loop integral of a conservative

electric field is zero. ˛
E · ds = 0.

615
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In evaluating the summation, note that the potential difference across the

terminals of an ideal voltage source is simply equal, in both magnitude and

direction, to its emf produced as shown in Chapter 8. Furthermore, there

is a potential drop of V = IR across a resistor carrying current I, in the

direction of the current.

9.1.2 Kirchhoff’s Junction Rule

For steady currents, Kirchhoff’s junction rule states that the sum of currents

flowing into a junction is equal to the sum of currents flowing out of that

node. This is essentially the conservation of charge with an additional con-

straint that there can be no charge accumulation, analogous to the continuity

equation. Mathematically, ∑
I = 0 (9.2)

at every junction where a consistent sign convention is adopted (e.g. current

flowing out of the junction is positive).

9.1.3 Sign Conventions

In applying Kirchhoff’s loop rule, there are certain sign conventions that

most adopt. They aid in ensuring clarity and preventing confusion. Firstly,

one must choose a loop around the circuit to apply Kirchhoff’s loop rule.

This Kirchhoff loop must have a certain direction — either clockwise or

counter-clockwise. Next, one must also propose a current across each seg-

ment of the circuit. When adding the potential differences along a loop, the

potential difference across a battery is positive if the loop cuts a battery from

the negative to the positive terminal. When the loop runs into a resistor, R,

the voltage across the resistor is negative if the proposed current direction

is the same as that of the loop and is positive otherwise.

9.1.4 Definitions

• A branch connects the two terminals of a circuit component.

• A node is the intersection of two or more branches.

• A mesh is a simplest planar loop in a circuit that does not contain any

other smaller loops.

9.1.5 Circuit Elements

Figure 9.1 summarizes common components in circuits (capacitors, induc-

tors and AC sources will be reserved for the next chapter). Note that the end

of the battery that is represented by the longer line is the positive terminal.
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Figure 9.1: Circuit elements

In this chapter, we will assume that our circuit elements are ideal. There

is no voltage across two ends of a wire as its resistance is negligible. The

resistors obey Ohm’s law perfectly. Batteries have no internal resistance and

produce a constant emf. Perhaps the component that requires further elabo-

ration would be the current source. A current source can be thought of as a

hidden emf source that maintains the current through its branch at a certain

value. It is merely a construct used to complicate problems and is infeasi-

ble in practice. An ideal current source has infinite internal resistance so

that it is perpetually able to produce the same current regardless of external

connections.

9.1.6 Mesh Analysis

Let us apply Kirchhoff’s laws to some examples via mesh analysis. A mesh

refers to a loop in the circuit that does not contain other smaller loops while

a supermesh is defined as a loop in the circuit that contains multiple smaller

meshes. The method of mesh analysis can be summarized with the following

steps:

(1) Evaluate whether to use mesh analysis or node analysis. Mesh analysis is

usually preferred when there are fewer voltage sources and more current

sources.
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(2) Define current variables in each branch of the circuit. One can either

define the current in certain branches and compute the currents in other

branches via Kirchhoff’s junction rule or define the current in each

branch via current loops in each of the meshes, which are known as

mesh currents. If the method of ascribing mesh currents is utilized for

a circuit with current sources, the sum of mesh currents must be equal

to the current enforced at each current source — producing new equa-

tions that must be obeyed. These two methods are depicted in the fourth

example below. The total number of current variables should be equal

to the number of meshes minus the number of non-redundant current

sources.

(3) Draw appropriate loops, which are known as Kirchhoff loops, in the

circuit. Kirchhoff loops are usually drawn in each mesh when current

sources are absent. When a circuit contains current sources, some Kirch-

hoff loops should be drawn in supermeshes to deliberately avoid current

sources whose potential differences are unknown. The total number of

linearly independent loops drawn should correspond to the number of

current variables.

(4) Apply Kirchhoff’s loop rule to each of the loops to generate a set of simul-

taneous equations which can be used to solve for the current variables.

Before we begin with formal applications of Kirchhoff’s laws, let us go

through the following simple example to highlight a special property regard-

ing parallel connections.

Problem: In Fig. 9.2, two resistors are connected in parallel to a current

source that delivers a current I. Find the current through each resistor.

Figure 9.2: Current divider principle

The potential differences across parallel branches must be identical as

an electric potential is uniquely defined for each point in the system and as

there is zero electric field inside an ideal wire — resulting in no change in

potential when moving along wires. Therefore,

I1R1 = I2R2.
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Furthermore, we know from Kirchhoff’s junction rule that

I = I1 + I2

for no charge accumulation at the junction where the currents split. Then,

I1 =
R2

R1 +R2
I,

I2 =
R1

R1 +R2
I.

We shall term this set of equations the current divider principle. Next, we

shall begin with mesh analysis formally by deriving the voltage divider prin-

ciple in the following simple circuit.

Problem: In Fig. 9.3, two resistors are connected in series to a voltage

source. Find the voltage across each resistor.

Figure 9.3: Voltage divider principle

We first define a current variable I and propose its direction to be in the

anti-clockwise direction. Drawing an anti-clockwise loop in the mesh and

applying Kirchhoff’s law, we obtain

ε− IR1 − IR2 = 0

I =
ε

R1 +R2
.

The voltages1 across the resistors are

V1 = IR1 =
R1

R1 +R2
ε,

V2 = IR2 =
R2

R1 +R2
ε,

1We shall use voltage and potential difference interchangeably here despite their slightly
different meanings. The voltage is defined as the line integral of the electric field (both
conservative and non-conservative) along a path. The voltage across two points is equal to
the potential difference if there is no non-conservative field — a condition that is satisfied
by all set-ups in this chapter.
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we see that the voltages across the resistors are allocated according to the

ratio of their resistances.

Problem: Find the current flowing through branch 23 in Fig. 9.4.

Figure 9.4: Circuit

We first assign variables along with proposed directions to the currents

through each branch. If the surmised direction for a current turns out to be

incorrect, the current will have a negative value which indicates that current

is actually flowing in the direction opposite to that proposed. We only need

three current variables in this case, as the currents in other branches can be

determined by Kirchhoff’s junction rule. Then, three linearly independent

loops2 are required to be drawn to form three linearly independent simulta-

neous equations to solve for this system. Applying Kirchhoff’s loop rule to

loop 1231,

−I1 − 2I3 + 2I2 = 0.

For loop 2432,

I3 − I1 + I2 + I3 + 2I3 = 0.

For loop 4134,

ε− 2I2 − I2 − I3 = 0.

Solving,

I3 =
ε

19
.

2Three distinct loops do not guarantee three linearly independent equations. For exam-
ple, choosing loops 1231, 12431 and 2342 will result in one redundant equation that is a
linear combination of the other two.
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We could have chosen any other loops, such as one in the supermesh 23412,

and we would have obtained the same answer as long as three linearly inde-

pendent loops were chosen. This means that any linear combination of any

subset of the loops (multiplication by a constant, subtraction and addition)

must not give another loop that we have already chosen. Three linearly

independent loops are required to provide three linearly independent simul-

taneous equations to solve for the three current variables. Choosing more

than three loops will generate equations that are redundant, or in linear

algebra terms, linearly dependent.

Usually, a systematic method in choosing the Kirchhoff loops would be

to draw a loop in each of the meshes in the circuit if current sources are

absent — similar to what we have done above. When a circuit contains

current sources, we require one less equation and current variable for every

additional non-redundant current source in the circuit as each current source

provides information about the current flowing in a particular branch. How-

ever, it is paramount to tactfully avoid current sources in a Kirchhoff loop

as the potential difference across a current source is usually unknown. Fur-

thermore, as the current in the branch containing a current source is already

known, that branch can be avoided entirely without any harm as there are

no more variables to solve for in that particular branch. Thus, we may need

to consider loops in supermeshes when the circuit contains current sources

which we deliberately want to avoid.

On another note, a common way in assigning currents is to draw a current

loop within each mesh (usually with a coherent clockwise or anti-clockwise

direction). This is illustrated in Fig. 9.5.

Figure 9.5: Current loops
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To obtain the current in a branch at the border of two meshes, we just

add the contributions from each of the current loops while taking note of

their directions. For example, the current through branch 23 is I1−I3 down-
wards (as I1 is going downwards in branch 23 while I2 is going upwards)

and the current through branch 13 is I2 − I1 rightwards. The advantage of

this allocation would be that Kirchhoff’s junction rule will be automatically

satisfied. At each junction, current that enters must also leave as we have

drawn them in loops beforehand.

Let us analyze a circuit containing a current source. In such situations,

a Kirchhoff loop in a supermesh should be drawn to avoid current sources.

Problem: Find the currents in branches 12 and 24 in Fig. 9.6.

Figure 9.6: Circuit with current source

We define the currents in the circuit via the current loops as shown above.

Note that the current in the bottom triangular mesh is 2+I2 in the clockwise

direction so that the current in branch 34 is 2A, rightwards, as enforced by

the current source.

Applying Kirchhoff’s loop rule to mesh 123561,

10− I1 − 2(I1 − I2)− (I1 − I2 − 2) = 0.

Applying Kirchhoff’s loop rule to supermesh 24532,

4− 2(2 + I2)− (2 + I2 − I1)− 2(I2 − I1) = 0.

Solving,

I1 =
54

11
A,

I2 =
28

11
A.
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Observe that we did not and did not need to consider meshes 2342 and

3453 as the potential difference across the current source is unknown and

because the current in branch 34 was already predetermined. Finally, a sys-

tematic way of choosing meshes and supermeshes in such context is to remove

branches containing current sources and then choose Kirchhoff loops in all

resultant meshes. We did this above — by removing branch 34, there are

two meshes 123561 and 24532.

9.1.7 Nodal Analysis

Mesh analysis solves for the branch currents in a circuit in order to describe

the response in each branch. Another approach to circuitry problems would

be to determine the voltage across every two nodes in a circuit. Usually one

node in the entire circuit is chosen to be the reference node, whose potential

is zero, and is denoted by a ground symbol. The potentials of all other nodes

in the circuit are then defined relative to the potential of the reference node;

these relative potentials are known as nodal voltages. The method of nodal

analysis can be summarized with the following steps:

(1) Evaluate whether to use mesh analysis or node analysis. Nodal analysis is

usually preferred when there are more voltage sources and fewer current

sources.

(2) Identify an appropriate reference node in the circuit. As a rule of thumb,

the node that is connected to the most voltage sources or circuit compo-

nents is usually denoted as the reference node. Afterwards, define nodal

voltage variables or compute the nodal voltages directly at each node of

the circuit. The nodal voltage of the node at the positive terminal of a

battery is more than that of the node at the negative terminal by the

emf of the battery. The total number of nodal voltage variables should

be equal to the total number of nodes minus one (due to the reference

node) minus the number of voltage sources.

(3) For each node whose voltage is unknown, apply Kirchhoff’s junction

rule to ensure that the net current flowing into or out of the node is

zero. The current through a branch emanating from the node can be

determined by the difference in node voltages divided by the resistance

between them or directly from the magnitude of current enforced by the

current source in that branch. When there exist nodes that are connected

via a voltage source to another node that is not the reference node,

Kirchhoff’s junction rule cannot directly be applied to such nodes as the

current through the voltage source is unknown. Hence, the method of

supernodes, which will be elaborated later, should be used instead. The
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total number of nodes or supernodes, to which Kirchhoff’s junction rule

is applied, should correspond to the number of nodal voltage variables.

(4) A set of simultaneous equations, that can be used to solve for the voltage

variables, will be obtained.

Problem: Determine the current through the 6Ω resistor in Fig. 9.7.

Figure 9.7: Circuit with two emfs

We denote the reference node to be that attached to the ground symbol.

Then the nodal voltages of the two nodes connected to the reference node

via voltage sources are 6V and 3V respectively. Let the nodal voltage of the

node connected to the three resistors be U . Applying Kirchhoff’s junction

rule to that particular node,

U − 6

6
+
U − 0

3
+
U − 3

3
= 0.

The three terms on the left-hand side correspond to the currents flowing out

of that particular node to the 6V, 0V and 3V nodes respectively. The net

current flowing out of any node is required to be zero by Kirchhoff’s junction

rule. Solving,

U =
12

5
V.

Thus, the current through the 6Ω resistor is

I =
6− 12

5

6
=

3

5
A

rightwards.

Let us now analyze a circuit in which the method of supernodes is nec-

essary. When neither of the two terminals of a voltage source is connected

to the reference node, the nodal voltages of both nodes need to be deter-

mined but Kirchhoff’s junction rule cannot be applied to each individual

node directly as the current through the voltage source is unbeknownst to
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us. However, these nodes can be “compressed” to a single supernode as the

total net current entering these nodes should also be zero by Kirchhoff’s

junction rule. Though only one equation is obtained from a single supern-

ode, there is no harm here as the nodal voltages of the nodes included in the

supernode are related by the emfs of the voltage sources. Hence, there will

still be enough equations to solve for all the nodal voltages.

Problem: Determine the current through the 4Ω resistor and the 12V bat-

tery in Fig. 9.8.

Figure 9.8: Circuit with supernode

Again, we define a convenient reference node that is connected to the

most voltage sources. Then, each nodal voltage can either be computed

directly or assigned a variable as labeled above. Now, observe the Kirch-

hoff’s junction rule cannot be directly applied to the nodes of nodal voltages

U and U+6, as the current through the battery connecting them is unknown.

However, it can be seen that there should also be no net current flowing

into or out from the region demarcated by the dotted lines that enclose the

two nodes. Hence, the two nodes can be treated as a “supernode”. The total

current flowing out of this supernode is

U + 6− 6

4
+
U + 6− 12

2
+
U − 6

3
+
U − 0

3
+
U − 12

3
= 0

U =
36

7
V.

The current through the 4Ω resistor is

I1 =
36
7 + 6− 6

4
=

9

7
A
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downwards. The current through the 12V battery can be computed from the

sum of currents entering the node at its positive terminal.

I2 =
36
7 − 12

3
+

36
7 + 6− 12

2
= −19

7
A

which implies that the current flows from the negative terminal to the posi-

tive terminal.

Technically, we are done here — all circuits can be solved via the two

simple yet meaningful Kirchhoff’s laws. Besides the fact that it would be

extremely boring if everything can be reduced to trivial applications of Kirch-

hoff’s laws, complex circuits often generate complicated systems of equations

that are tedious to solve. Solely applying Kirchhoff’s laws to such circuits is

merely a brute force method. Thus, there are several sleights-of-hand that

can be applied to simplify intricate circuits before applying Kirchhoff’s laws

to the simplified circuits. These will be discussed in the next few sections.

9.2 The Principle of Superposition

The principle of superposition for electrical circuits states that the linear

response (current or voltage through or across ideal ohmic resistors, capaci-

tors and inductors) in any branch of a system that has two or more indepen-

dent sources equals the sum of the responses induced by each independent

source acting alone, with all other sources replaced by their internal resis-

tances. That is, we turn off the emf components of all other sources while

retaining their resistances when considering the effects of a single source. As

ideal voltage sources have zero internal resistance, they can be short-circuited

(connected by a wire) when they are replaced. Ideal current sources on the

other hand must be open-circuited (disconnected) as they have infinite inter-

nal resistance. The principle of superposition is a powerful tool that allows us

to divide a problem pertaining to multiple independent sources into smaller

sub-circuits involving single sources.

To prove the principle of superposition, we simply have to verify that the

solution obtained from piecing together the contributions of various sources is

indeed valid and subsequently assert the uniqueness of the solution to Kirch-

hoff’s laws (loosely speaking, we have equal numbers of variables as inde-

pendent equations). Firstly, we can decouple all internal resistances from the

sources, by connecting a resistor in series to a voltage source or parallel to a

current source, such that they become either ideal voltage or current sources.

Consider the ith sub-circuit associated with the ith source (ideal voltage or

current source) that is obtained from replacing all other ideal sources with
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their internal resistances. Since Kirchhoff’s loop and junction rules are satis-

fied in all sub-circuits, they are automatically satisfied in the superposition

of the sub-circuits. Furthermore, notice that the potential difference across

the ith source, if it is a voltage source, is zero3 in all sub-circuits except

the ith one (which yields exactly the required voltage) since the ith voltage

source is replaced by an ideal wire in the other sub-circuits. Similarly, the

current across the ith source, if it is a current source, is zero in all sub-circuits

except the ith one (which yields exactly the required current) since the ith

current source is open-circuited in the other sub-circuits. Finally, because

Ohm’s law is satisfied for each Ohmic resistor in all sub-circuits and because

Ohm’s law describes a linear relationship between voltage and current, the

superposition of voltages and currents also naturally satisfies Ohm’s law for

all resistors. The same can be said for capacitors and inductors as the equa-

tion governing their voltages are also linear in variables which are linearly

related to current, as we shall see in the next chapter. Since all conditions

imposed by Kirchhoff’s laws have been satisfied, the superposition is valid

and thus the unique solution to the original circuit.

Problem: Find the current through branch XY in Fig. 9.9.

Figure 9.9: Complete circuit

The above circuit is the superposition of the three circuits in

Figs. 9.10–9.12.

The current through XY in the first sub-circuit is zero as the current

would prefer to flow through the branch without any resistors.

I1 = 0.

3This point is murky in the case where infinite current flows through a wire. A situation
like this occurs when there is a closed loop consisting solely of a voltage source but we
shall ignore such ill-defined cases where the principle of superposition cannot be applied
meaningfully.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch09 page 628

628 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Figure 9.10: Sub-circuit 1

Figure 9.11: Sub-circuit 2

Figure 9.12: Sub-circuit 3

We define the current through XY to be positive if it flows from X to Y. The

current through XY due to the second circuit is

I2 =
3
2

1
2 + 1

= 1A.

The current through XY in the last circuit can be computed via the current

divider principle.

I3 =
1
2

1 + 1
2

· 3 = 1A.

Thus, the total current through XY is

I = I1 + I2 + I3 = 2A.
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Note that the principle of superposition is only valid for linear responses in a

circuit. The power dissipated in a resistor in a circuit is not the linear sum of

the powers dissipated in that resistor in different sub-circuits. Furthermore,

the principle of superposition cannot be applied to circuit components whose

I-V characteristics are non-linear. For example, the resistance of a realistic

resistor increases with temperature as the atoms in a conductor vibrate more

vigorously and thus collide with the electrons more frequently — obstructing

current flow. Lastly, the response in a component must be symmetrical in

both possible directions of connection for the principle of superposition to

hold true. This is satisfied in most cases, except for diodes which ideally

restrict the flow of current to a single direction.

The principle of superposition can also be applied to determine the equiv-

alent resistance of symmetric networks. It is instructive to consider the infi-

nite grid of identical resistors R in Fig. 9.13. Each node is connected to four

neighboring nodes by four resistors. We wish to calculate the equivalent resis-

tance between two adjacent nodes of this grid, such as that between X and Y.

Figure 9.13: Infinite grid of resistors

Here is our line of attack. We can imagine connecting two current sources

to the infinite grid as shown in Fig. 9.14.

Both current sources are connected to the infinite grid at infinity. How-

ever, one is injecting 1A of current into node X while the other is withdrawing

1A current from node Y. Consider the boundary at infinity, there is 1A of

current entering it due to the current source on the right and another 1A of

current being withdrawn from the boundary due to the current source on the
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Figure 9.14: Infinite grid of resistors

left. Hence, no net current leaks out of the infinite grid into the two external

wires by Kirchhoff’s junction rule. Effectively, 1A of current is injected into

node X and is then circulated in the infinite grid (while circulating, no cur-

rent leaves via the external wires — they all go back to node Y) before being

withdrawn from node Y. If the voltage across nodes X and Y, VXY , can be

determined, the equivalent resistance, Req can be computed as

Req =
VXY
1

,

as the voltage VXY is required to be applied between nodes X and Y to

inject 1A current into the network through node X, circulate it through the

network and withdraw it from node Y.

To determine VXY , we can consider the superposition of two sub-circuits,

each with one current source open-circuited as the internal resistance of a

current source is infinite. First, we can imagine injecting 1A current into

node X and withdrawing all of it at infinity (the other external wire is now

disconnected). The 1A of injected current will flow symmetrically in the

immediate surroundings of node X as shown in Fig. 9.15.

Next, in a completely new set-up, withdraw 1A current from node Y

while injecting all of it at infinity. Similarly, the current will distribute itself

evenly in the immediate surroundings of node Y as shown in Fig. 9.16.
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Figure 9.15: Injection of 1A into X and withdrawal from infinity

Figure 9.16: Injection of 1A into infinity and withdrawal from Y

Lastly, if we superpose the two set-ups together, we obtain the equivalent

system that inputs 1A of current into node X and withdraws it from node

Y, as depicted in Fig. 9.14. There is no net current flowing out from or into

the boundary at infinity to and from external connections. Since a total of
1
4 +

1
4 = 1

2A of current flows from nodes X to Y through the resistor directly

connecting them, the voltage across nodes X and Y is

VXY = IR =
R

2
.

Since the voltage across nodes X and Y is VAB when 1A circulates in the

infinite grid through them, the equivalent resistance of the grid with respect
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to points X and Y is

Req =
VXY
1

=
R

2
.

Note that this analysis is only limited to the equivalent resistance of the

grid with respect to adjacent points. If we wish to calculate the equivalent

resistance between node X and the node directly above Y for instance, a

completely different approach is required. Here’s why. Let’s say we inject 1A

of current into node X and withdraw it from infinity again, it is true that 1
4A

of current will flow directly from node X to node Y but we cannot conclude

that 1
12A of current flows from node Y to the node above Y. This is due

to the limited symmetry of the grid. The node above Y is symmetrical to

the node below Y but not to the node on the right of Y in this sub-system.

Thus, it is almost impossible to invoke symmetrical arguments in this case.

In general, in approaching circuits with some form of symmetry, appro-

priate methods of injecting and withdrawing current in a sub-system should

be devised such that the currents flow symmetrically in that sub-system.

In finite circuits, the injected currents cannot be entirely withdrawn from

a single node as that would often lead to an asymmetrical distribution of

current. A common way of constructing the two sub-systems to be used for

the superposition is illustrated below.

Problem: A regular polyhedron (e.g. tetrahedron, dodecahedron) with N

vertices is made of wires which form its edges. If the resistance of an edge

is R, determine the equivalent resistance of the polyhedron across the two

terminals of an edge. Next, determine the equivalent resistance across the

same two terminals if the edge directly connecting them is removed. Each

vertex of a polyhedron is directly connected to n ≥ 2 neighbouring vertices.

Let the two adjacent vertices that we will compute the equivalent resis-

tance with respect to, be X and Y. Inject 1A of current into X and withdraw
1

N−1A current from all other vertices. Due to the symmetrical nature of the

polyhedron and because each vertex is connected to n neighbouring vertices,

the current that flows directly from X to Y through the edge connecting

them in this set-up is 1
nA. Next, consider a new set-up where 1A current

is withdrawn from Y and 1
N−1A current is injected into all other vertices.

The current flowing between the edge connecting X and Y is also 1
nA in this

set-up.

Superposing the two set-ups afore, 1+ 1
N−1 = N

N−1A current is effectively

injected into X, circulated within the polyhedron and entirely withdrawn

from Y by an appropriate external battery with some emf ε. No current

enters or leaks from any other vertices via external connections as the 1
N−1A
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current withdrawn in the first set-up negates the 1
N−1A current injected

in the second set-up. In this superposed set-up, 2
nA current flows from X

to Y via the edge directly connecting them — implying that the voltage

across them and hence the emf ε of the external battery is 2R
n . Since N

N−1A

current circulates within the polyhedron when a battery with emf ε = 2R
n is

connected to the two terminals, the equivalent resistance of the polyhedron

between X and Y is

Req =
2R
n
N
N−1

=
2(N − 1)

nN
R.

Next, we can deem the second scenario, where the edge between X and Y

is removed, as the first scenario connected in parallel with a −R resistor

between X and Y. This is because the parallel connection of two resistors

with resistances R and −R (which are the two direct edges between X and Y

in this case) yields a diverging equivalent resistance R·−R
R−R → ∞ which effec-

tively open-circuits the immediate connection between A and B. Therefore,

the new equivalent resistance is

R′
eq =

Req · −R
Req −R

=
2N − 2

nN + 2− 2N
R.

The veracity of introducing a hypothetical component with a negative resis-

tance is obvious from a mathematical perspective as we are basically solving

a set system of linear equations in current variables (mesh analysis) obtained

from Kirchhoff’s laws — there is completely no regard for whether the coef-

ficients (the resistances) in front of the current variables are positive or neg-

ative as long as we obey the rules set by Kirchhoff’s laws (the voltage drop

across a resistor R carrying current I is IR in the direction of the current

where R, in this context, is merely a coefficient).

Finally, it is important to highlight the key takeaway of this problem.

For finite networks, the principle of superposition can often be applied by

injecting 1A of current into a single node and withdrawing equal proportions

of this current from the rest of the nodes. The same goes for withdrawing

1A of current.

9.3 Equipotential Points

Nodes of the same potential in a circuit are essentially the same point.

The circuit’s response does not vary if these equipotential points are com-

bined into a single point while removing the connections, such as resistors

and wires, between them. This is because the response in a branch can be
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uniquely defined by the potential difference across its ends. Thus we can

tweak the circuit as much as we want as long as the potential differences

across components remain the same. This allows us to tidy up and trans-

form messy and obfuscated circuits into more tractable and lucid diagrams.

Perhaps, the following examples will elucidate this point.

Problem: Find the equivalent resistance between terminals 1 and 6 in

Fig. 9.17. All resistors are identical and possess a resistance R.

Figure 9.17: Circuit

Nodes 1 and 3 are at the same potential as they are connected by a wire.

Similarly, nodes 2, 5 and 4, 6 are equipotential pairs. We shall compress

these pairs mentioned afore into combined nodes A, B and C respectively.

Figure 9.18: Labelled circuit

To determine the equivalent circuit, we label nodes 1–6 to their corre-

sponding equivalent nodes as shown in Fig. 9.18. Whenever there is a resis-

tor between a node from 1–6 to another, we add the corresponding resistor

between the equivalent nodes in an appropriate manner (while taking note

of series and parallel configurations). Eventually, the equivalent circuit is

obtained as Fig. 9.19.

Thus, the equivalent resistance is

Req =
1

1
R + 1

R
2
+R

2

=
R

2
.

Sometimes, equipotential points are not as easy to spot as they are not

directly connected by wires. Instead, symmetry should be abused to find

such points.
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Figure 9.19: Equivalent circuit

Mirror Symmetry

Consider a plane of resistors, with respect to two terminals, which is sym-

metrical about an axis — that is perpendicular to the line joining the two

terminals — which divides it into identical halves. The half of the circuit,

including one terminal of interest, on one side of the axis is essentially the

reflection of the other half about the line of symmetry. Hence, this form of

symmetry is known as mirror symmetry. In such situations, the points along

the symmetrical axis must be equipotential points. In fact, their potentials

must actually be the average of the potentials at the two terminals of the

circuit when connected to an external voltage source. Note that though there

may be connections along the line of symmetry, they can simply be removed

since points along the axis are guaranteed to be equipotential — preventing

current from flowing through such links.

Figure 9.20: Mirror symmetry

An elegant proof is as follows. Suppose that the connected voltage source

in Fig. 9.20 causes the potentials of terminals A and B and an arbitrary point

P along the line of symmetry to be VA and VB and VP respectively. Now,

we can conjure a separate set-up with the emf reversed. Then, terminals

A and B will have potentials VB and VA while point P still has potential
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VP due to symmetry. Then, superposing these two set-ups would produce

potential VA + VB for both terminals and potential 2VP for point P. Since,

the external emfs in opposite directions nullify each other, there should be no

current flowing in the superposed circuit and hence no potential difference

across any two points. Then,

2VP = VA + VB

VP =
VA + VB

2
.

Since this argument holds for all points along the line of symmetry, they

must be equipotential.

Problem: Find the equivalent resistance of the arrangement in Fig. 9.21

with respect to points A and B.

Figure 9.21: Circuit with mirror symmetry

In the circuit, an axis that passes through CD divides the circuit into

two identical and symmetrical halves. Then, points C and D must form an

equipotential pair — enabling the removal of the resistor joining them. The

equivalent resistance of the circuit with respect to terminals A and B is then

Req =
1

1
4R + 1

2R

=
4

3
R.

Actually, if a network of resistors, with respect to two terminals, has a line of

symmetry such that one half of the network is the mirror-image of the other,

coupled with a constant scaling of resistance (e.g. twice of all resistances of

the other side), all points along this line of symmetry must be equipotential,

regardless of the connections between them. This equipotential property is

evidently true when there are no connections between points along the line.

Then, one can wait for this condition to be established before forming the

connections (with wires or resistors) between points along the symmetrical

axis. Since the points were equipotential before the connections, they should
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remain equipotential after the connections as no current tends to flow across

the connections and because Kirchhoff’s laws make no mention of the order

of connections. This can be taken as an intuitive physical argument of the

above claim. Mathematically, one can show that the equipotential solutions

work when there are no connections between points along the line of sym-

metry. Furthermore, when such connections exist, one can show that the

equipotential solutions afore, in combination with zero current across the

connections, yield a valid solution to Kirchhoff’s laws (which only have a

unique solution).

Therefore, if the top two resistors in the circuit above were 1R and 2R

while the bottom two were 2R and 4R, nodes C and D would still form an

equipotential pair.

Path Symmetry

When determining the equivalent resistance of a network of resistors with

respect to two terminals, one may identify symmetrical paths from a starting

terminal to an ending terminal and correspondingly, abuse such symmetry.

If you were a charge at the starting node, some paths to a terminal node look

indistinguishable from your perspective. You are equally likely to take any of

the paths, analogous to how identical currents flow through corresponding

segments along those paths. Therefore, corresponding points along those

paths must be equipotential points. Below is an instructive example that

exploits this fact.

Problem: Consider the cube formed by identical resistors of resistance R

as its edges in Fig. 9.22. Find the equivalent resistances of the cube between

nodes 1 and 2, 1 and 4 and 1 and 8.

Figure 9.22: Cube of resistors
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When considering the equivalent resistance between nodes 1 and 2, nodes

3, 5 and 4, 6 are equipotential pairs by symmetry as they are indistinguish-

able from each other on a path from nodes 1 to 2. Thus, we can combine

those pairs to obtain the equivalent circuit in Fig. 9.23.

Figure 9.23: Equivalent circuit 1

Each connection, indicated by a line, represents a resistor. To construct

the above diagram, simply identify the connections between corresponding

points (including compressed ones). For example, there are two resistors in

parallel between node 1 and nodes 3/5 in branches 13 and 15. Similarly, there

are two resistors in parallel between nodes 3/5 and nodes 4/6 in branches

34 and 56. The above diagram transforms to Fig. 9.24.

Figure 9.24: Equivalent circuit 2

The equivalent resistance of the parallel connection comprising the four

resistors at the bottom of Fig. 9.24 is

R′ =
1

2
R + 1

R
2
+R

2
+R

=
2

5
R.

Thus,

Req =
1

1
R + 1

2
5
R+R

2
×2

=
7

12
R.
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This agrees with our previous formula for the equivalent resistance of a

polyhedron network with N vertices, each with n neighbours. For a cube,

substituting N = 8 and n = 3 into 2(N−1)
nN R = 2(8−1)

24 R = 7
12R verifies the

result above. To solve for the equivalent resistance between nodes 1 and 4,

we observe that nodes 2, 3 and 6, 7 are equipotential pairs by symmetry.

Thus, the simplified diagram is depicted in Fig. 9.25.

Figure 9.25: Equivalent circuit between nodes 1 and 4

Lastly, we observe that nodes 2/3 and 6/7 in the above diagram must

also be equipotential points due to mirror symmetry. Thus, we can remove

the resistors between them since no current will flow across them anyway.

We then obtain the corresponding circuit in Fig. 9.26.

Figure 9.26: Second equivalent circuit between nodes 1 and 4

Req =
1

1
R
2
+R

2

+ 1
R+R+R

2
×2

=
3

4
R.

Finally, when considering the equivalent resistance of the cube between nodes

1 and 8, we observe that nodes 2,3,5 and nodes 4,6,7 are equipotential

triplets. Thus, the simplified circuit is shown in Fig. 9.27.

The equivalent resistance is then

Req =
R

3
+
R

6
+
R

3
=

5

6
R.
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Figure 9.27: Equivalent circuit between nodes 1 and 8

Dividing Nodes

Besides combining equipotential nodes, we can also perform the reverse pro-

cess of dividing a single node into two or more nodes that will be equipo-

tential after the split. This is valid as we can always conjoin these resultant

nodes back into the original node due to their equipotential property. A com-

mon way of identifying such divisions is to split the nodes along a line of

symmetry while maintaining the mirror symmetry, as new nodes along the

line of symmetry are guaranteed to be equipotential.

Problem: Determine the equivalent resistance between nodes 1 and 16 in

the 3× 3 grid of resistors depicted on the left of Fig. 9.28. Each edge in the

network has resistance R.

Figure 9.28: Combining pairs 2,3 and 14,15 while splitting 8 and 9

It is tempting at the first glance to combine nodes along the diagonals of

the grid but be wary that the grid has limited symmetry. We can say that

nodes 4 and 6 are equipotential due to path symmetry but we cannot say

that nodes 4, 5 and 6 are equipotential, as node 5 is not indistinguishable

from nodes 4 and 6 along a path from node 1 to 16 due to the two resistors

connecting nodes 2 and 3 to node 5. Despite this, we can combine nodes 2,3

and nodes 14, 15 (depicted by the thick lines) as they are equipotential by

path symmetry (we do not need to combine nodes 4, 6 and 11, 13 in our

analysis).
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Next, observe that we can break node 8 along the diagonal direction

into two nodes 8a and 8b (see right diagram of Fig. 9.28) as the resultant

network will still be symmetrical about the diagonal connecting nodes 7

and 10 (relative to terminals 1 and 16) such that the two nodes 8a and 8b

are ensured to be equipotential. A similar statement holds for the division

of node 9 into nodes 9a and 9b. Observe that through this procedure, we

obtain three parallel branches (which grow apart at nodes 2/3 and 14/15)

with resistances 3R, 2R and 3R, connected in series with two R
2 resistors

(one between nodes 1 and 2/3 and another between nodes 16 and 14/15).

Therefore, the equivalent resistance between nodes 1 and 16 is(
1 +

1
1
3 +

1
3 +

1
2

)
R =

13

7
R.

9.4 Thevenin’s Theorem

For any network that comprises purely independent emf sources, current

sources and resistors between two terminals, Thevenin’s theorem states it can

be transformed into an equivalent network that consists of a single Thevenin

voltage source εeq connected in series with an internal Thevenin resistance

Req with respect to the two terminals. The network that Thevenin’s theorem

is applied to is usually a sub-circuit extracted from a larger circuit — the

choice of terminals is up to our own discretion.

Figure 9.29: Arbitrary circuit in a “black box”

For example, the network in Fig. 9.29 can be transformed into the equiv-

alent circuit in Fig. 9.30 with respect to terminals A and B.
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Figure 9.30: Equivalent Thevenin circuit

We can imagine surrounding these networks in a black box depicted by

the dotted lines in the figures. From the outside, we will not be able to

determine any difference in the effects produced by the two black boxes.

That is, for any voltage imposed between terminals A and B, the currents

flowing through the terminals in the two circuits will be identical. Vice-versa,

for any current driven into terminals A and B, the voltages across A and B

in the two circuits will be identical.

The existence of such an equivalent system shall be proven soon, but let

us first ponder how we could determine the equivalent emf and resistance.

The Thevenin equivalent emf, εeq, can be obtained by computing the voltage

between points A and B if the external connection between A and B is open-

circuited (removed). This voltage is known as the open-circuit voltage Voc
and corresponds to the voltage measured by an ideal voltmeter of an infinite

resistance connected externally to points A and B. There will be negligible

voltage across Req and thus all of the voltage is consumed and measured by

the voltmeter. Finally, note that the polarity of the Thevenin equivalent emf

εeq = Voc is oriented such that its positive terminal points in a direction of

higher voltage in the original system (when the terminals are open-circuited).

Next, to calculate Req, two different approaches can be utilized. Firstly,

we can imagine connecting an external ideal wire between points A and

B and measuring the short-circuit current in that wire, Isc. Then, we can

compute Req by dividing εeq by Isc.

Req =
εeq
Isc

. (9.3)

However, there is a much more efficient alternative. The equivalent resis-

tance, Req, is equal to the resistance between terminals A and B with all ideal

voltage sources short-circuited and all ideal current sources open-circuited

inside the black box. Physically, this is equivalent to replacing the Thevenin
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equivalent emf with an ideal wire by muting all sources. This method is the

more common and advised approach.

Proof: Now, we shall show the existence of such an equivalent circuit and

at the same time, justify the second method of computing Req. Referring to

Fig. 9.31, the primary circuit, which we are interested in finding an equivalent

Thevenin circuit for, is connected to a secondary circuit. Both circuits in

general can have ideal emf sources (ideal voltage and current sources) which

are denoted by ε’s and resistors which are denoted by R’s. Notice that we can

add two voltage sources Voc in opposing directions to a branch connecting

the primary and secondary circuits and the response of the system will be

unaffected, as the voltage sources nullify each other.

Figure 9.31: Superposition of circuits

Now, we can decompose the original circuit into the left and right sub-

circuits by the principle of superposition. The left sub-circuit includes the

emf sources of the primary circuit and the voltage source Voc that opposes

the direction of the potential difference across the primary circuit when it is

open-circuited between terminals A and B. All other emf sources are replaced

by their internal resistances. Observe that the potentials labeled at the ver-

tices of the left sub-circuit, coupled with zero current flowing between the

primary and secondary circuits and zero potential in the entire secondary

circuit, is a valid solution to Kirchhoff’s laws, since the potential difference

across the primary circuit is Voc when there is no current flowing into ter-

minals A and B (by definition of the open-circuit voltage), and because the

secondary circuit only consists of resistors now. Thus, there is no voltage

across and current through the resistors of the secondary circuit in the left

sub-circuit. By the principle of superposition, the response in the secondary

circuit is then that in the right sub-circuit.

The right sub-circuit includes the leftover sources — the other voltage

source Voc and the emf sources of the secondary circuit. Observe that it is

basically the original circuit, with the secondary circuit unchanged, except

that the emf sources of the primary circuit have been replaced by their
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internal resistances and a voltage source Voc has been added in series to its

remaining resistors. As such, the Thevenin equivalent emf εeq is evidently

Voc, while Req can be computed by computing the resistance of the primary

circuit between terminals A and B when all sources in it have been replaced

by their internal resistances. As we have not assumed much about the con-

stituents of the secondary circuit, the above argument actually works even

if the secondary circuit has other linear components such as ideal capacitors

and inductors.

Proceeding with its actual applications, Thevenin’s theorem is a potent

strategy in simplifying complex circuits, especially when Kirchhoff’s laws

produce a plethora of simultaneous equations.

Problem: Find the current across branch AB in Fig. 9.32.

Figure 9.32: Circuit

Generally when applying Thevenin’s theorem, the branch of concern,

which in this case is branch AB, is excluded in the transformations as the

information within the branch will be lost. We first transform the loop on

the left in Fig. 9.33.

Figure 9.33: Transformation of branches left of AB

The equivalent voltage of the above component is the voltage across the

two terminals when open-circuited. This is simply the voltage across the

resistor when it carries 2A current.

Veq = I ·R = 2 · 3 = 6V.
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To compute the equivalent resistance with respect to the terminals, the cur-

rent source is disconnected. Then,

Req = 3Ω.

Then, we concatenate this equivalent component back into the original cir-

cuit and consider the network with points A and B as its terminals in

Fig. 9.34.

Figure 9.34: Thevenin circuit with respect to terminals A and B

The current that flows through the loop is

I =
6− 3

3 + 6
=

1

3
A

clockwise. Thus, the voltage between the two terminals is

Veq = 6− 3× 1

3
= 5V.

Short-circuiting the batteries, the equivalent Thevenin resistance is equal to

that of the 3Ω and 6Ω resistors connected in parallel.

Req =
1

1
3 + 1

6

= 2Ω.

Finally, we splice this circuit with branch AB to obtain Fig. 9.35.

Figure 9.35: Equivalent circuit



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch09 page 646

646 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Thus, the current flowing through the 1Ω resistor in branch AB is

I =
5

2 + 1
=

5

3
A.

Problem: Find current I in Fig. 9.36.

Figure 9.36: Circuit

We apply Thevenin’s theorem to one loop at a time, beginning from the

left.

Figure 9.37: First transformation

I =
V0
4R

,

Veq = V0 − I · 2R =
V0
2
,

Req =
1

1
2R + 1

2R

= R.

Substituting this equivalent component into the original circuit and applying

Thevenin’s theorem again in Fig. 9.38,

I =
V1 − V0

2

2R +R+R
=
V1
4R

− V0
8R

,

Veq = V1 − I · 2R =
V0
4

+
V1
2
,

Req = R.
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Figure 9.38: Second transformation

Repeating this process again in Fig. 9.39,

Figure 9.39: Third transformation

I =
V2 − V0

4 − V1
2

2R +R+R
=
V2
4R

− V0
16R

− V1
8R

,

Veq = V2 − I · 2R =
V0
8

+
V1
4

+
V2
2
,

Req = R.

Figure 9.40: Result of n transformations

Referring to Fig. 9.40, we observe that in the general case, the equivalent

Thevenin circuit for the first n voltage sources on the left possesses

Veq =
V0
2n

+
V1
2n−1

+ · · ·+ Vn−1

2
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and an equivalent resistance R. The equivalent circuit for the original system

occurs when n = 4. Thus,

Veq =
V0
16

+
V1
8

+
V2
4

+
V3
2
,

I =
1

R

(
V0
16

+
V1
8

+
V2
4

+
V3
2

)
.

This is actually a digital to analog converter! In practice, Vi is either some

constant V or 0. Then, this circuit is able to process the output from many

digital sources (which produce either 0 or V ) into an approximately analog

signal (which has a range of output from 0 to V ) through different binary

combinations!

Ultimately, there is a compromise between the number of times you have

to apply Thevenin’s theorem and the complexity of the simultaneous equa-

tions obtained from Kirchhoff’s laws. However, applying Thevenin’s theorem

multiple times is generally expeditious as the simultaneous equations that

need to be solved are drastically simplified.

9.4.1 Source Transformations

Referring to Fig. 9.41, a voltage source ε connected in series with a resistor R

between two terminals A and B can be transformed into a current source I

connected in parallel to a resistor R′, across the same two terminals. The

reverse transformation holds as well.

Figure 9.41: Source transformation

The existence of such an equivalence and the relationship between the

above variables is given by Thevenin’s theorem. Applying Thevenin’s theo-

rem to the right circuit,

R′ = R, (9.4)

I =
ε

R′ =
ε

R
. (9.5)
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These equations are known as the source transformations. Due to the above

interconversion, an equivalent of Thevenin’s theorem, known as Norton’s

theorem, can be stated as follows. For any network that comprises purely

independent emf sources, current sources and resistors between two termi-

nals, Norton’s theorem states that it can be transformed into an equivalent

network that consists of a single Norton current source Ieq connected in par-

allel to an internal Norton resistance Req with respect to the two terminals.

From the source transformation rules, Req is the Thevenin equivalent resis-

tance which can be computed as previously discussed. Furthermore, if we

denote εeq as the Thevenin equivalent emf,

Ieq =
εeq
Req

= Isc

by Eq. (9.3). The Norton equivalent current is thus the short-circuit current

between the two terminals.

Similar to how voltage sources connected in series can be reduced into an

equivalent voltage source trivially (just add the internal resistances, because

they are connected in series, and the emfs), Norton’s theorem paves a way

to reduce current sources connected in parallel into an equivalent current

source.

Figure 9.42: Current sources in parallel

Referring to Fig. 9.42, consider two current sources I1 and I2, with inter-

nal resistances R1 and R2 connected in parallel. The Norton equivalent resis-

tance between terminals A and B is evidently

Req =
1

1
R1

+ 1
R2

=
R1R2

R1 +R2
.

Suppose that we connected an ideal wire between terminals A and B. The

currents from the two sources would both flow through the ideal wire, with
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zero current going through the internal resistances. Therefore, the short-

circuit current is Isc = I1 + I2 and the equivalent Norton current is

Ieq = I1 + I2.

Notice that even if the branches containing the current sources included an

additional resistor connected in series, the above results would not change.

Therefore, any resistor connected in series to a current source can be ignored

(this is why the internal resistance of a current source must be connected

in parallel). Finally, we can repeat this algorithm (k − 1) times when there

are k current sources connected in parallel between terminals A and B, with

the jth current source Ij possessing internal resistance Rj , to obtain the

following equivalent Norton resistance and current.

Req =
1∑k

j=1
1
Rj

,

Ieq =

k∑
j=1

Ij .

In light of the above transformations, we have the following idea: if we want

to add components in parallel, we convert everything into current sources

to reduce them into a single current source. Conversely, if we want to add

components in series, we convert everything into voltage sources. Therefore,

we can simplify the circuit in Fig. 9.43 in the following manner, where the

last two are the equivalent Thevenin and Norton circuits with respect to the

two terminals.

Figure 9.43: Simplification of complex circuit

9.5 Y-Δ Transformations

The Y-Δ transformations are a set of mathematical rules and simplifications

to convert between a circuit consisting of resistors arranged in a “Y-shape”

(Fig. 9.44) and another that is arranged in a “Δ-shape” (Fig. 9.45).
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Figure 9.44: Y-circuit

Figure 9.45: Δ-circuit

By convention, the alphabetical subscripts of the resistors in the Δ-circuit

correspond to the nodes opposite to the sides containing the resistors. For

example, the opposite of Ra is node 1 while the opposite of Rb is node 2.

The transformations from the Δ to Y circuit are

R1 =
RbRc

Ra +Rb +Rc
,

R2 =
RaRc

Ra +Rb +Rc
,

R3 =
RaRb

Ra +Rb +Rc
.

An easy way to remember the resistance of a resistor directly adjacent to a

particular node in the Y-circuit is to take the product of the resistances of

the resistors adjacent to that node in the Δ circuit and divide it by the sum

of all the resistances. The inverse transformations from the Y to Δ circuit are

Ra =
R1R2 +R2R3 +R3R1

R1
,
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Rb =
R1R2 +R2R3 +R3R1

R2
,

Rc =
R1R2 +R2R3 +R3R1

R3
.

Another easy way to remember the resistance of a particular resistor in the

Δ-circuit is to take the sum of all possible combinations of the product of

pairs of resistances in the Y-circuit and divide it by the resistance in the

Y-circuit that corresponds to the node opposite to that particular resistor.

Proof: The existence of these equivalent transformations and the equivalent

resistances can be proven by the principle of superposition. These two circuits

are said to be equivalent if the voltages between pairs of nodes (V12, V23, V31)

are the same in the two circuits for any currents (I1, I2, I3) entering the

corresponding nodes (N1, N2, N3) and vice-versa (identical currents, given

fixed voltages).

The resistances of the two circuits can be tuned to satisfy the forward

condition by considering the superposition of three different set-ups with

currents (
I1 − I2

3
,
I2 − I1

3
, 0

)
,

(
0,
I2 − I3

3
,
I3 − I2

3

)
,

(
I1 − I3

3
, 0,

I3 − I1
3

)
,

which in combination gives(
2I1 − I2 − I3

3
,
2I2 − I1 − I3

3
,
2I3 − I1 − I2

3

)
.

Furthermore, I1 + I2 + I3 = 0 as required by Kirchhoff’s junction rule which

implies that the superposition of those circuits give an equivalent circuit

with currents

(I1, I2, I3)

entering nodes (N1, N2, N3) which is the general set-up of concern. Thus, if

we are able to show that the two circuits satisfy the first condition (identical

voltages given incoming currents) in the three sub-problems, we will also be

able to prove that the two circuits satisfy the first condition for any general

currents flowing into the nodes.
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Let us consider the first sub-problem with currents ( I1−I23 , I2−I13 , 0) flow-

ing into the nodes. This is equivalent to connecting the ends of a battery of

a certain emf to nodes N1 and N2. The voltage between N1 and N3 in the

Δ-circuit can be determined as

V13 = I13 ·Rb
where I13 is the current flowing from node 1 to node 3. I13 can be calculated

from the current divider principle as

I13 =
Rc

Ra +Rb +Rc
· I1 − I2

3
,

V13 =
RbRc

Ra +Rb +Rc
· I1 − I2

3
.

Next, the voltage between N1 and N3 in the Y-circuit in this sub-problem is

V13 = R1 · I1 − I2
3

.

In order for the two V13 in the two circuits to be the same,

R1 =
RbRc

Ra +Rb +Rc
.

A similar process can be applied to ensure that V23 is the same in both

circuits. The criterion for this is

R2 =
RaRc

Ra +Rb +Rc
.

We do not need to find another condition for the two V12’s in the two circuits

to be equal, as the equivalence of the two voltages above already guarantees

so (V12 = V13 − V23). Lastly, this entire procedure can be used to determine

the appropriate resistances for the two circuits in the other sub-problems.

Then, six equations for three variables, which are thankfully coherent, are

obtained. The solutions are

R1 =
RbRc

Ra +Rb +Rc
, (9.6)

R2 =
RaRc

Ra +Rb +Rc
, (9.7)

R3 =
RaRb

Ra +Rb +Rc
. (9.8)

This shows that the resistances in the circuits can be tuned to satisfy the

first condition. Moving on, we then need to prove that the currents (I1, I2, I3)
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entering the nodes (N1, N2, N3) are equal in both circuits for any voltages

between pairs of nodes (V12, V23, V13). The appropriate resistances that fulfil

this requirement can be determined by considering the superposition of the

following set-ups with voltages:

(V12, 0, 0),

(0, V23, 0),

(0, 0, V13).

Let us consider the first sub-problem. The current I2 in the Δ circuit is

simply

I2 =
V12
Rc

.

The current I2 in the Y-circuit can also be computed as

I2 =
V12

R1R2+R2R3+R3R1
R3

.

Equating these, we obtain

Rc =
R1R2 +R2R3 +R3R1

R3
.

Similarly, if we impose the requirement that the two I3’s must be equal in the

two circuits under the conditions of this sub-problem, it can be concluded

that

Rb =
R1R2 +R2R3 +R3R1

R2
.

Again, the condition for I1 to be equal in both circuits is automatically satis-

fied as a consequence of Kirchhoff’s junction rule. Then, a similar process can

be applied to the rest of the sub-problems to obtain a total of six equations

which can be reduced to the following three unique equations.

Ra =
R1R2 +R2R3 +R3R1

R1
, (9.9)

Rb =
R1R2 +R2R3 +R3R1

R2
, (9.10)

Rc =
R1R2 +R2R3 +R3R1

R3
. (9.11)

Finally, it can be shown that the set of Eqs. (9.6)–(9.8) is entirely coherent

with the set of Eqs. (9.9)–(9.11) after some algebraic manipulation. There-

fore, the Δ and Y-circuits are equivalent if either set of equations is satisfied.
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The two sets of equations can each be used as a transformation rule between

the circuits. Given a particular direction of transformation, the more conve-

nient set of equations is usually preferred. Equations (9.6)–(9.8) are usually

used to transform the Δ-circuit to the Y-circuit while Eqs. (9.9)–(9.11) usu-

ally function as the inverse transformations.

Application

The Y-Δ transformations are often used to simplify circuits with nodes that

are interlinked by resistors. They act as a slightly more efficient substitute

for Kirchhoff’s laws, though the calculation of the equivalent resistances can

sometimes be tedious. Most of the time, the Y-Δ transformations should be

used when the direct application of Kirchhoff’s laws is the only other feasible

method and when the other sleights-of-hand discussed earlier are inapplica-

ble. However, note that a conversion from a Y-circuit to a Δ-circuit elimi-

nates the node at the center of the “Y”. Thus, information that pertains to

that eliminated node is harder to be retrieved from the equivalent Δ-circuit.

Problem: Determine currents I1 and I2 in Fig. 9.46.

Figure 9.46: Initial circuit (Y-circuit)

The Y-circuit demarcated by the nodes N1, N2 and N3 can be trans-

formed to a Δ configuration with resistances

Ra = Rb = Rc = 3R1.

Therefore, the equivalent circuit in Fig. 9.47 can be obtained.

The equivalent resistance of the entire circuit can be computed to be

Req =
3R2

1 + 5R1R2

5R1 + 3R2
.
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Figure 9.47: Equivalent circuit (Δ-circuit)

Thus,

I1 =
5R1 + 3R2

3R2
1 + 5R1R2

ε.

However, I2 cannot be computed directly from the equivalent Δ-circuit and

must instead be determined by subtracting I4 from I3. I3 and I4 can eventu-

ally be calculated as the following expressions from the rules regarding series

and parallel connections of resistors.

I3 =
3R1 +R2

3R2
1 + 5R1R2

ε,

I4 =
4R1

3R2
1 + 5R1R2

ε.

Hence,

I2 = I3 − I4 =
R2 −R1

3R2
1 + 5R1R2

ε.

Reduction of Circuits

The utility of the Y-Δ transformations is not only restricted to the intercon-

version between the two types of circuits. In fact, the Y-Δ transformations

imply that any network of resistors can be converted into an equivalent Y or

Δ-circuit with respect to three terminals, analogous to how an arbitrary net-

work of resistors can be reduced to a single equivalent resistor with respect

to two terminals. To show this, let the three terminals of concern be A, B

and C. If there is another node D that is connected to all of A, B and C

via paths of resistors, observe that we can see A, B, C and D as a Y-circuit

with D at the center and transform it into a Δ-circuit to eliminate node D.
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Repeating this for all other such nodes, we will only be left with nodes that

are connected to a pair of terminals (in A, B and C) or a lone terminal. Nodes

in the former classification can be reduced to equivalent resistors between

the corresponding pairs of terminals to form the corresponding sides of the

equivalent Δ-circuit while nodes in the latter classification are meaningless

in the context of determining the network’s response when terminals A, B

and C are connected to external entities as they are not linked to at least

one pair of terminals. Hence, any network can be reduced to an equivalent

Δ and thus Y-circuit, with respect to three terminals.

In fact, the equivalent Y-circuit can be easily constructed if we know the

equivalent resistance between the three possible pairs of terminals. Adopting

the notation in Fig. 9.44, if the equivalent resistances between (N1, N2),

(N1, N3) and (N2, N3) are R12, R13 and R23, we have the following set of

linear equations

R1 +R2 = R12,

R1 +R3 = R13,

R2 +R3 = R23,

whose solutions are

R1 =
R12 +R13 −R23

2
, (9.12)

R2 =
R12 −R13 +R23

2
, (9.13)

R3 =
−R12 +R13 +R23

2
. (9.14)

This equivalence can be applied in tandem with the previous techniques to

solve harder variations of problems such as the following.

Problem: Determine the equivalent resistance between points A and C in

the infinite triangular grid of resistors depicted in Fig. 9.48. Each edge of

a triangle has resistance R and the edge between points A and B has been

removed.

We can deem the absent connection between points A and B as two

resistors R and −R connected in parallel across these points. Then, we can

determine the equivalent Y-circuit of the imaginary resistor R in this branch

and the rest of the grid (i.e. a complete grid) with respect to the three

terminals A, B and C. The resistance between any pair of these terminals

is simply that between two adjacent nodes in a complete infinite triangular

grid. This can be computed via the principle of superposition.
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Figure 9.48: Infinite circuit with edge AB removed

Suppose that we inject 1A current into a certain node 1 in the com-

plete grid and withdraw it entirely at infinity — 1
6A current will flow from

node 1 to a neighboring node (name this node 2) via the resistor directly

connecting them as a result of symmetry. In a similar vein, consider a new

set-up where we withdraw 1A current from node 2 and inject 1A current

at infinity. 1
6A current again flows from node 1 to node 2 via the branch

directly connecting them. Superposing these set-ups, 1A current is injected

into node 1, circulated within the infinite grid and finally withdrawn from

node 2. No current enters or leaves from infinity. In this process, the current

directly flowing across the resistor R connecting nodes 1 and 2 is 1
6 +

1
6 = 1

3A

which implies that the voltage between these nodes is R
3 . Since

R
3 voltage

is required to circulate 1A current through the grid via nodes 1 and 2, the

equivalent resistance of the infinite grid with respect to these nodes is R
3 .

Returning to the original problem, since the equivalent resistance between

any pair out of the terminals A, B and C is R
3 for a complete infinite grid,

the equivalent circuit is shown in Fig. 9.49.

The Y-circuit is the equivalent of the complete grid with respect to A,

B and C (R6 resistors because the equivalent resistance between any two

terminals is R
3 ). Remember that we have to include the −R resistor between

A and B as they are actually disconnected. The equivalent resistance between



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch09 page 659

DC Circuits 659

Figure 9.49: Equivalent circuit between terminals A, B and C

A and C can be computed from the rules of series and parallel connections.

RAC =
R

6
+

−5R
6 · R6
−4R

6

=
3

8
R.

9.6 Infinite Networks

Often, it is extremely important to astutely abuse symmetrical properties

when tackling infinitely large and repeating circuits. Usually, this involves

defining the quantity of interest as a variable and constructing a equation

in that variable by utilizing the fact that breaking off or adding one sub-

unit to the infinite network does not change the resultant quantity, since the

network extends forever.

Problem: Find the equivalent resistance of the infinite resistor ladder in

Fig. 9.50 across nodes A and B.

Figure 9.50: Infinite ladder of resistors

We observe that if we break off the right side of the circuit along

line CD, we obtain the exact same network.4 Furthermore, this excised

4Equivalently, we could have added another two resistors on the right.
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component was previously connected in parallel to the 2R resistor between

nodes C and D. Thus, if we let the equivalent resistance of the original circuit

with respect to A and B be Req. The original circuit can be transformed into

Fig. 9.51.

Figure 9.51: Modified circuit

The equivalent resistance of this circuit with respect to terminals A and B

should also be Req. Thus,

Req =
2RReq

2R+Req
+R.

Simplifying,

R2
eq −RReq − 2R2 = 0

(Req − 2R)(Req +R) = 0

=⇒ Req = 2R,

where the physically incorrect solution, Req = −R, has been rejected. For

those who find mathematics more appealing, what we are actually doing is

as follows. The equivalent resistance with respect to terminals A and B is

Req
R

= 1 +
1

1
2 + 1

1+ 1
1
2+ 1

...

.

Observe that we can rewrite the above as

Req
R

= 1 +
1

1
2 + 1

Req
R

= 1 +
2Req

Req + 2R
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since the infinite fraction extends forever.

=⇒ R2
eq −RReq − 2R2 = 0

Req = 2R.

We choose the positive solution as the infinite fraction is evidently posi-

tive. Ultimately, in both of the above cases, we define a variable for the

attribute we wish to solve for and then generate an equation in this variable

by exploiting the infinite nature of the question.
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Problems

Kirchhoff’s Laws

1. Connecting a Resistor*

Two resistors R1 and R2 are connected in series with a constant voltage

source. We do not know the exact values of R1 and R2 but only their ratio

r = R1
R2

. If we subsequently connect a certain resistor in parallel to R2, the

current flowing through R1 changes by ΔI1. What is the current flowing

through the new resistor?

2. Circuit 1*

Find the current through the 2Ω resistor in the circuit below.

3. Circuit 2*

Determine currents I1 and I2 in the circuit below.
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4. Bridge*

Determine the current flowing through the battery with emf ε in the circuit

below.

5. Zero Current*

Show that no current flows in every branch of the circuit below. All batteries

are identical and have emf ε.

6. Circuit 3**

Determine current I in the circuit below via nodal analysis.
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Special Techniques

7. Triangle Circuit*

Exploiting the principle of superposition, determine the currents through all

resistors on the circuit below.

8. Infinite Grid Revisited*

Find the equivalent resistance of the infinite grid of resistors R between

adjacent nodes A and B if the resistor R between A and B were replaced by

a resistor R′ instead.

9. Finite Grid*

Find the equivalent resistances between nodes 1, 9 and nodes 1, 5. All resis-

tors are identical and possess resistance R.
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10. Tetrahedron*

A wire of resistivity ρ and cross sectional area A is bent into a tetrahedron as

shown below. If all sides of the tetrahedron are of length l, find the equivalent

resistance between points A and M which is the midpoint of BC.

11. 20 Resistors*

Twenty identical resistors R are connected as shown in the figure below.

Calculate the equivalent resistance between points (a) A and B (b) A and C

(c) A and D.

12. Scaling the Ladder*

Determine the equivalent resistance of the infinite ladder below between

terminals A and B. The resistors in each section of the ladder (except the

left-most one) have k times the resistance of those in the preceding section.

Verify your answer in the limit k → ∞.
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13. Unknown Circuit*

An unknown circuit, consisting of independent emf sources and resistors,

is placed into a black box with two terminals A and B. When an ideal

ammeter is connected between A and B, its reading is I. When a resistor R

is connected instead, the current through that resistor is i. What would be

the reading V of an ideal voltmeter connected to A and B?

14. Hexagon**

Each line in the figure below represents a 1Ω resistor.

(a) Determine the equivalent resistance between A and C.

(b) Determine the equivalent resistance between B and C.

(c) If a voltage source of 10V is connected between A and C, what is the

potential difference between D and E?

(d) If a voltage source of 10V is connected between B and C, what is the

potential difference between B and D?

15. Infinite Hexagonal Tiles**

Find the equivalent resistance between points A and B in an infinite grid

consisting of identical resistors R arranged in hexagonal tiles.
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16. 2018 Nodes**

There are 2018 nodes with a resistor R connected between each pair of nodes.

Find the equivalent resistance of the entire network between any two nodes.

17. Cube of Resistors Revisited**

Find the equivalent resistance between any two points in a cube of resistors

by utilizing the principle of superposition.

18. Fractal Resistance**

A piece of wire with cross sectional area A and resistivity ρ is bent into the

equilateral triangle fractal below. Each successive triangle has half the side

length of its predecessor triangle and the pattern repeats indefinitely. Find

the equivalent resistance between points A and B.

19. Double Cube**

Determine the equivalent resistance between vertices A and B in the figure

below. All resistors have resistance R. Hint: make use of vertex C.
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20. Wheatstone Bridge**

By applying Thevenin’s theorem, determine the current flowing through

branch AB in the circuit below.

21. Equivalent Battery**

N batteries are connected in parallel, with their terminals oriented in the

same direction. If the ith battery has an emf εi and internal resistance ri
and if the entire set-up can be reduced to a single equivalent battery with

emf εeq and internal resistance req with respect to two terminals at the ends

of a parallel branch, determine εeq and req.

22. Maximum Power Transfer**

Determine the resistor r that should be connected across the two terminals

in the figure below such that the power through it is maximal across all

possible values of r.
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23. Another Infinite Ladder**

Find the current I in the circuit below.

24. Thick Infinite Ladder***

Determine the equivalent resistance between two adjacent nodes in the mid-

dle row of the infinite network of identical resistors R in the figure below.

The circuit only extends to infinity in the horizontal direction.

25. N-gon with Spokes***

The N edges of a regular N -gon are constructed by N resistors R. Further-

more, all N vertices of the N -gon are connected to its geometric center O via

spokes of resistance 2R. Determine the equivalent resistance of this set-up

between a vertex and O.
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Solutions

1. Connecting a Resistor*

The trick in this problem is to apply Ohm’s law to the differences in voltages

and currents. Since the current through resistor 1 changes by ΔI when the

new resistor is added, the change in voltage across resistor 1 is

ΔV1 = ΔI1R1.

The change in voltage across resistor 2 must be negative of this as the voltage

source produces a constant emf.

ΔV2 = −ΔI1R1.

This implies that the change in current flowing through R2 is

ΔI2 = −ΔI1
R1

R2
= −rΔI1.

The current flowing through the new resistor is thus

ΔI1 −ΔI2 = (1 + r)ΔI1.

2. Circuit 1*

We define the currents I1 and I2 using the clockwise loops in Fig. 9.52.

Applying Kirchhoff’s loop rule to the two clockwise loops within the meshes,

Figure 9.52: Circuit
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10− 4I2 − 14− 6(I2 − I1) = 0

10I2 − 6I1 = −4

−10 + 6(I1 − I2) + 2I1 = 0

8I1 − 6I2 = 10.

Solving,

I1 = −31

11
A

which means that the direction of the current through the 2Ω resistor is

towards the right.

3. Circuit 2*

We shall use mesh analysis to solve this problem, since there are relatively

many current sources. Labeling the currents in each branch in Fig. 9.53,

Figure 9.53: Labeled circuit

Applying Kirchhoff’s loop rule to supermesh DABCFIHED,

4− 2I1 − (I1 + 2)− (I1 + 6)− 4I2 = 0.

Considering mesh HEDGH,

−4I2 + 4(I1 + 6− I2) = 0.

Solving,

I1 = −8

3
A,

I2 =
5

3
A.
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4. Bridge*

Since there are many batteries relative to the number of meshes, we shall

use nodal analysis here. Define the potentials of the positive and negative

terminals of the 2ε battery as 2ε and 0 respectively. Let the potentials of

the positive and negative terminals of the ε battery be V + ε and V . Then,

treat the nodes at the two ends of the ε battery as a supernode. For there

to be no net current flowing out of the supernode,

V + ε− 2ε

R
+
V + ε− 0

2R
+
V − 2ε

3R
+
V − 0

4R
= 0

V =
14

25
ε.

The current through the ε battery can then be determined by subtracting

the current through the 4R resistor from that through the 3R resistor.

Ibat =
2ε− V

3R
− V − 0

4R
=

17ε

50R

from the negative to the positive terminal.

5. Zero Current*

Let the potential of the middle node be zero. Then, label the potentials of

the other nodes according to Fig. 9.54.

Figure 9.54: Circuit with labeled potentials

Consider the left three nodes as a supernode. There must be zero net

current emanating from the supernode. Therefore,

V ′ + ε− ε

R1
+
V ′

R2
+
V ′ − ε+ ε

R3
= 0

=⇒ V ′ = 0.

A similar analysis for the three right nodes would show that the potentials

of all nodes on the first, second and third rows are ε, 0 and −ε. Then, no
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current flows across all resistors. By Kirchhoff’s junction rule, the current

should be zero across all batteries as well.

6. Circuit 3**

Again, we first choose a reference node and label all other nodal voltages

according to Fig. 9.55.

Figure 9.55: Labeled circuit

Applying Kirchhoff’s junction rule to the supernode demarcated by the

dashed lines in the figure above,

V1 − 3

1
+
V1 − 0

2
+ 4 +

V1 − 3

2
+
V1 − 4− V2

2
= 0.

Next, considering the node with nodal voltage V2,

V2 − 6

3
− 4 +

V2 − V1 + 4

2
= 0.

Solving,

V1 =
49

22
V,

V2 =
135

22
V.

Hence,

I =
V1 − 0

2
=

49

44
A.
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7. Triangle Circuit*

The circuit is composed of the two sub-circuits in Figs. 9.56 and 9.57.

Figure 9.56: Sub-circuit 1

Figure 9.57: Sub-circuit 2

In the first circuit, the currents through the resistors are

I12, 1 = − 6

2 + 1
= −2A,

I23, 1 =
6

2
= 3A,

I13, 1 =
6

2 + 1
= 2A.

For the second circuit, the currents through the resistors can be determined

via the current divider principle (while ignoring the resistor in branch 23, as

current would prefer to flow in the ideal wire).

I12, 2 =
1

1 + 2
· 3 = 1A,

I23, 2 = 0,

I13, 2 =
2

1 + 2
· 3 = 2A.
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The superposition of the above two circuits gives the currents in the

branches as

I12 = I12, 1 + I12, 2 = −1A,

I23 = I23, 1 + I23, 2 = 3A,

I13 = I13, 1 + I13, 2 = 4A.

8. Infinite Grid Revisited*

We have calculated that the equivalent resistance of an infinite grid with

identical resistors R between two adjacent nodes is

Req =
R

2
.

Let the equivalent resistance of the entire infinite grid, excluding the resistor

between A and B, be R′
eq. R

′
eq can be obtained from Req by connecting a

resistor −R across A and B in a new branch (this −R in parallel with R

effectively cuts off the direct connection between A and B).

R′
eq =

R
2 · −R
R
2 −R

= R.

The equivalent resistance of the network in question, R′′
eq, is that of R′

eq

connected in parallel to R′. Thus,

R′′
eq =

RR′

R+R′ .

9. Finite Grid*

For the equivalent resistance between nodes 1 and 9, observe that nodes 3, 5

and 7 are equipotential points by mirror symmetry. Furthermore, nodes 2, 4

and nodes 6, 8 are equipotential pairs due to path symmetry when traveling

from nodes 1 to 9. Thus, the equivalent circuit is shown in Fig. 9.58.

Figure 9.58: Equivalent circuit
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The equivalent resistance is then

Req =
R

2
× 2 +

R

4
× 2 =

3R

2
.

In the second case, nodes 2,4 and nodes 3,7 as well as nodes 6,8 are equipo-

tential pairs while node 9 is useless as it is connected to an equipotential

pair. The equivalent circuit is illustrated in Fig. 9.59.

Figure 9.59: Equivalent circuit

Req =
R

2
+

1
2 · 3

2
1
2 +

3
2

R =
7

8
R.

10. Tetrahedron*

Let the resistance of a wire of length l be R. Furthermore, we observe that

nodes B and C must be equipotential points. Thus, the circuit can be reduced

to Fig. 9.60.

Figure 9.60: Equivalent circuit
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The equivalent resistance is then

Req =
1

2
R + 2

3R

+
R

4
=

5

8
R

where

R =
ρl

A
,

Req =
5ρl

8A
.

11. 20 Resistors*

The network exhibits mirror symmetry about the horizontal line joining A

to D with respect to any two terminals that lie on that line (for which all

three cases in the question satisfy). Therefore, the circuit can be reduced to

Fig. 9.61 via combining equipotential points.

Figure 9.61: Each resistor represents R
2

(a) The equivalent resistance between A and B is thus

RAB =
R

2
+

R
2 · 3R

2
R
2 + 3R

2

=
7

8
R.

(b) The equivalent resistance between A and C is

RAC =
R

2
+

R ·R
R+R

+
R
2 · 3R

2
R
2 + 3R

2

=
11

8
R.

(c) Between points A and D, we can find the equivalent resistance directly

from Fig. 9.61 to be

RAD =
R

2
+

R ·R
R+R

+
R ·R
R+R

+
R

2
= 2R,

or combine all nodes that lie along the same vertical line in the original

circuit by path symmetry to obtain

RAD =
R

2
+
R

4
+
R

4
+
R

4
+
R

4
+
R

2
= 2R.
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12. Scaling the Ladder*

Let Req denote the equivalent resistance between terminals A and B. Then,

the equivalent resistance of the circuit on the right of branch CD (excluding

the resistor R in branch CD) with respect to terminals C and D is kReq by

scaling arguments. Thus,

Req = R+
kRReq
R+ kReq

RReq + kR2
eq = R2 + 2kRReq

kR2
eq − (2k − 1)RReq −R2 = 0

Req =
2k − 1 +

√
4k2 + 1

2k
R,

where we have rejected the negative solution. In the limit k → ∞,

Req =

(
1− 1

2k
+

√
1 +

1

4k2

)
R→ 2R,

which is correct since the circuit in such a limit comprises two resistors R in

series.

13. Unknown Circuit*

By Thevenin’s theorem, the unknown circuit can be reduced into a single

equivalent Thevenin voltage source εeq connected in series with an equivalent

Thevenin resistor Req. From the first clue,

εeq = IReq.

From the second clue,

εeq = i(Req +R).

Eliminating Req,

εeq =
iIR

I − i
.

The ideal voltmeter with infinite resistance measures εeq by the voltage

divider principle. Thus,

V = εeq =
iIR

I − i
.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch09 page 679

DC Circuits 679

14. Hexagon**

The network exhibits mirror symmetry about line ABC with respect to both

terminals A,C and B,C. Therefore, D/F and E/G are equipotential pairs

when determining the equivalent resistances between A,C and B,C. Thus,

the circuit can be redrawn as Fig. 9.62.

Figure 9.62: Solid, arrowed and dashed lines represent 1Ω, 1
2
Ω and 1

6
Ω

We can further perform a Y-Δ transformation to obtain the circuit on

the right, with a new vertex H.

(a) With respect to terminals A and C, the circuit exhibits mirror symmetry

about a vertical line passing through B. Therefore, the middle 1
6Ω can

be removed as it is connected between a pair of equipotential points.

The equivalent resistance between A and C is then

RAC =
4
3 · 2
4
3 + 2

=
4

5
Ω.

(b) The equivalent resistance of the resistors between nodes A, B, D/F and

H with respect to A and H is

r =
5
3 · 1

6
5
3 +

1
6

=
5

33
Ω.

Thus,

RBC =
1 · ( 5

33 + 1
6 +

1
2

)
1 +

(
5
33 + 1

6 + 1
2

) =
9

20
Ω.

(c) Looking at the right circuit after removing the middle 1
6Ω, the voltage

divider principle yields

VAC =
1
6 +

1
6

1
2 + 1

6 +
1
6 +

1
2

× 10 = 2.5V.
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(d) By the voltage divider principle, the voltage between B and H is

VBH =
r

r + 1
6 + 1

2

× 10 =
50

27
V.

By the voltage divider principle again, the voltage between B and D is

VBD =
3
2

3
2 +

1
6

× VBH =
5

3
V = 1.7V (2sf).

15. Infinite Hexagonal Tiles**

We inject 1A of current into node A and withdraw it from infinity. Then,

the current flowing through branch AC in this set-up is

IAC =
1

3
A

by symmetry. The current in branch CB is then

ICB =
1

6
A.

Similarly, we consider a new set-up where we withdraw 1A of current from

node B and inject it at infinity. The currents flowing through branches AC

and CB in this set-up are

I ′AC =
1

6
A,

I ′CB =
1

3
A.

We can then superpose these two set-ups to obtain a combined set-up where

we inject 1A of current into node A and withdraw it from node B. The

voltage between nodes A and B in this case is

V = (IAC + I ′AC)R+ (ICB + I ′CB)R = R.

Thus, the equivalent resistance of this circuit with respect to nodes A and B is

Req =
V

1
= R,

since 1A of current flows in the network of resistors when a potential differ-

ence V is applied across nodes A and B.
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16. 2018 Nodes**

Equipotential Points: Let us label the nodes from 1 to 2018. If we wish to

find the equivalent resistance between nodes 1 and 2018, nodes 2 to 2017 are

equipotential points by path symmetry. There is one resistor connecting each

of nodes 1 and 2018 to each of the nodes from 2 to 2017. Furthermore, there

is one resistor directly connecting node 1 to node 2018. Hence the equivalent

resistance between nodes 1 and node 2018 is

Req =
R

1008 ·R
R+ R

1008

=
R

1009
.

Superposition: We first inject 1A of current into node 1 and withdraw
1

2017A from each of the other 2017 nodes. By symmetry, the current that

flows to the immediate neighbors of node 1 is

I =
1

2017
A.

Next we consider another set-up where we withdraw 1A of current from node

2018 and inject 1
2017A into each of the other 2017 nodes. By symmetry, the

current that flows from the node 1 to this node is also

I =
1

2017
A.

Thus, if we superpose these two circuits, 2018
2017A of current goes into node 1

and 2018
2017A of current flows out of node 2018. The current that directly flows

in the resistor between them is

I ′ =
2

2017
A.

Consequently, the voltage across the two nodes is

V = I ′R =
2R

2017
.

This is equal to the emf required of an external battery whose ends are

connected to the two nodes and drives a current of 2018
2017A in the circuit.

Thus, the equivalent resistance of the network is

Req =
V

2018
2017

=
R

1009
.
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17. Cube of Resistors Revisited**

Referring to Fig. 9.63, inject 1A of current into node 1 and withdraw 1
7A of

current from each of the other nodes.

Figure 9.63: Injection of 1A of current

By symmetry, the current that flows from node 1 to 2 is

I12 =
1

3
A.

Then, 1
7A of current is removed from node 2 and half of the remainder goes

to node 4. Thus,

I24 =
1
3 − 1

7

2
=

2

21
A.

Next, node 4 receives 2
21A of current from both nodes 2 and 3. 1

7A of current

is then withdrawn from node 4 while the remainder flows to node 8. Thus,

I48 =
2

21
× 2− 1

7
=

1

21
A.

Finally, we can choose another point to withdraw 1A of current from and

inject 1
7A into all other 7 nodes in a new set-up. Whatever node is chosen,

the distribution of current will be similar to that above. To calculate the

equivalent resistance between nodes 1 and 2, we select node 2.
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After superposing these two set-ups, we get a combined set-up that

involves injecting 8
7A into node 1 and removing it from node 2. The cur-

rent in the resistor between nodes 1 and 2 is

I = 2× 1

3
=

2

3
A.

Thus, the voltage between them is

V =
2

3
R

which implies that the equivalent resistance is

Req =
2
3
8
7

=
7

12
R.

In a similar vein, if we had chosen node 4 as the point where we withdraw

current, the voltage difference between nodes 1 and 4, after the superposition

of the two separate set-ups, will be

V =

(
1

3
+

2

21

)
· 2 · R =

6

7
R.

The equivalent resistance of the cube with respect to nodes 1 and 4 is then

Req =
V
8
7

=
3

4
R.

Lastly, if we had chosen node 8 as the node to withdraw current from in the

second set-up, the voltage between nodes 1 and 8 will be

V =

(
1

3
+

2

21
+

1

21

)
· 2 · R =

20

21
R

after the superposition. The equivalent resistance of the cube between nodes

1 and 8 is then

Req =
V
8
7

=
5

6
R.

18. Fractal Resistance**

If we let the resistance of the whole fractal with respect to A and B be Req, a

fractal with side length l
2 will possess an equivalent resistance

Req

2 by scaling

arguments as

R ∝ L

A
.

The resistance of the circuit is proportional to the length dimension of the

wires L. Therefore, scaling the length of the sides by a factor of half (while
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maintaining the cross sectional area) halves the equivalent resistance. Thus,

we can transform the original circuit into the equivalent circuit in Fig. 9.64,

with the center fractal replaced with
Req

2 .

Figure 9.64: Equivalent circuit

where

R =
ρl

A
.

Now you may find the above transformation to be dubious, as there should

be current flowing from points C to E. However, there is seemingly no such

current in the above circuit. The trick is that we have divided node E into

two equipotential nodes, and one of the nodes was transformed into the
Req

2

resistor. The reason why the division of that particular node is possible is

because the two nodes formed by disconnecting the top two branches from

the bottom two will be at the same potential of the original combined node

(exactly the average of the potentials at A and B) due to mirror symmetry.

Thus, the current that originally traversed from C to E now flows through the
Req

2 resistor. Calculating the equivalent resistance of the triangle of resistors

at the top,

R′ =
1

2
Req

+ 1
R

=
RReq

Req + 2R
.

Then,

Req =

(
R+

RReq

Req+2R

)
R

2R+
RReq

Req+2R

.

Simplifying,

3R2
eq + 2RReq − 2R2 = 0

Req =

√
7− 1

3
R =

(
√
7− 1)ρl

3A
,

where the negative solution has been rejected.
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19. Double Cube**

We have derived the equivalent resistances of a cube with respect to two

adjacent vertices and with respect to two opposite vertices of the same face

as 7
12R and 3

4R respectively. Furthermore, the equivalent resistance of a

cube with respect to two terminals, with the resistor in the edge directly

connecting the two terminals removed, can be computed as

7
12R · −R
7
12R−R

=
7

5
R

by connecting a resistor −R in parallel across the two terminals to disconnect

the edge directly connecting the terminals. With this information, we can

construct the equivalent circuit in Fig. 9.65 between terminals A, B and C.

Figure 9.65: Equivalent circuit

The Y-circuit represents the equivalent circuit for the complete upper

cube with respect to A, B and C (by Eqs. (9.12)–(9.14)) while the 7
5R resistor

is the equivalent resistance of the lower cube, with edge BC removed, that

is connected in parallel with the direct resistor in edge BC. Therefore, the

equivalent resistance between A and B is

Req =
3

8
R+

71
40 · 5

24
71
40 + 5

24

R =
1069

1904
R.

20. Wheatstone Bridge**

We apply Thevenin’s theorem with terminals at nodes A and B. We first

determine the potential difference between nodes A and B when R3 is dis-

connected. Let the potentials of the positive and negative terminals of the

battery be ε and 0. Then, the potentials of nodes A and B are, by the voltage
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divider principle,

VA =
R4

R1 +R4
ε,

VB =
R5

R2 +R5
ε.

The Thevenin emf is the voltage across nodes A and B which is

εth =

(
R4

R1 +R4
− R5

R2 +R5

)
ε.

Now, we determine the Thevenin resistance between the terminals by short-

circuiting the battery.

Figure 9.66: Equivalent resistance between A and B

Observe that the wire formed by short-circuiting the battery causes nodes

CandDto become equipotential points. Then, the equivalent network between

A and B is shown in Fig. 9.66. The Thevenin resistance is consequently

Rth =
R1R4

R1 +R4
+

R2R5

R2 +R5
.

Finally, we splice this Thevenin-equivalent circuit back with the resistor R3.

The current flowing through R3 from nodes A to B is then

I =
εth

Rth +R3

=
R2R4 −R1R5

R1R2R4 +R1R2R5 +R1R4R5 +R2R4R5 + (R1 +R4)(R2 +R5)R3
ε.

21. Equivalent Battery**

Apply Thevenin’s theorem across the two terminals mentioned in the prob-

lem. To determine req, short-circuit all voltage sources — the set-up is con-

sequently left with the N resistors connected in parallel, implying that

req =
1∑N
i=1

1
ri

.
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It is not convenient to directly determine the open-circuit voltage to compute

εeq in this case. Instead, it is expeditious to connect an ideal external wire

to the two terminals and find the short-circuit current Isc first. Observing

that the ends of each parallel branch are equipotential, the current flowing

through the ith parallel branch is thus εi
ri
. Following from this, the total

short-circuit current is

Isc =
N∑
i=1

εi
ri
.

The equivalent emf is then

εeq = Isc · req =
∑N

i=1
εi
ri

1∑N
i=1

1
ri

.

22. Maximum Power Transfer**

Let us first consider a separate problem. If a battery with a constant emf ε is

connected in series with a fixed resistor R1 and a variable resistor R2, what

value should R2 undertake to maximize the power dissipated in R2? The cur-

rent through the circuit is ε
R1+R2

which implies that the power through R2 is

P =
ε2R2

(R1 +R2)2
.

dP

dR2
=

ε2

(R1 +R2)2
− 2ε2R2

(R1 +R2)3
=
ε2(R1 −R2)

(R1 +R2)3
.

Therefore, P is maximum when R2 = R1 (you can easily check that this is

indeed a maximum point by checking adjacent values of dP
dR2

). Now, returning

to the original problem, we know that the circuit can be reduced to an

equivalent emf εeq, connected in series with an equivalent resistor req, across

the two terminals by Thevenin’s theorem. req in this case is

req = R+
4R · 3R
4R+ 3R

=
19

7
R.

By the previous result, the resistor r that should be connected to the two

terminals to maximize the power dissipated by itself should be

r = req =
19

7
R.

In summary, the key takeaway of this problem is that whenever we want to

find the resistor r to be connected to two terminals to maximize the power
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through it, we simply have to determine the Thevenin-equivalent resistance

of the rest of the circuit with respect to those two terminals.

23. Another Infinite Ladder**

Instead of conventionally defining an equivalent resistance, let the Thevenin-

equivalent of the original circuit with terminals at the nodes of the branch

carrying the current I have a Thevenin-equivalent resistance Req and emf

εeq. Then, we perform the same sleight of hand as before and replace the

right portion of the circuit that we are applying Thevenin’s theorem on with

the Thevenin-equivalent circuit to obtain Fig. 9.67.

Figure 9.67: Modified circuit whose Thevenin’s equivalent should be identical

Now we apply Thevenin’s theorem to the circuit above with respect to the

two terminals on the left. We should still obtain εeq and Req as the Thevenin-

equivalent emf and resistance respectively. The equivalent resistance is

Req = R+
2RReq

2R +Req

(Req − 2R)(Req +R) = 0

Req = 2R.

Once again, we have rejected the infeasible negative solution. The clockwise

current through the loop is

I =
ε− εeq

2R+Req
=
ε− εeq
4R

.

Thus, the open-circuit voltage between the two terminals is

εeq = ε− I · 2R
εeq = ε.
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We splice this equivalent circuit with the branch carrying I. Then applying

Ohm’s law,

I =
εeq
Req

=
ε

2R
.

24. Thick Infinite Ladder***

Number the nodes according to Fig. 9.68.

Figure 9.68: Labelled nodes

Suppose that we wish to determine the equivalent resistance of the net-

work between nodes 0 and 1. Observe that primed nodes with the same

number are equipotential pairs by path symmetry. Then, the above circuit

can be reduced to the infinite ladder in Fig. 9.69.

Figure 9.69: Equivalent ladder

Now, observe that the above circuit comprises two infinite ladders — on

the left of 00′ and on the right of 11′. We need to determine the equivalent

resistance Req of these ladders. Observe that part of this ladder can be

broken off to form an identical infinite ladder with resistance Req. Therefore,

the infinite ladder in Fig. 9.70 is equivalent to the circuit on the right —

yielding a quadratic equation in Req.

The equivalent resistance of the set-up on the right with respect to nodes

1 and 1′ should still be Req.

Req =
1

2
R + 1

Req+
3R
2

.
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Figure 9.70: Infinite ladder on the right of 11′

Simplifying,

4R2
eq + 6RReq − 3R2 = 0

Req =
−3 +

√
21

4
R

where the unphysical negative solution has been rejected. Now, the equiv-

alent infinite ladder comprised two of such ladders with resistance Req in

series with a resistor of resistance R
2 , connected in parallel to a resistor of

resistance R. The equivalent resistance with respect to nodes 0 and 1 is then

Rtot =

(
2Req +

R
2

) ·R
2Req +

R
2 +R

=
21− 2

√
21

21
R.

25. N-gon with Spokes***

Label the outer vertices from 1 to N and denote the center as O. Suppose

that we wish to determine the equivalent resistance between nodes 1 and O.

Then, observe that nodes i and N +2− i form an equipotential pair, whose

combined node shall be denoted as i/(N + 2 − i), for all 1 ≤ i ≤ 	N−1
2 
.

Now, we have to consider two different cases — namely, when N is odd and

when N is even. If N is even, there will be a lone node N
2 . Thus, the circuit

becomes Fig. 9.71 after combining the equipotential pairs together.

Figure 9.71: Equivalent circuit (thin lines represent 1R while thick lines with arrows
represent 2R)
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Its equivalent resistance is

Req = R · 1
1
2 + 1

1
2
+ 1

1+ 1

...+ 1
1
2+ 1

1+ 1
1
2+2

,

where the 1
2

′
s appear N

2 times in the denominator (excluding the top-most

layer due to the connection between nodes 1 and O which destroys the pat-

tern). To simplify the continued fraction, let us work out a few cases from

the bottom.

1
1
2 + 2

=
2

5
,

1

1 + 1
1
2
+2

=
5

7
,

1
1
2 +

1
1+ 1

1
2+2

=
14

17
,

1

1 + 1
1
2
+ 1

1+ 1
1
2+2

=
17

31
,

1
1
2 +

1
1+ 1

1
2+ 1

1+ 1
1
2+2

=
62

65
.

Now, we can begin to observe a pattern. It seems like for the fractions which

terminate with an addition of half at the top of the denominator, the numera-

tor is seemingly always smaller than the denominator by 3. Therefore, define
an
bn

to be the simplified expression for the continued fraction with n 1
2 ’s that

ends with an addition of 1
2 in the highest layer (we do not define this for the

1
2 in the top-most layer of the continued fraction which spoils the pattern).

Subsequently, notice that

an+1

bn+1
=

1
1
2 +

1
1+ an

bn

=
2(an + bn)

an + 3bn
.
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If an = bn − k for some constant k,

an+1

bn+1
=

4bn − 2k

4bn − k

=⇒ an+1 = bn+1 − k,

which shows that the numerator is always a constant smaller than the denom-

inator throughout the sequence! Furthermore, this result is independent of

the bottom-most number in the continued fraction (which is 2 in this case)

as we have not made any assumptions about it. From the above, we also

obtain

bn+1 = 4bn − k,

from which we can solve for bn in terms of n explicitly. In the current case,

k = 3 and the base case is b1 = 5 (from 1
1
2
+2

= 2
5). The above recurrence

relation can be rewritten as

bn+1 = 4bn − 3

bn+1 − 1 = 4(bn − 1).

Thus, if we define cn = bn − 1, the sequence cn is a geometric progression

with base case c1 = 4. Therefore,

cn = 4n−1c1 = 4n,

bn = 4n + 1.

In this case, we are interested in

aN
2

bN
2

=
bN

2
− 3

bN
2

=
4

N
2 − 2

4
N
2 + 1

,

as

Req = R · 1

1
2 +

aN
2

bN
2

=
2 · 4N

2 + 2

3 · 4N
2 − 3

R.
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When N is odd, all other vertices besides vertex 1 are matched in pairs. The

circuit becomes Fig. 9.72 after combining the equipotential pairs.

Figure 9.72: Equivalent circuit (thin lines represent 1R while thick lines with arrows
represent 2R)

Req = R · 1
1
2 +

1
1
2
+ 1

1+ 1

.. .+ 1
1
2+ 1

1+ 1
1
2+1

where there are N−1
2

1
2 ’s in the pattern (excluding the top-most one). This

continued fraction can be simplified through the exact same procedure.

Adopting the same definition of an
bn
, we have

a1
b1

=
1

1
2 + 1

=
2

3

=⇒ an = bn − 1

by the previous argument (k = 1). The recurrence relation is thus

bn+1 = 4bn − 1

bn+1 − 1

3
= 4

(
bn − 1

3

)

with base case b1 = 3. Therefore,

bn − 1

3
= 4n−1

(
3− 1

3

)

bn = 4n · 2
3
+

1

3
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=⇒
aN−1

2

bN−1
2

=
bN−1

2
− 1

bN−1
2

=
2 · 4N−1

2 − 2

2 · 4N−1
2 + 1

,

Req = R · 1

1
2 +

aN−1
2

bN−1
2

=
4

N+1
2 + 2

3
(
2 · 4N−1

2 − 1
)R.

We can combine the results of the odd and even cases to write for general N ,

Req =
2N+1 + 2

3 · 2N − 3
R.
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Chapter 10

RLC and AC Circuits

The role of capacitors and inductors will be discussed in this chapter. In

addition to DC circuits, Alternating Current circuits (AC circuits), in which

currents perpetually vary in direction, will also be analyzed. In this process,

we will observe an enlightening analogy between AC circuits and DC circuits!

10.1 Roles of Capacitors and Inductors

Capacitors

A capacitor usually consists of two conductors and possesses an ability to

store charge, given a potential difference between the conductors. Conversely,

it also generates a potential difference across its ends via stored charges. Note

that in the process of charging, charges are transferred from one plate to

another through an external wire connecting the two plates — insignificant

charge flows directly across the plates. The fundamental relation between the

stored charge Q and the potential difference ΔV is governed by an intrinsic

and geometric property known as the capacitance of the capacitor.

C =

∣∣∣∣ QΔV
∣∣∣∣. (10.1)

The potential energy stored in a capacitor is

U =
1

2
CΔV 2 =

Q2

2C
=

1

2
QΔV. (10.2)

The function of a capacitor in a circuit is to oppose an incoming or

outgoing current. Referring to Fig. 10.1, suppose a current I1 is incident on

the left plate of a capacitor at the current instance. At the next instance,

some additional positive charge would have been deposited on the left plate

695
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Figure 10.1: Current at two instances

while some positive charge would have departed from the right plate —

leaving net additional negative charges behind. The capacitor then generates

an increased potential difference, as compared to before, which opposes the

incoming current (by Kirchhoff’s loop rule). Therefore, the current at the

next instance, I2, is smaller than I1.

Inductor

In the context of circuits, an inductor usually1 refers to a component with a

certain self-inductance L. If the current flowing through the inductor is I(t),

the magnetic field produced by the inductor varies with time and hence,

generates a non-conservative electric field. This non-conservative electric field

then generates an emf in the inductor that opposes the change in magnetic

flux linkage in accordance with Faraday’s law. Recall that the induced emf

in an inductor with self-inductance L is given by

ε = −LdI
dt
, (10.3)

where the negative sign indicates that the induced emf is opposite in direc-

tion to the change in current through the inductor. In an ideal emf source, the

potential difference (due to the conservative electric field within the source)

is equal to the emf generated. The induced emf thus produces a potential dif-

ference which hinders the change in current — this is the main responsibility

of an inductor in a circuit.

Figure 10.2: Polarity of an inductor

1When there are multiple inductors, the mutual inductance between inductors is some-
times taken into account. This is explored in a later section.
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Suppose a current I(t) flows rightwards through the inductor depicted in

Fig. 10.2. If I(t) is increasing at the current instance (dIdt > 0), the left end

of the inductor will be at a higher potential than the right — in an attempt

to reduce the increase in current. Similarly, if dI
dt < 0, the right end of the

inductor will be at a higher potential.

Finally, the potential energy stored inside an inductor when current I

flows through it is

U =
1

2
LI2. (10.4)

10.1.1 Series and Parallel Configurations

Series Connections

The equivalent capacitance and self-inductance for n capacitors and induc-

tors connected in series are

1

Ceq
=

n∑
i=1

1

Ci
, (10.5)

Leq =

n∑
i=1

Li. (10.6)

Parallel Connections

For parallel connections,

Ceq =

n∑
i=1

Ci, (10.7)

1

Leq
=

n∑
i=1

1

Li
. (10.8)

These can be proven by utilizing the facts that the current through and the

voltage across circuit components connected in series and parallel are the

same respectively. In the case of capacitors in series, one can use the fact

that the total charges in the segments connecting adjacent capacitor plates

are conserved as they are electrically isolated.

Analogy with Resistors

Because of the analogous formulae for equivalent capacitance and self-

inductance, we can devise a way to transform a problem involving the deter-

mination of equivalent capacitances and self-inductances into problems of
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finding equivalent resistances. This analogy is evident in the case of self-

inductance as we can simply substitute R → L. That is, we change every

self-inductor L into a resistor R that corresponds to L and compute the

equivalent resistance Req as a function of the various resistances. The equiv-

alent self-inductance can then be retrieved by substituting the corresponding

self-inductances back into the resistances and Leq → Req. Similarly, in the

case of capacitance, we can make the substitution R→ 1
C . That is, we change

every capacitor C into a resistor R that corresponds to 1
C as 1

C obeys the

rules of adding resistors in series and parallel.

In fact, such a correspondence becomes lucid when we reach the section

on impedance in AC circuits. Basically, at steady state, a capacitor C and

inductor L respond like resistors with “complex resistance” which are pro-

portional to 1
C and L respectively. These “complex resistances” follow the

normal rules of adding resistors in series and parallel. Thus, we can naturally

make the substitutions above.

Problem: Determine the equivalent self-inductance and capacitance of an

infinite square grid of self-inductors L and an infinite square grid of capaci-

tors C between two adjacent points on the grid.

Transforming this into an equivalent resistance problem, we know that

the equivalent resistance of an infinite square grid of resistors R between two

adjacent points is R
2 .

Req =
R

2
.

Drawing the analogy Req → Leq and R → L, the equivalent self-inductance

of the first network is

Leq =
L

2
.

Adopting the substitution Req → 1
Ceq

andR→ 1
C , the equivalent capacitance

of the second network obeys

1

Ceq
=

1

2C

=⇒ Ceq = 2C.

10.1.2 Sign Conventions

Kirchhoff’s loop and junction rules are applicable to circuits with capacitors

and inductors as well. Though inductors inherently produce non-conservative

electric fields within themselves, Kirchhoff’s loop rule only speaks about the
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potential difference due to the conservative electric field and is thus still valid.

Recall that in applying Kirchhoff’s loop rule, we first choose a Kirchhoff loop

with a certain direction and propose currents in each branch of the circuit.

The sign convention for the potential difference across a capacitor is identical

to that for batteries. When the Kirchhoff loop runs from a plate with charge

−Q to the other plate with charge Q, there is an increase in potential of
Q
C (note that Q could be negative). In evaluating the potential difference

across an inductor, we have to also take note of the proposed direction of

current in addition to the direction of the Kirchhoff loop. If the Kirchhoff

loop runs in the same direction as the current I across the inductor, the

potential difference across the inductor in the direction of the Kirchhoff loop

is −LdIdt . Otherwise, if the Kirchhoff loop opposes the proposed current I,

the potential difference is LdIdt .

In practice, it is easier to assign positive and negative signs to the ends

of an inductor in a fashion similar to the terminals of a battery. The end,

at which the proposed current first crosses the inductor, is denoted as the

positive end. Then, the potential difference across the inductor is akin to

that of a battery with an emf LdIdt — the negative and positive terminals

take care of the sign of this emf.

10.1.3 Short-term and Long-term Effects

The qualitative effects of an inductor and capacitor in the short and long run

in a DC circuit can be analyzed in light of their roles in a circuit. Immediately

after a swift change, an inductor will respond by ensuring that the current

through itself is the same as before, by producing a potential difference to

resist the change. Thus, inductors become ideal current sources in the short

run. A capacitor, on the other hand, produces the same voltage as before, as

charges have not been transferred in the form of currents during the short

time interval, most of the time. In the rare case where there is a direct path

comprising only batteries and capacitors that is newly established, there

must be a discontinuity in the stored charges of the capacitor in order for

Kirchhoff’s loop rule to be satisfied — the capacitors are then no longer ideal

voltage sources. Physically, infinite current flows through the path during a

short time interval — leading to a non-negligible deposition of charges on

the capacitors.

In a DC circuit, ideal inductors essentially become ideal wires after a

long time. This is because the system will eventually reach a steady state

such that the current through the circuit remains constant. Then, dI
dt = 0

which causes the potential difference across the inductor to be zero.
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Capacitors, on the other hand, can eventually be reduced to open-circuits.

When the system has equilibrated, the charge on the capacitor remains con-

stant. Thus, the current flowing from its plates must be zero — signifying

that capacitors can just be disconnected in the long run. In a certain sense,

charging a capacitor is analogous to pumping a ball via an air pump. It

becomes progressively harder to pump air into the ball as the pressure in the

ball increases (analogous to potential) due to the increase in air (analogous

to charge). Eventually, no additional air can be pumped (and analogously no

current) when the pressure in the ball is equal to the pressure of the pump

(analogous to the external emf).

Often, we will be tasked to determine the charge stored in a capacitor

in the long run. To do so, we can first disconnect the capacitors and solve

for the resultant currents in the circuit. Then, Kirchhoff’s loops, that cut

through the capacitors, can be drawn to generate simultaneous equations

regarding the potential differences across the capacitors and correspondingly,

the charges stored in the capacitors. The last point to take note of would

be the conservation of charge in adjacent, connected capacitor plates as

there cannot be any charge flow directly across the plates of an individual

capacitor. The following example will illustrate this process.

Problem: The capacitors in Fig. 10.3 were initially neutral. Then, the circuit

is allowed to reach steady state. After a long time, what is the charge stored

in the 10mF capacitor? (Chinese Physics Olympiad)

Figure 10.3: Circuit with capacitors

After the system has reached steady state, a current flows in only the

outer loop as the capacitors are essentially disconnected.
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Figure 10.4: Circuit with capacitors with labeled charges

Referring to Fig. 10.4, we can solve for the current I that flows through

the outer loop by applying Kirchhoff’s loop rule to cycle GABCDEFG,

20− 10I − 2I − 24− 18I + 10− 30I = 0

I =
1

10
A.

Next, notice that the region enclosed by the dotted surface is electrically

isolated from the rest of the circuit. Therefore, the quantity of charge encased

is conserved, resulting in the charge distribution on the capacitors as labeled

in Fig. 10.4 (i.e. neutral collectively since it was initially so). Lastly, we

can draw two more Kirchhoff loops that cross the capacitors, to solve for

q1 and q2. Using loop GABHG,

20− 10I − q1
20× 10−3

+
q2

20 × 10−3
= 0.

For loop EFGHE,

10− 30I − q2
20× 10−3

− q1
10× 10−3

− q2
10× 10−3

= 0.

Solving, we obtain

q1 =
32

125
C,

q2 = − 31

250
C.
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The quantity of charge stored in the 10mF capacitor is

|q1 + q2| = 1

250
C.

Problem: The switch in Fig. 10.5 is closed for a long time and a steady

state has been reached. (Estonian-Finnish Olympiad)

Figure 10.5: Circuit

(1) Find the reading of the voltmeter.

(2) The switch is opened; find the reading of the voltmeter immediately after

opening the switch.

(3) Find the total amount of heat dissipated in each resistor after opening

the switch and after a new equilibrium state has been reached.

(1) When steady state is reached originally, the inductors are identical to

wires and the capacitors are essentially disconnected. There is only a current

that flows through loop EDFBE. Thus, the voltmeter measures the voltage

across the resistor in branch FB which is simply ε. Note that the 3R resis-

tor does not reduce the voltage across the voltmeter by the voltage divider

principle as the ideal voltmeter has infinite resistance.

(2) Immediately after the switch is opened, the inductors maintain the cur-

rents through themselves which are of magnitude

I =
ε

R
.

The circuit can now be divided into two sub-circuits. A current I flows in the

anti-clockwise direction in loop DFAD while a current of the same magnitude
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flows clockwise in loop FBEF. In the right triangular loop FBEF, the voltage

between F and B is

VB − VF = −I ·R = −ε.
Considering the triangular loop DFAD, the voltage difference between F

and A is

VA − VF = −I · 3R = −3ε.

Thus, the voltmeter measures

ΔV = |VB − VA| = 2ε.

(3) Remember that the system essentially consists of two separate circuits,

DFAD and FBEF. Therefore, the total heat dissipated in the 3R resistor is

simply the difference in energies stored in the left capacitor and inductor

while that dissipated in the R resistor is simply the difference in energies

stored in the right capacitor and inductor.

We need to compute the energies stored by the inductors and capacitors

before or immediately after the switch is opened (initial stored energies).

Note that the potential differences across the capacitors and current through

the inductors are the same immediately before and after opening the switch.

Thus, the amounts of energy stored at these two instances are identical.

The potential across the capacitor on the left is zero before the switch

is opened. This is evident if we draw a Kirchhoff loop AFDA; the current

through AF is zero while the voltage across the inductor is also zero in

the long run when the switch is closed — causing the voltage across the

capacitor to be zero too, by Kirchhoff’s loop rule. Meanwhile, the inductor

in loop DFAD originally carried a current

I =
ε

R
.

Therefore, the total initial potential energy stored in the left capacitor and

inductor (using U = 1
2CV

2 and U = 1
2LI

2) is

Ul =
Lε2

2R2
.

Now, let us compute the final total potential energy of these components.

The final current through loop DFAD is zero in order for the capacitor to

reach a steady state. Since the potential differences across the resistor and

inductor are zero, there will also be no potential difference across and thus

charge stored in the capacitor. The final total potential energy is then zero.
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The heat dissipated in the 3R resistor is the change in potential energy

which is

Ql = Ul − 0 =
Lε2

2R2
.

Moving on, we shall determine the initial potential energy in the loop FBEF.

Before the switch is opened, a steady current ε
R flows in loop DFBED. Apply-

ing Kirchhoff’s loop rule to DFED, the potential difference across the right

capacitor must be ε (there is no potential difference across the left inductor

as the current is steady). This, combined with the fact that the right inductor

carries current ε
R , implies that the initial total potential energy is

Ur =
1

2
Cε2 +

1

2

Lε2

R2
.

The final potential energy of the system is also zero as there must eventually

be zero current through the capacitor — implying that no current exists in

loop FBEF eventually. Next, the charge in the capacitor in branch EF must

also eventually be dispersed so that no current flows in the loop FBEF by

Kirchhoff’s loop rule (as the potential differences across the right resistor

and inductor are both zero). Since the final total potential energy is zero,

the total energy dissipated in resistor R is

Qr =
1

2
Cε2 +

1

2

Lε2

R2
.

Finally, let us consider a problem where a capacitor is not an ideal constant

voltage source in the short run.

Problem: Initially, switch S in Fig. 10.6 is closed at terminal 1. If switch

S is now turned towards terminal 2, determine the total energy lost by the

components in the circuit. The emfs of the ideal batteries are ε1 and ε2,

respectively, while the capacitance of the capacitor is C.

Figure 10.6: Circuit with capacitor and batteries
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Initially, the total charges stored on the right and left plates of the capac-

itor are, respectively

±Q = ±(ε1 − ε2)C,

and the total initial potential energy stored by the capacitor is

U =
1

2
C(ε1 − ε2)

2.

Now, you might think that the total energy lost by the circuit when switch

S is changed from terminals 1 to 2 is simply the change in the capacitor’s

potential energy. However, we have to remember to account for the work

done by the battery ε1 as well. When switch S is turned, the voltage across

the capacitor is initially less than the emf ε1. Therefore, the emf source ε1
drives infinite current in the resultant loop and the charges crash into the

capacitor plates — resulting in a loss in kinetic energy. Therefore, to compute

the energy loss by the entire system, we have to return to the fundamental

work-energy theorem. Noting that the above process occurs until the charges

on the right and left plates of the capacitor become

±Q′ = ±ε1C,
the battery ε1 delivers a total amount of charge ε2C from the left plate to

the right plate of the capacitor, across a potential difference ε1 — implying

that it does work:

Wbat1 = qV = (ε2C) · ε1 = ε1ε2C.

If there were no energy loss, the final potential energy of the capacitor

would have been U+Wbat1. However, the actual final potential energy of the

capacitor is

U ′ =
1

2
Cε21.

This indicates that the energy loss is

U +Wbat1 − U ′ =
1

2
Cε22.

10.1.4 Effects at All Times

In this section, we shall explicitly determine the characteristics of certain

circuits involving resistors, inductors and capacitors at all times. This form

of analysis, which entails drawing Kirchhoff loops and solving the resultant

differential equations, can be applied to all circuits in general.
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RC Circuits

Consider an emf source, resistor and capacitor connected in series in

Fig. 10.7. The switch was open for time t < 0 and is closed at time t = 0.

Defining a clockwise current and drawing a clockwise Kirchhoff loop, Kirch-

hoff’s loop rule requires

Figure 10.7: RC series circuit

ε− IR− Q

C
= 0,

where we have defined Q to be the charge on the left plate of the capacitor.

Furthermore, for the capacitor,

I =
dQ

dt
,

as the proposed current is flowing into the left plate. If this was otherwise

(proposed current is flowing out of the left plate), I = −dQ
dt . Always take

note of the sign!

ε− Q

C
= R

dQ

dt

1

RC
dt =

1

εC −Q
dQ

1

RC
t = [− ln |εC −Q|]QQ0

= − ln

∣∣∣∣ εC −Q

εC −Q0

∣∣∣∣.
The solution to this is independent of whether εC > Q0 or εC ≤ Q0, where

Q0 is the initial charge on the left plate of the capacitor. This is because, if

εC > Q0, εC > Q at all instances afterwards (deduced from dQ
dt = ε

R − Q
RC

such that Q only decreases until εC). On the other hand, if εC ≤ Q0, εC ≤ Q

at all following instances. Therefore, εC−Q
εC−Q0

is definitely positive.

εC −Q = (εC −Q0)e
− 1

RC
t,
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Q = εC(1− e−
1

RC
t) +Q0e

− 1
RC

t,

I =
dQ

dt
=

ε

R
e−

1
RC

t − Q0

RC
e−

1
RC

t.

If Q0 > εC, the capacitor discharges until its final charge reaches εC. Other-

wise if Q0 < εC, the capacitor charges until it attains εC amount of charge.

When the charge on the capacitor is eventually εC (though this takes an

infinite amount of time), there will no longer be any current in the circuit.

Lastly, if Q0 = εC, no current flows in the circuit at all instances. The quan-

tity RC is known as the time constant of the RC circuit and appears in the

denominator of the decay exponent.

RL Circuits

Consider an emf source, resistor and inductor connected in series in Fig. 10.8.

The switch is open for time t < 0 and closed at time t = 0. Applied in a

clockwise fashion, Kirchhoff’s loop rule requires

Figure 10.8: RL series circuit

ε− IR− L
dI

dt
= 0.

Note that we have proposed the current to run clockwise. Thus, the left hand

side of the inductor is also proposed to be the “positive terminal” with a

voltage LdIdt across its two ends (refer to the section on sign conventions).

ˆ I

0

1
ε
R − I

dI =

ˆ t

0

R

L
dt

[
− ln

∣∣∣ ε
R

− I
∣∣∣]I

0
=
R

L
t.

Note that the current I will be smaller than ε
R at all instances as the inductor

obstructs the current from reaching its maximum value of ε
R (this is most

obvious if you write dI
dt =

ε
L − R

L I which shows that I stops increasing once
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I = ε
R). Thus | εR − I| = ε

R − I.

ε

R
− I =

ε

R
e−

R
L
t

I =
ε

R
(1− e−

R
L
t).

RLC Circuit

Lastly, consider an emf source, resistor, inductor and capacitor connected in

series in Fig. 10.9. For time t < 0, the switch is open. At time t = 0, the

switch is closed. Defining the charge on the left capacitor plate as Q and

applying Kirchhoff’s loop rule in the clockwise direction (the current I is

also clockwise),

Figure 10.9: RLC series circuit

IR+ L
dI

dt
+
Q

C
= ε.

Furthermore, for the capacitor,

I =
dQ

dt
,

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= ε.

Observe that this second order linear differential equation is similar to that

of a damped oscillation.

mẍ+ bẋ+ kx = 0.

The inverse of the capacitance is analogous to the elastic constant k of

the restoring force in a damped oscillation, the resistance R is analogous

to the coefficient of the damping force b and the inductance is analogous to

the mass m which provides the inertia that resists change.

Thus, the solution to Q in this differential equation is analogous to that

of the displacement x in the case of damped oscillations, except with an
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additional εC constant to account for the constant ε on the right-hand side of

the equation (particular solution). Again, we have to consider three cases —

namely, underdamping, critical damping and overdamping. Referring to the

chapter on oscillations,

When R < 2
√

L
C , it is a case of underdamping. The solution for Q is

Q = e−
R
2L
tc0 cos

(√
1

L2C2
− R2

4L2
t+ φ

)
+ εC.

When R = 2
√

L
C , it is a case of critical damping. The solution for Q is

Q = e−
R
2L
t(c1 + c2t) + εC.

When R > 2
√

L
C , it is a case of overdamping. The solution for Q is

Q = c1e
− R

2L
+
√

R2

4L2 − 1
L2C2 + c2e

− R
2L

−
√

R2

4L2 − 1
L2C2 + εC.

The constants c0, c1, c2 and φ are determined by initial conditions such as the

initial charge on the capacitor and the initial current in the circuit. Finally,

the expression for the current I = dQ
dt can be obtained by differentiating the

appropriate expression for Q above with respect to time.

Capacitor in Parallel

When a capacitor is connected in parallel to another component, it is usually

expeditious to adopt nodal analysis rather than mesh analysis and express

the capacitor relationship Q = CΔV as I = ±C dV
dt , where V is the potential

difference across the capacitor and the choice of sign depends on the direction

of the current I. This is because we often cannot relate the charge Q stored in

the capacitor to other variables in the circuit directly — but working with

the potential difference V enables us to do so. Furthermore, the equation

I = ±C dV
dt nicely parallels the inductor equation V = ±LdIdt !

Problem: Find the current I(t) through the inductor and the charge stored

by the capacitor Q(t) if I(0) = −1A and Q(0) = 0 in Fig. 10.10.

Let the potential difference across the capacitor be V (t), positive if the

left plate has the higher potential. Imposing Kirchhoff’s junction rule to the

node on the left of the resistor,

Ig − V

R
− IC − I = 0
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Figure 10.10: RLC parallel circuit

where IC = C dV
dt = 1

4
dV
dt is the rightwards current through the capacitor.

Differentiating the above with respect to t,

1

4

d2V

dt2
+
dV

dt
+
dI

dt
= 0.

Since LdIdt = V , dIdt = V when L = 1H. Thus,

1

4

d2V

dt2
+
dV

dt
+ V = 0.

The characteristic equation associated with this linear differential equation is

1

4
α2 + α+ 1 = 0

=⇒ (α+ 2)2 = 0,

which only has one unique root α = −2. Therefore, the general solution

to V is

V = (A+Bt)e−2t

for some constants A and B determined by initial conditions. SinceQ(0) = 0,

V (0) = 0.

=⇒ A = 0.

V = Bte−2t.

As I(0) = −1A and V (0) = 0 (such that the initial current through the

resistor is zero), the initial rightwards current through the capacitor must
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be IC(0) = Ig − I(0) = 2A. This implies

dV

dt
(0) = 4IC(0) = 8

=⇒ B = 8.

Thus,

V = 8te−2t,

Q = CV = 2te−2t,

I = Ig − V

R
− 1

4

dV

dt
= 1− 8te−2t − 2e−2t + 4te−2t = 1− 2e−2t − 4te−2t.

10.1.5 Mutual Inductance

Recall from the previous chapter that two inductors can be coupled with

each other such that the change in current through one inductor generates

an induced emf in the circuit containing the other inductor. To be exact

about the mechanism, the change in current through one inductor leads to

a change in magnetic field due to that inductor which in turn, results in a

change in the magnetic flux linkage in the other coupled inductor — inducing

an emf in its circuit. Recall that the mutual inductance of two inductors is

denoted as M and that the magnitude of emf induced in a second inductor

due to the change in the current I1 in a first inductor is given by

|ε2| =
∣∣∣∣MdI1

dt

∣∣∣∣. (10.9)

Furthermore, the mutual inductance is related to the self-inductances of the

two inductors, L1 and L2 by

M = k
√
L1L2, (10.10)

where k is known as the coupling constant. It is equal to one in the case of

ideal coupling, and between zero and one in realistic situations.

As there are two possible orientations of the coupling between inductors,

the dot notation (depicted by black circles) is used to denote the direction of

the mutually induced emfs. If the proposed current is flowing into a dot

of an inductor, the reference polarity of the mutual induced emf at the end

of the other inductor, that is also marked by a dot, is positive. Otherwise if

the proposed current is flowing out from a dot of an inductor, the reference

polarity of the mutual inductance at the corresponding end of the other

inductor is negative. This will be illustrated in the following examples.
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Figure 10.11: Cumulatively coupled inductors in series

We wish to determine the equivalent inductance of the set-up in

Fig. 10.11. As the current is flowing into the dot of the left inductor, the ref-

erence polarity of the mutual inductance at the left end of the right inductor

is positive. A similar logic allows us to conclude that the reference polarity

at the left end of the left inductor is positive. If the current through this

particular branch is I, the voltage between its ends (through a segment of a

Kirchhoff loop that runs from the left to right) is given by

ΔV = −L1
dI

dt
−M

dI

dt
− L2

dI

dt
−M

dI

dt

= −(L1 + L2 + 2M)
dI

dt
.

The equivalent inductance is then

Leq = L1 + L2 + 2M.

In this case, the magnetic fields of the two inductors aid each other in oppos-

ing the change in current; this configuration is sometimes described as cumu-

latively coupled inductors. Next, we can determine the equivalent inductance

of a similar series configuration of two inductors which are oriented such that

their magnetic fields oppose each other. This is illustrated in Fig. 10.12.

Figure 10.12: Differentially coupled inductors in series

Again, the current I flows into the dot of the left inductor, which now

causes the right end of the right inductor to have a positive reference polarity.

Furthermore, the current I now flows out of the dot of the right inductor

which causes the left end of the left inductor to have a negative reference
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polarity. The voltage across this branch is now

ΔV = −L1
dI

dt
+M

dI

dt
− L2

dI

dt
+M

dI

dt

= −(L1 + L2 − 2M)
dI

dt

=⇒ Leq = L1 + L2 − 2M.

In this scenario where the magnetic fields of the two inductors oppose each

other, the inductors are known to be differentially coupled. Moving on, we

shall now analyze the two possible orientations of two coupled inductors in

parallel. These scenarios truly reflect the essence of mutual inductance as the

currents across each individual inductor are now different. Take note that

it is the change in current across one inductor that induces an emf in the

branch of the other coupled inductor.

Figure 10.13: “Aiding” inductors in parallel

Consider two coupled inductors that are connected in parallel as depicted

in Fig. 10.13. A current I that originates from a terminal splits into two

smaller currents, I1 and I2, across the branches containing the coupled induc-

tors of self-inductances L1 and L2 respectively. Kirchhoff’s junction rule

requires

I = I1 + I2.

The voltage V across the two parallel branches must be the same. Analyzing

the branch on the left, the voltage across this branch is due both to the

self-induced emf due to the change in I1 and also the mutually-induced emf

due to the change in I2.

V = −L1
dI1
dt

−M
dI2
dt
.

Similarly for the branch on the right,

V = −MdI1
dt

− L2
dI2
dt
.
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Solving for dI1
dt and dI2

dt ,

dI1
dt

= −V (L2 −M)

L1L2 −M2
,

dI2
dt

= −V (L1 −M)

L1L2 −M2
.

We wish to find the equivalent inductance of these coupled inductors, across

the two terminals in the diagram, which satisfies the following relationship.

V = −Leq dI
dt
.

Since I = I1 + I2,

Leq = − V
dI1
dt + dI2

dt

=
L1L2 −M2

L1 + L2 − 2M
.

Once again, there is another possible configuration (depicted in Fig. 10.14)

in which one of the inductors is reversed — causing the individual magnetic

field produced by one inductor to oppose the magnetic flux linkage in the

other inductor due to the other inductor’s own current.

Figure 10.14: “Opposing” inductors in parallel

Similarly, the voltages across the two branches are the same.

V = −L1
dI1
dt

+M
dI2
dt
,

V =M
dI1
dt

− L2
dI2
dt
.
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Solving,

dI1
dt

= −V (L2 +M)

L1L2 −M2
,

dI2
dt

= −V (L1 +M)

L1L2 −M2
.

Then, the equivalent inductance is given by

Leq = − V
dI1
dt + dI2

dt

=
L1L2 −M2

L1L2 + 2M
.

When more than two coupled inductors are given, the effect of coupling and

the mutual inductance between each pair of inductors must be accounted

for. The procedure is still similar to the above process, albeit much more

tedious.

10.2 AC Circuits

The DC circuits in the previous sections will eventually stabilize such that

their properties, such as currents and voltages, eventually reach constant

values. However, if the circuit is connected to an AC source which produces

an oscillating emf, the linear properties of the system will eventually reach a

steady state with the same angular frequency of oscillation as the AC source,

though there may be a phase difference.

Solving an AC circuit problem similarly involves solving the equations

obtained from Kirchhoff’s laws. However, the germane equations are now

non-homogeneous linear differential equations instead of homogeneous ones.

The general solution of such a system comprises a particular solution and the

homogeneous solution. However, we will only consider the particular solu-

tion, as that is the determining factor of the system’s steady state response.

The solution to the homogeneous part is merely a transient response that will

usually undergo exponential decay (as seen from the previous sections) until

it is eventually negligible — after which the system will exhibit a response

governed by only the particular solution.

There are two methods in procuring the particular solution to the non-

homogeneous second order differential equations that we will encounter. The

first approach entails guessing a sinusoidal function of the driving angular

frequency and solving for the amplitude and phase difference. The second

approach leverages the linearity of the equations and modifies the differential
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equations to include complex variables. Subsequently, the actual properties

of the system are computed by taking the real component of their corre-

sponding complex counterparts. This second method then hints at an ele-

gant method — that extends to general, intricate circuits — of introducing

the notion of complex admittances and impedances.

10.2.1 Real Variables

Figure 10.15: RC circuit

Consider the RC circuit in Fig. 10.15 with an alternating current source that

produces an emf ε = ε0 cosωt. The exact polarity of the emf depends on the

origin of time but it doesn’t really matter since the set-up is oscillatory.

We shall just define ε to be positive clockwise henceforth, by default. Next,

we define the left plate of the capacitor to possess a positive charge Q(t).

Applying Kirchhoff’s loop rule in the clockwise direction,

ε0 cosωt− Q

C
− IR = 0.

Furthermore,

I =
dQ

dt
,

Q

C
+R

dQ

dt
= ε0 cosωt.

To solve for the particular solution of the above equation, we can try a

solution of the form Q = A sin (ωt+ φ).

A

C
sin (ωt+ φ) +RAω cos (ωt+ φ) = ε0 cosωt.

To solve for A, we equate the magnitude of the left-hand side, after applying

the trigonometric R-formula, with ε0.√
1

C2
+R2ω2 ·A = ε0

A =
ε0√

1
C2 +R2ω2

.
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To solve for the phase difference φ, we set ωt = π
2 . Then,

A

C
cosφ−RAω sinφ = 0

tan φ =
1

RωC
.

Thus,

Q =
ε0√

1
C2 +R2ω2

sin (ωt+ φ)

I =
ε0√

1
ω2C2 +R2

cos (ωt+ φ),

where φ = tan−1 1
RωC , which is a positive value. Thus, it is said that the cur-

rent I(t) leads the driving voltage ε0 cosωt in a capacitive circuit. Finally,

notice that we did not need to substitute any initial conditions as the partic-

ular solution does not depend on the beginning state of the system. Another

way to see this is that the initial conditions, such as the initial charge Q,

are lost and unrecoverable as the circuit stabilizes to a standardized steady

state.

10.2.2 Complex Variables

Next, consider the RL circuit in Fig. 10.16.

Figure 10.16: RL circuit

Propose a clockwise current I and define the positive and negative ter-

minals of the inductor accordingly. Kirchhoff’s loop rule in the clockwise

direction requires

IR+ L
dI

dt
= ε0 cosωt.

A slick way to solve this differential equation is to consider a complex driving

voltage ε0e
iωt and a complex current Ĩ such that

ĨR+ L
dĨ

dt
= ε0e

iωt.
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We claim that if Ĩ is the particular solution to the above equation, its real

component Re(Ĩ) is the particular solution to the previous equation.

I = Re(Ĩ).

This is valid because of the linearity of the differential equation and the

addition of complex numbers. Consider two complex number z1 and z2. Then,

Re(z1) + Re(z2) = Re(z1 + z2).

Thus,

Re

(
ĨR+ L

dĨ

dt

)
= Re(Ĩ)R + L

dRe(Ĩ)

dt
.

We can bring Re into the differentiation as the order of the real operator

and differentiation does not matter. Then,

Re(Ĩ)R+ L
dRe(Ĩ)

dt
= Re(ε0e

iωt) = ε0 cosωt,

which is of the same form as the original equation — implying Re(Ĩ) is

a valid particular solution to the purely real differential equation. Since a

linear differential equation only has one particular solution, this must be the

unique solution. To appreciate why the linearity of the differential equation

is necessary to exploit this method, consider two complex numbers of the

form z1 = x1 + iy1, z2 = x2 + iy2 where x1, x2, y1 and y2 are real. Then,

Re(z1) · Re(z2) = x1x2.

However,

Re(z1 · z2) = Re(x1x2 − y1y2 + i(x1y2 + x2y1)) = x1x2 − y1y2

=⇒ Re(z1 · z2) �= Re(z1) · Re(z2).
This means that if we have a product of two variables in our differential

equation, we cannot substitute complex variables for them and hope to

retrieve the physical solution by taking the real components of their complex

solutions.

Moving on, we can guess a solution2 for the complex current of the

form Ĩ = I0e
iωt. I0 may be a complex number, but it is time-independent.

2The whole point of replacing ε0 cosωt with ε0e
iωt is to facilitate such an exponential

guess. Technically, we could have considered any other differential equation ĨR + L dĨ
dt

=

ε0 cosωt+ ik where k is real and Re(Ĩ) will be the particular solution to our desired equa-
tion — a drawback of this general form is that the solution for Ĩ is difficult to determine.
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Substituting this trial solution,

RI0e
iωt + iLωI0e

iωt = ε0e
iωt.

Cancelling eiωt and solving for I0,

I0 =
ε0

iωL+R

=
ε0√

R2 + ω2L2e−iφ

=
ε0√

R2 + ω2L2
eiφ

where tan φ = −ωL
R . Splicing this complex amplitude with the exponential

term of Ĩ,

Ĩ =
ε0√

R2 + ω2L2
ei(ωt+φ).

The actual current is the real component of this

I = Re(Ĩ) =
ε0√

R2 + ω2L2
cos (ωt+ φ),

where φ = tan−1(−ωL
R ) which, in this case, is a negative value. We say that

the current lags behind the driving voltage in an inductive circuit.

10.2.3 Method of Complex Admittance and Impedance

The methods above usually suffice for most simple circuits and in fact, can

also be applied in finding the solution for driven mechanical oscillations.

However, when they are applied to complex circuits, the equations may turn

out to be extremely messy. In light of this limitation, the idea of introducing

a complex “resistance” for each component generates elegant solutions and

rectifies such a cumbersome bottleneck, as we shall see.

Let us first formulate the general AC circuit problem with a single sinu-

soidal AC source of driving angular frequency ω and emf ε = ε0 cosωt.

Kirchhoff’s loop and junction rules require∑
V = 0,∑
I = 0,

for every loop and junction respectively. Now, the voltage V across an arbi-

trary circuit component (resistor, inductor or capacitor) is always linear

However, we have the liberty to choose k and hence pick k = ε0 sinωt to expedite the
process of solving for Ĩ.
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with respect to the current I through it, its derivative or integral. Therefore,

Kirchhoff’s loop rule generates a set of linear non-homogeneous equations

in general. Since this set involves a “driving” sinusoidal emf, the particular

solution to V and I of each circuit component is sinusoidal with an angular

frequency equal to the driving frequency ω. Hence, the voltage V across and

current I through an arbitrary component is of the form

I = I0 cos(ωt+ φi),

V = V0 cos(ωt+ φv),

where the amplitudes and phase offsets are unknown. Now, we define com-

plex variables Ṽ and Ĩ in replacement of V and I in each branch. In particu-

lar, we also replace the emf of the AC source, ε = ε0 cosωt, with ε̃ = ε0e
iωt.

Then, consider the differential equations obtained by substituting the com-

plex variables for the real ones in the equations generated by Kirchhoff’s

laws above. That is, ∑
Ṽ = 0,∑
Ĩ = 0.

Now, observe that since
∑
V = 0 is linear in I, its derivative or integral,∑

Ṽ must also be linear in Ĩ, its derivative or integral, as the latter is

just obtained from substituting Ĩ for I. Due to this linear property, if Ĩ

is a solution to
∑
Ṽ = 0 and

∑
Ĩ = 0, Re(Ĩ) is a solution to

∑
V = 0

and
∑
I = 0. Furthermore, as we have chosen ε̃ = ε0e

iωt, the solutions

to the complex variables are also exponential with angular frequency ω.

Further matching the real component of these exponential variables with the

sinusoidal solutions of the physical variables (e.g. I = I0 cos(ωt+ φi)) yields

Ĩ = I0e
i(ωt+φi),

Ṽ = V0e
i(ωt+φv),

for each component. We haven’t done anything fancy up till now. However,

the crucial component of this method lies in the fact that though V is lin-

ear in I, its derivative or integral for a circuit component, the drop in Ṽ is

always proportional (except for the AC source) to Ĩ by a possibly complex

number Z, which is known as the impedance of the component!

Ṽ = ĨZ.

We shall prove this claim soon enough but let us first examine its ramifica-

tions to understand why such a proportionality is so useful. Ultimately, we
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seek for solutions to ∑
Ṽ = 0,∑
Ĩ = 0,

after which we can take the real components to obtain the physical solutions.

Sheerly by our choice, Ṽ = ε̃ = ε0e
iωt across the AC source. Furthermore,

if the previous claim is true, the complex voltage drop across a circuit com-

ponent (other than the AC source) is always proportional to the current

through it and is given by Ṽ = ĨZ.

Now, compare this with a DC circuit problem involving solely emf sources

and resistors. Kirchhoff’s laws require∑
V = 0,∑
I = 0.

Furthermore, V across an emf source is simply its emf while the voltage

drop across a resistor is V = IR. It can be seen that the AC problem is

exactly identical to a DC network of “resistors” with “complex resistance”

Z, when expressed in terms of complex variables! Then, all our machinery

in DC circuits can be migrated to AC circuits!

For example, we can determine the equivalent impedance of components

connected in series and parallel in the exact same manner as the case of real

resistors. For series connections, with n elements,

Zeq =

n∑
i=1

Zi.

Similarly for parallel connections,

1

Zeq
=

n∑
i=1

1

Zi
.

Now, we shall prove the paramount proposition that the complex voltage

drop Ṽ across a circuit component (resistor, inductor or capacitor) is pro-

portional to the complex current Ĩ through it in a circuit with a single AC

source of angular frequency ω.

Ṽ = ĨZ. (10.11)

In this process, we shall also determine the impedance Z for the various

components. The trivial case occurs in the case of resistors where Ohm’s law
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holds for the real voltage and current.

V = IR.

Replacing the real properties with the complex counterparts,

Ṽ = ĨR.

Therefore, the impedance of a resistor is simply its resistance. For inductors,

the voltage drop is

V = L
dI

dt

which implies that in complex variables,

Ṽ = L
dĨ

dt
.

Now, we can exploit the exponential form of Ĩ. Substituting Ĩ = I0e
i(ωt+φi),

Ṽ = iωLI0e
i(ωt+φi) = iωLĨ

which is coherent with Eq. (10.11). Therefore, the complex impedance of an

inductor with inductance L is iωL. Finally, in the case of a capacitor with

capacitance C, the voltage drop between the Q and −Q plate is

V =
Q

C
=

´
Idt

C
.

In terms of complex variables,

Ṽ =

´
Ĩdt

C

=

´
I0e

i(ωt+φi)dt

C

=
I0
iωe

i(ωt+φi) + c

C
.

Now, we claim that the constant of integration c is zero. The first suggestion

of this is the fact that we are looking at the particular solution of the AC

circuit, which should not involve any initial conditions (which determine c).

Mathematically, substituting this expression for Ṽ for a capacitor into the∑
Ṽ = 0

equations generated by Kirchhoff’s laws would yield a series of terms that

vary with time and a constant term associated with c. In order for this
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equation to be satisfied at all times, c must be zero to eliminate the constant

term. Physically, one can also understand that c = 0, because the average

charge on a capacitor in the long run should be zero as the response is

oscillatory, regardless of the initial charge on the capacitor, as the charge

should eventually even out (e.g. more charge will lead to a larger current

outflow which decreases the amount of charge stored). Therefore,

Ṽ =
1

iωC
I0e

i(ωt+φi) =
Ĩ

iωC
.

The impedance of a capacitor is hence 1
iωC . The inverse of the impedance

is known as the admittance Y = 1
Z and the impedances and admittances of

various circuit elements are summarized below.

Table 10.1: Admittances and impedances

Admittance, Y Impedance, Z

Resistor, R 1
R

R

Inductor, L 1
iωL

iωL

Capacitor, C iωC 1
iωC

Finally, the phase difference Δφ = φv − φi between the voltage across

a component and the current flowing through it can be directly calculated

from the impedance. Since Ĩ = I0e
i(ωt+φi), Ṽ = V0e

i(ωt+φv) and Ṽ = ĨZ,

Ṽ

Ĩ
=
V0
I0
eiΔφ = Z = |Z|ei tan−1 Im(Z)

Re(Z) .

Comparing the exponents,

tanΔφ =
Im(Z)

Re(Z)
. (10.12)

Let us apply this technique of complex impedances to the RLC circuit in

Fig. 10.17.

Figure 10.17: RLC circuit
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The impedance of this circuit is

Zeq = iωL+
1

iωC
+R.

Therefore,

Ĩ =
ε0

i
(
ωL− 1

ωC

)
+R

eiωt

=
ε0√

R2 +
(
ωL− 1

ωC

)2
eiφ

eiωt

=
ε0√

R2 +
(
ωL− 1

ωC

)2 ei(ωt−φ)
where

tanφ =
ωL

R
− 1

RωC
.

Thus,

I = Re(Ĩ) =
ε0√

R2 + (ωL− 1
ωC )

2
cos (ωt− φ).

There is an interesting geometric relationship between the complex

voltages — across the resistor, inductor, capacitor and emf source — and

the complex current in the complex plane. Specifically,

ṼR = Ĩ ·R,
ṼL = iωL · Ĩ = ĨωLei

π
2 ,

ṼC =
1

iωC
· Ĩ =

1

ωC
Ĩe−i

π
2 ,

Ṽε = Ĩ · Zeq = ||Zeq||Ĩeiφ.
We see that the complex voltage across the inductor leads the complex cur-

rent by a phase angle of π
2 and the complex voltage across the capacitors

lags behind the complex current by a phase angle π
2 . Note that the complex

current still lags a phase difference φ with respect to the complex voltage

of the emf source. If we draw these complex voltages as vectors on a single

Argand diagram, along with the complex current,3 we obtain Fig. 10.18 at

the time when the complex current is purely real.

3The complex current is only used as a reference direction. It has different units from
the voltages and should really not be drawn in the diagram.
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Figure 10.18: Complex vectors

These vectors all rotate at an angular frequency ω anti-clockwise (due

to the eiωt term in Ĩ) and thus maintain a fixed shape with respect to each

other. Furthermore,

Ṽε = ṼL + ṼR + ṼC

Re(Ṽε) = Re(ṼL) + Re(ṼR) + Re(ṼC)

at the current instance, in accordance with Kirchhoff’s laws. Since these

vectors all rotate at the same rate, if the above relations are true for a

particular instance, it is true for all moments. Equivalently, if Kirchhoff’s

loop rule is satisfied by the complex voltages at a certain instance in time,

it is perpetually fulfilled.

Resonance

Observing the expression for the previous complex current, we see that the

circuit responds with the greatest amplitude when the driving angular fre-

quency is

ωr =
1√
LC

,

as the denominator of the amplitude, which is the only variable in ω, is

minimized. This is the resonant driving frequency of the LC circuit. It is

easy to see why this should be the condition for resonance from the vantage

point of impedances. Given an AC source with this angular frequency, the

impedances of the inductor and the capacitor effectively cancel out, reducing

the circuit to a simple circuit with just a resistor. The maximum amplitude

is then

Imax =
ε0
R
,



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch10 page 726

726 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

and there is no phase difference between the current through the circuit and

the emf of the AC source.

I =
ε0
R

cosωt

as the set-up effectively consists of a single resistor.

Problem: Determine the current through the resistor in Fig. 10.19 as a

function of time. Given fixed R and L, for what value of C is the ampli-

tude of this current the largest? For this particular C, determine the power

dissipated in the resistor as a function of time.

Figure 10.19: C and LR circuit

The impedance of the capacitor is

ZC = − i

ωC

while the equivalent impedance of the inductor and resistor is

ZRL =
iωRL

R+ iωL
=

(R− iωL)iωRL

R2 + ω2L2
=

ω2RL2

R2 + ω2L2
+

iwR2L

R2 + ω2L2
.

By the voltage divider principle, the complex voltage across the resistor is

Ṽ =
ZRL

ZRL + ZC
ε0e

iωt

=
ω2RL2

R2+ω2L2 + iωR2L
R2+ω2L2

ω2RL2

R2+ω2L2 + i
(

ω2R2L
R2+ω2L2 − 1

ωC

)ε0eiωt.
The complex current through the resistor is thus

Ĩ =
Ṽ

R

=
ω2L2

R2+ω2L2 + iωRL
R2+ω2L2

ω2RL2

R2+ω2L2 + i
(

ω2R2L
R2+ω2L2 − 1

ωC

)ε0eiωt.
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At this point, we can conclude that the maximum amplitude of current

occurs when ω2R2L
R2+ω2L2 − 1

ωC = 0, as |Z1
Z2

| = |Z1|
|Z2| for any two complex numbers

Z1 and Z2. The only variable in C in this case is the denominator whose

magnitude is minimized when

c =
R2 + ω2L2

ω3R2L
.

When this condition is satisfied, the complex current is

Ĩ =

(
1

R
+

i

ωL

)
ε0e

iωt

=

√
1

R2
+

1

ω2L2
ε0e

i(ωt+φ)

where φ = tan−1 R
ωL . The real current flowing through the resistor is thus

I = Re(Ĩ) =

√
1

R2
+

1

ω2L2
ε0 cos(ωt+ φ).

The power dissipated is

P = I2R =

(
1

R
+

R

ω2L2

)
ε20 cos

2(ωt+ φ).

Note that Re(Ĩ2R), Re(Ĩ Ṽ ) and Re( Ṽ
2

R ) are all invalid expressions for the

power dissipated as these expressions are no longer linear in Ĩ and Ṽ . The

real component of the complex variables must be taken before applying P =

V I = I2R = V 2

R .

10.2.4 Root-Mean-Square Values

For an AC circuit, it is convenient to define the root-mean-square (rms)

values of certain properties of a circuit as it is a measure of the “average”

value. This may be useful in certain cases, such as in determining whether

a component will melt due to overheating by calculating the average power.

For a sinusoidal function of the form

A = A0 cos (ωt+ φ),

the mean-square value is defined as the square of A, averaged over a single

period. The root-mean-square is then the square root of the mean-square
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value.

Arms =
√

〈A2〉 =
√〈

A2
0 cos

2(ωt+ φ)
〉

Arms =
1√
2
A0 (10.13)

as the average of a squared sinusoidal function is 1
2 over a period.4 Thus, for

sinusoidal currents and voltages,

Irms =
1√
2
I0,

Vrms =
1√
2
V0.

To calculate the average power dissipated in a resistor in a sinusoidal AC

circuit, first note that the current I through a resistor and the voltage across

it will have no phase difference. Thus if we let

V = V0 cosωt,

I =
V0
R

cosωt,

P = V I = I2R,

as V = IR. This step seems trivial but we will see the significance of this

soon enough. Taking the root-mean-squared value of both sides,

〈P 〉 = 〈I2〉R = I2rmsR = VrmsIrms =
V 2
rms

R
, (10.14)

as both V and I are sinusoidal with no phase difference. Next, let us compute

the average power delivered by an emf source. In general, the current in the

emf source may have a phase difference with respect to the emf supplied by

it. They then take the general form of

ε = ε0 cosωt,

I = I0 cos (ωt− φ).

4One way to do so is to observe that sin2(ωt+ φ) + cos2(ωt+ φ) = 1. Taking the time-
average of both sides over a single period and noting that 〈cos2(ωt+φ)〉 = 〈sin2(ωt+φ)〉 as
the cos function is simply the sin function shifted by π

2
phase, we obtain 〈sin2(ωt+φ)〉 = 1

2
.

Alternatively, the reader should try envisioning a graphical proof. Hint: slice the graph of
a squared sinusoidal function by a horizontal line y = 1

2
and shift the portions above this

line to fill up the “holes.”
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The power delivered by the emf source is

P = εI

= ε0I0 cosωt cos (ωt− φ)

= ε0I0(cos
2 ωt cosφ+ cosωt sinωt sinφ).

The time average of cos2 ωt is 1
2 while that of sinωt cosωt = 1

2 sin 2ωt is zero.

Thus,

〈P 〉 = 1

2
ε0I0 cosφ = εrmsIrms cosφ. (10.15)

As seen from the above, the phase difference between the current and emf

leads to an additional cos φ term. As a final reminder, always remember

to take the real component of the complex variables first (if they are used)

before computing the power, as the instantaneous power P is no longer linear

in V or I.
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Problems

Short-term and Long-term Effects

1. Infinite Capacitor Ladder*

Find the equivalent capacitance between the two left-most terminals in the

following infinite ladder of capacitors.

2. Equivalent Capacitance*

Determine the equivalent capacitance of the circuit, shown in the figure,

across terminals A and B. Determine the charge stored by each capacitor

when a battery with an emf of 21V is connected between A and B, with its

positive terminal pointing towards A.

3. Circuit 1*

The switch S is initially closed towards terminal A until the system has

reached a steady state. Afterwards, the switch is changed to terminal B.

Find the final charges on each of the capacitors with capacitances 4F , 6F

and 3F .
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4. Circuit 2*

Determine the charges stored by the capacitors if the switch is closed for

a long time, given that the capacitors start from a configuration with zero

stored charge. What if the switch is opened from the start instead?

5. Gargantuan Circuit**

The system below has reached a steady state after a long time. Find the

final charge on capacitor A. All batteries, resistors and capacitors have an

emf, resistance and capacitance of ε, R and C respectively.

Figure 10.20: Gargantuan circuit

6. εRC Cube**

Four ideal batteries of emfs ε1 = 4V, ε2 = 8V, ε3 = 12V and ε4 = 16V,

four capacitors with identical capacitances C1 = C2 = C3 = C4 = 1F, and
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four identical resistors are connected in the form of a cube as shown in the

figure. Compute the total energy U stored by the capacitors after a steady

state has been attained. Now, suppose points H and B are connected by an

ideal wire. Find the charge stored by capacitor C2 in the new steady state

configuration. (International Physics Olympiad)

7. Inserting a Plate**

The capacitors on the right all have the same surface area, A. The separations

between the two plates of the capacitors with capacitance C are d. Now,

a new capacitor plate, of total charge Q0 and surface area A, is inserted

at a distance x from the left plate of the C
2 capacitor. After the system

has equilibrated, what is the final charge on the left plate of the capacitor

(labeled as B on the diagram) that had an original capacitance C
2 ? (Chinese

Physics Olympiad)

Effects at all Times

8. RC Circuit*

Determine the potential difference V (t) across the capacitor as a function of

time t for t ≥ 0 if the capacitor does not store any charge at t = 0.
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9. RL Circuit 1*

Determine the potential difference V3(t) across resistor R3 and the current

I1(t) through resistor R1 for t ≥ 0 if no current flows through the inductor

at t = 0.

10. RL Circuit 2*

Before t = 0, the circuit is in steady state with the switch S open. At t = 0,

the switch S is closed. Determine the current IL through and voltage VL
across the inductor at t = 0+. Next, find IL(t) and VL(t) for t ≥ 0.

11. R and LC Circuit**

For t < 0, the switch in the set-up on the right is open and the capacitor

stores no charge. At t = 0, the switch is closed. Determine the current

through the inductor as a function of time. The relevant emf, resistance,

capacitance and inductance are ε, R, C and L respectively, with L > 4R2C.
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12. C and RL Circuit**

Determine the current through the inductor in the below figure for t ≥ 0

if it is 1A (from the left to right end) at t = 0. Furthermore, the potential

difference across the capacitor at t = 0 is 2V, with the left plate having the

higher potential.

13. Parallel RLC Circuit**

For t < 0, the switch in the set-up below is open for a long time. At t = 0,

the switch is closed. Determine the charges stored on the two capacitors as

functions of time. Note that you will have to consider three regimes.

14. Contracting Capacitor***

Two capacitors are arranged as shown in the circuit on the next page. The

bottom capacitor has capacitance C1 while the top capacitor has initial plate

separation d0 and area A (the gap is filled by vacuum). The capacitors are
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initially held fixed and each store an equal amount of charge Q0 such that

there is no net charge in the portion containing the left plates of the capac-

itors. Determine Q0. Now, suppose that the top capacitor is released such

that it is free to move — with the mass of each plate being m. The massless

wires are coiled into two heaps such that the wires are slack. Determine time

as a function of the charges on the capacitors (it is difficult to invert this

relationship). Warning: heavy math ahead.

AC Circuits

15. Current in Parallel RLC Circuit*

Consider a circuit where a resistor, inductor and capacitor of resistance R,

inductance L and capacitance C are connected in parallel to an AC source

with emf ε = ε0 cosωt. Suppose that we forgot the impedance of a capacitor

but know that the impedance of the inductor is iωL. Determine the current

through the AC source as a function of time by determining the rate of

energy stored or lost by each component.

16. Bridge*

Determine the current through the AC source as a function of time in the

long run. The capacitor has a capacitance C = 1
2ω2L

.

17. Transformer Circuit**

Consider the circuit on the next page. The resistors have resistances R while

the left and right inductors have self-inductances L1 and L2. The mutual
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inductance between the inductors is M and their polarities are indicated by

the dot convention. Finally, the capacitor has capacitance C = 1
ω2L2

. By

applying Kirchhoff’s laws and substituting complex exponential trial solu-

tions, determine the currents through each loop in the long run. From the

perspective of impedances, what is the effect of the capacitor in this set-up?

Determine the phase difference between the currents.

18. Mutual Inductors**

A resistor R and two parallel inductors L1 and L2 are connected as shown

in the circuit below. The two inductors have a mutual inductance M and

are constructively coupled. Determine the current through inductor L1 as a

function of time by deriving the effective impedance of each inductor.
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Solutions

1. Infinite Capacitor Ladder*

Similar to the question on an infinite resistor ladder, if we let the equiva-

lent capacitance of the circuit be Ceq, we can replace the right part of the

original circuit, only leaving a single branch containing a single set of C

and 2C capacitors, with a capacitor Ceq in parallel with the remaining 2C

capacitor — resulting in Fig. 10.21. Then, we can form an equation in Ceq
as the equivalent capacitance of this modified circuit should also be Ceq.

Figure 10.21: Modified circuit

Ceq =
C(2C + Ceq)

C + (2C + Ceq)
=

2C2 + CCeq
3C + Ceq

=⇒ C2
eq + 2CeqC − 2C2 = 0.

Ceq = (
√
3− 1)C

as we reject the negative solution which is physically incorrect.

2. Equivalent Capacitance*

One can obtain a direct solution to the problem by imposing an external

voltage V across terminals A and B and computing the sum of the charges

stored by the 1F and 2F capacitors, divided by V , to deduce the equivalent

capacitance. In doing so, one would have to use the conservation of charge

in a manner akin to the example problems in the section on the long-term

behaviour of capacitors. However, there is a slicker method which exploits

the analogy between resistance and the reciprocal of capacitance.

Recall that we can transform a capacitor problem into a resistor problem

by changing each capacitor C into a resistor R = 1
C . From this, we can

construct a Y-Δ transformation for capacitors. The Y to Δ transformations

for resistors are

Ra =
R1R2 +R1R3 +R2R3

R1
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and its cyclic permutations. Using the analogy R→ 1
C ,

1

Ca
=

1
C1C2

+ 1
C1C3

+ 1
C2C3

1
C1

=
C1 + C2 + C3

C2C3

=⇒ Ca =
C2C3

C1 + C2 + C3
.

The above equation and its cyclic permutations form the Y to Δ transfor-

mations for capacitors. Applying this to the 1F, 2F and 3F capacitors, we

obtain Fig. 10.22.

Figure 10.22: Circuit after Y-Δ transformation

The equivalent capacitance of all other capacitors besides the 1
3F one is

C =

(
4 + 1

2

) · (5 + 1)

4 + 1
2 + 5 + 1

=
18

7
F,

which implies that the equivalent capacitance of the circuit across A and B is

Ceq = C +
1

3
=

61

21
F.

Before we compute the charge stored by each capacitor, we first develop an

important tool — the charge divider principle. Suppose that we have two

capacitors C1 and C2 connected in parallel to two external terminals and we

have a total charge q stored between them. What are the charges q1 and q2
stored on each capacitor? Well, the potential across the capacitors must be

identical so
q1
C1

=
q2
C2
.

Solving this with q1 + q2 = q,

q1 =
C1

C1 + C2
q,

q2 =
C2

C1 + C2
q.
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There is another way to obtain these without any calculations. Since V = q
C

is analogous to V = IR, with R → 1
C and I → q, we can make the above

substitutions in the current divider principle for resistors.

I1 =
R2

R1 +R2
I,

I2 =
R1

R1 +R2
I,

q1 =
1
C2

1
C1

+ 1
C2

q =
C1

C1 + C2
q,

q2 =
C2

C1 + C2
q.

Actually, this equivalence even accounts for the fact that both currents

through components in series and charges stored by capacitors in series must

be identical! Armed with the charge divider principle, we can compute the

charges stored by each capacitor in the original circuit. Firstly, the total

charge deposited through terminal A is

q = Ceq · 21 = 61C

By the charge divider principle, the total charge stored by the 4F and 1
2F

capacitors, which is identical to the total charge on the 5F and 1F capacitors,

in the equivalent circuit is

q′ =
C

Ceq
q =

18
7
61
21

· 61 = 54C.

Applying the current divider principle again, the charges stored by the 4F,
1
2F, 5F and 1F capacitors in the equivalent circuit are

q4 =
4

4 + 1
2

q′ = 48C,

q 1
2
=

1
2

4 + 1
2

q′ = 6C,

q5 =
5

5 + 1
· q′ = 45C,

q1′ =
1

5 + 1
· q′ = 9C,
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where we prime the subscript in q1′ to emphasize the fact that this is the

charge stored by the 1F capacitor in the equivalent circuit and not the orig-

inal circuit. Finally, the charge stored in the 1
3F capacitor in the equivalent

circuit is

q 1
3
=

1
3

Ceq
q = 7C.

At this juncture, note that q4 and q5 are indeed the correct charges stored

by the 4F and 5F capacitors in the original circuit as these capacitors were

unchanged. The charge stored by the original 1F capacitor is the sum of

the charges on the left plates of the 1
2F and 1

3F capacitors in the equivalent

circuit.

q1 = q 1
2
+ q 1

3
= 13C.

Similarly,

q2 = q 1
3
+ q1′ = 16C,

q3 = q1′ − q 1
2
= 3C.

Note the negative sign in the last equation as the charge on the top plate

of the original 3F capacitor is the sum of those on the right plate of the 1
2F

capacitor (which is −q 1
2
) and the left plate of the 1F capacitor in the equiv-

alent circuit. Another way to compute q3 is to take q4 − q5 = 3C by the

conservation of charge.

3. Circuit 1*

Initially, the capacitor C1 is charged to

Q0 = 4ε.

Next, after the switch is turned to terminal B, charges will flow from the

positive plate of C1(the top plate) to the other capacitors — causing the

top plates of C2 and C3 to also be positively charged. The key observation

is that the net charge is conserved between the adjacent plates of different

capacitors. This implies that the final positive charges on C2 and C3 are the

same since the total initial charge on the two plates of C2 and C3 that are

directly connected by a wire is zero. We define that final identical charge

on C2 and C3 as Q2. The final charge on C1, Q1, is then given by the
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conservation of charge.

Q1 = Q0 −Q2.

Applying Kirchhoff’s loop rule to a cycle through all capacitors,

Q1

4
− Q2

6
− Q2

3
= 0

Q2 =
Q0

3
=

4ε

3

Q1 =
2Q0

3
=

8ε

3
.

4. Circuit 2*

In the long run, the inductors and capacitors are effectively short-circuited

and open-circuited respectively. Therefore, when the switch is closed for a

long time, the inductor becomes an ideal wire while the capacitors are dis-

connected. Then, no current flows through the circuit. Drawing a clockwise

Kirchhoff loop across the emf source, ideal wire and capacitor C1,

ε− Q1

C1
= 0

where Q1 is the charge on the right plate of the capacitor C1. Thus,

Q1 = εC1.

Now, draw a Kirchhoff loop through the ideal wire and the capacitor C2.

Since no current flows everywhere, the charge stored by capacitor C2 must

be zero by Kirchhoff’s loop rule.

Next, in a separate set-up where the switch is opened for a long time,

no current flows everywhere once again. Let the charges on the right plate

of capacitor C1 and the left plate of capacitor C2 be q. Note that they must

possess the same charge as the segment of the circuit between the right plates

of the capacitors are electrically isolated from the rest of the circuit (this

didn’t occur in the previous case due to the ideal wire). Applying Kirchhoff’s

loop rule to a clockwise loop through the battery and the capacitors,

ε− q

C1
− q

C2
= 0.

Therefore, the charges stored by the capacitors are of quantity

q =
εC1C2

C1 + C2
.
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5. Gargantuan Circuit**

The crux of this question is to remain composed. When the system has

reached steady state, we can effectively remove all capacitors as no current

will flow through them. The resultant circuit in Fig. 10.23 will be obtained.

Figure 10.23: Resultant circuit

Observe that only one loop is present in the entire circuit. Applying

Kirchhoff’s law to that loop in the clockwise direction, we can find the clock-

wise current I to be

I =
ε

5R
.

Next, we can draw the Kirchhoff loop, depicted by the white arrow in

Fig. 10.24, in the original circuit.

Figure 10.24: Resultant circuit

Applying Kirchhoff’s loop rule and defining the charge on the right capac-

itor plate to be Q,

Q

C
+ IR− ε = 0

Q =
4

5
εC.
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6. εRC Cube**

In the long run, the capacitors can be disconnected. Therefore, we obtain

Fig. 10.25.

Figure 10.25: Cube after removing capacitors

If we let R denote the resistance of a resistor, the current I depicted in

Fig. 10.25 is

I =
ε4 − ε1
4R

=
3

R
.

Therefore, if we let the potential of vertex A be zero (VA = 0),

VB = VA − IR = −3V,

VC = VB + ε2 = 5V,

VD = VA + ε1 = 4V,

VF = VB − IR = −6V,

VG = VF + ε4 = 10V,

VH = VG − IR = 7V,

VE = VH − ε3 = −5V.

The total energy stored by the capacitors at steady state is

U =
1

2
· 1 · [(VC − VD)

2 + (VG − VC)
2 + (VA − VE)

2 + (VE − VF )
2
]

=
1

2
· 1 · (12 + 52 + 52 + 12) = 26J.

After an ideal wire is connected between B and H, vertices B and H become

equipotential and thus can be compressed into a single point B/H. The loop

in Fig. 10.25 then becomes Fig. 10.26,
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Figure 10.26: Loop after combining nodes B and H

which can be further decomposed into two isolated circuits ADB/H and

FGB/H (this is most obvious when applying the principle of superposition

and considering one emf source at a time). Therefore, the potential difference

between B and G is

VG − VB =
ε4
2

= 8V.

The potential difference across C and G is then

VG − VC = VG − (VB + ε2) = 8− 8 = 0V.

Therefore, the capacitor C2 stores no charge in the new steady state config-

uration, as q2 = C2|VG − VC | = 0.

7. Inserting a Plate**

Let the final charge on plate B be Q. Then the charge on the left surface of

the inserted plate is −Q (by Gauss’ law) which results in the right surface

containing charge Q + Q0. The capacitor plate on the right of the inserted

plate then has charge −Q−Q0. The three plates essentially form two capac-

itors in series with separations x and 2d− x respectively. Let the charge on

the left plate of the capacitor in the branch above the three plates be q′. In
order for the voltages across the two branches to be the same,

Q

ε0
A
x

+
Q+Q0

ε0
A

2d−x
=

q′

ε0
A
d

q′ = 2(Q+Q0)− x

d
Q0.

The total amount of charge contained in the right plates of the two left

capacitors with capacitance C, the left plate of the remaining capacitor of

capacitance C which contains charge q′ and capacitor plate B, which carries

a charge Q, must be conserved. Furthermore, the voltages across the two

C capacitors connected in parallel must be the same. Hence, the quantity

of charge stored in each of these two capacitors must be Q+q′
2 (on their left

plates). Following a similar logic, the charge stored in the left plate of the
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2C capacitor must be Q+ q′. Hence, by drawing a clockwise Kirchhoff loop

through the emf and the capacitors, we obtain

Q+ q′

2C
+
Q+ q′

2C
+
q′

C
= ε

Q =
εC − 4Q0 + 2xdQ0

5
.

8. RC Circuit*

We shall present two solutions here. The brute force solution is to solve

Kirchhoff’s laws directly. Let the potential of the “negative” and “positive”

terminals of the current source be 0 and U . Let the potential at the top

capacitor plate be V . Imposing Kirchhoff’s junction rule at the node above

the 80Ω resistor,

U

80
+
U − V

20
= 7.5

U

8
= 15 +

V

10
.

Let q denote the charge stored in the top plate of the capacitor. Then,

V =
q

0.4
=

5q

2
.

Applying Kirchhoff’s junction rule to the node above the top plate of the

capacitor yields

q̇ =
U − V

20
− V

50

=⇒ dV

dt
=

5q̇

2
=
U − V

8
− V

20
=
U

8
− 7V

40
= 15− 3V

40
,

dV

dt
+

3V

40
= 15,

where we have used the equation U
8 = 15 + V

10 . The general solution to this

differential equation is

V = Ae−
3
40
t +

15 · 40
3

= Ae−
3
40
t + 200

for some constant A determined by initial conditions. Since the capacitor

stores no charge initially, V (0) = 0.

=⇒ V = 200
(
1− e−

3
40
t
)
.
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The second method is to apply Thevenin’s theorem across the termi-

nals of the capacitor to convert the rest of the circuit into an equivalent

Thevenin emf εeq = 80
20+50+80 · 7.5 · 50 = 200V and Thevenin resistance

Req =
(80+20)·50
80+20+50 = 100

3 Ω. Then, the circuit becomes a series RC circuit with

εeq = 200V, Req = 100
3 Ω and C = 0.4F. Substituting these values into the

relevant solution derived in Section 10.1.4,

V = εeq

(
1− e

− 1
ReqC

t
)
= 200

(
1− e−

3
40
t
)
.

9. RL Circuit 1*

We can apply Thevenin’s theorem with respect to the ends of the inductor

to convert the rest of the circuit (besides the inductor) into a Thevenin emf

εeq = 1
1+1.5 · 12 = 24

5 V and Thevenin resistance Req = 1·1.5
1+1.5 + 0.4 = 1Ω.

Therefore, the original circuit becomes a series RL circuit with εeq = 24
5 V,

Req = 1Ω and L = 1H. Applying the result from Section 10.1.4, the current

through the inductor (from its left to right end) as a function of time is

IL =
εeq
R

(
1− e−

R
L
t
)
=

24

5
(1− e−t).

The potential difference across R3 is that across R2 plus that across the

inductor.

V3 = ILR2 + L
dIL
dt

=
48

25
(1− e−t) +

24

5
e−t =

48

25
+

72

25
e−t.

The current through R1 is IL plus that through R3.

I1 = IL +
V3
R3

=
24

5
(1− e−t) +

48

25
+

72

25
e−t =

168

25
− 48

25
e−t.

10. RL Circuit 2*

Before the switch is closed, the current through the inductor is

IL(0
−) =

100

40 + 10
= 2A

from its left to right end, as the inductor is effectively an ideal wire in the

long run. Immediately after the switch is closed, the inductor maintains the

current through itself so

IL(0
+) = IL(0

−) = 2A.

After the switch is closed, the branch containing the 10Ω resistor and 100V

battery can be removed since its ends become equipotential. The circuit is
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then effectively the resistor 40Ω connected in series with the inductor 100mH.

Since the inductor drives 2A current through the 40Ω resistor at t = 0+,

VL(0
+) = 40× 2 = 80V

with the right end of the inductor having the higher potential. Let I denote

the current through the inductor, from its left to right end. Applying Kirch-

hoff’s loop rule in an anti-clockwise fashion through the resistor R = 40Ω,

inductor L = 100mH and the ideal wire would yield

−LdIL
dt

− ILR = 0

ˆ IL

I0

1

IL
dIL =

ˆ t

0
−R
L
dt

ln

∣∣∣∣ILI0
∣∣∣∣ = −R

L
t

IL = I0e
−R

L
t.

Substituting I0 = 2A, R = 40Ω and L = 100mH,

IL(t ≥ 0) = 2e−400t,

VL(t ≥ 0) = −LdIL
dt

= 80e−400t.

11. R and LC Circuit**

Let the currents flowing through the inductor and capacitor be I1 and I2
rightwards, respectively. Draw a clockwise Kirchhoff loop through the emf

source, resistor and the inductor. This requires

ε− (I1 + I2)R − L
dI1
dt

= 0.

Let the charge on the left capacitor plate be Q. Drawing a clockwise loop

through the inductor and capacitor, we obtain

L
dI1
dt

=
Q

C
.

Differentiating the above with respect to time and using dQ
dt = I2,

I2 = LC
d2I1
dt2

.
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Substituting this expression for I2 into the first equation,

RLC
d2I1
dt2

+ L
dI1
dt

+RI1 = ε.

The particular solution for I1 above is evidently ε
R . The solution to the

homogeneous equation

RLC
d2I1
dt2

+ L
dI1
dt

+RI1 = 0

can be deduced from the characteristic equation

RLCα2 + Lα+R = 0.

The solutions for α are

α =
−L±√

L2 − 4R2LC

2RLC
.

Therefore, the general solution for I1, obtained by combining the particular

and general solutions, is

I1(t) =
ε

R
+Ae

−L+
√

L2−4R2LC
2RLC

t +Be
−L−

√
L2−4R2LC
2RLC

t

for some constants A and B determined by initial conditions. Since the cur-

rent through the inductor is zero at t = 0 (because it tries to instantaneously

maintain the current through itself),

B = −A− ε

R
.

Then,

I1(t) =
ε

R
+Ae

−L+|
√

L2−4R2LC
2RLC

t −
(
A+

ε

R

)
e

−L−
√

L2−4R2LC
2RLC

t.

The other initial condition is that the voltage across the inductor must be

zero at time t = 0 because the voltage across the capacitor is zero at time

t = 0, as it has yet to store any charge. Therefore,

L
dI1
dt

∣∣∣
t=0

= 0

A · −L+
√
L2 − 4R2LC

2RC
+
(
A+

ε

R

)
·
(
L+

√
L2 − 4R2LC

2RC

)
= 0.
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Solving,

A = −ε(L+
√
L2 − 4R2LC)

2R
√
L2 − 4R2LC

.

Substituting this expression for A into I1(t) above would yield the general

solution.

12. C and RL Circuit**

Let V (t) denote the potential difference across the capacitor C, positive if

the left plate has a higher potential, and I(t) denote the rightwards current

through the inductor. Applying Kirchhoff’s junction rule to the node on the

right of the capacitor,

−CdV
dt

+
ε− V

R1
+ I = 0

where C dV
dt is the current emanating from the right capacitor plate and ε−V

R1

is the rightwards current through R1. Substituting the relevant parameters,

−dV
dt

+ 6− V + I = 0.

Applying Kirchhoff’s loop rule to the loop crossing the battery and the

inductor,

6− V − 5I = VL

where VL = LdIdt = 2dIdt is the voltage across the inductor.

=⇒ V = 6− 5I − 2
dI

dt
.

Substituting this expression for V into the previous equation,

5
dI

dt
+ 2

d2I

dt2
+ 6− 6 + 5I + 2

dI

dt
+ I = 0

d2I

dt2
+

7

2

dI

dt
+ 3I = 0

whose characteristic equation has solutions −3
2 and −2. Thus, the general

solution for I is

I = Ae−
3
2
t +Be−2t

for some constants A and B determined by initial conditions. Since I(0) = 1,

A+B = 1.
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Furthermore, the voltage across the inductor at t = 0 is VL(0) = 6− V (0)−
5I(0) = 6− 2− 5 · 1 = −1. Thus,

2
dI

dt
(0) = −3A− 4B = −1.

Solving,

A = 3

B = −2

=⇒ I = 3e−
3
2
t − 2e−2t.

13. Parallel RLC Circuit**

Define the charge on the right plate of the bottom capacitor as Q and that on

the left plate on the top capacitor as Q′. Furthermore, let the current entering

the right plate of the bottom capacitor be I and the currents entering the

inductor, resistor and capacitor in the parallel branches be I1, I2 and I3 from

the left. We know from Kirchhoff’s junction rule that

I = I1 + I2 + I3.

Next, by definition,

I =
dQ

dt
,

I3 =
dQ′

dt
.

Furthermore, the three parallel branches must have a common voltage drop

V (t) from the left to right.

V (t) = L
dI1
dt

= I2R =
Q′

C
.

Kirchhoff’s loop rule through the battery, a parallel branch and the bottom

capacitor dictates that

ε− Q

C
− V (t) = 0.

Differentiating this with respect to time,

I

C
+
dV

dt
= 0

dI

Cdt
+
d2V

dt2
= 0

dI1
Cdt

+
dI2
Cdt

+
dI3
Cdt

+
d2V

dt2
= 0.
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Substituting dI1
dt = V

L ,
dI2
dt = dV

Rdt and
dI3
dt = C d2V

dt2 ,

2
d2V

dt2
+

1

RC

dV

dt
+

V

LC
= 0,

which is analogous to the equation of motion of a damped oscillation. Before

embarking on solving this differential equation, we should keep the initial

conditions for V (t) in mind. Now, there is a path solely comprising the

battery and two capacitors — there must therefore be a discontinuity in the

stored charges of the capacitors at t = 0 (i.e. the capacitors are not ideal

batteries in the short run anymore). During an infinitesimal time interval at

t = 0, a large amount of current travels through the capacitors and deposits

charges on the plates. The inductor maintains zero current through itself

while the current flowing through the resistor transfers negligible charge in

this short time interval. Therefore, the charges stored by the two capacitors

must be identical and their voltages must each be ε
2 . Therefore,

V (0) =
ε

2
.

Next, from I
C + dV

dt = 0 and V = Q′
C ,

I = −I3.
Now, directly after the discontinuity in charges, the current flowing in the

resistor can be computed by dividing the voltage (which is ε2 as it is connected

in parallel with the top capacitor) by its resistance.

I2(0) =
ε

2R
.

Since I(0) = I1(0) + I2(0) + I3(0), I1(0) = 0 as the inductor maintains the

current through itself and I = −I3,

I(0) =
I2(0)

2
=

ε

4R
.

Then,

dV

dt

∣∣∣∣
t=0

= −I(0)
C

= − ε

4RC
.

With V (0) and dV
dt |t=0 as our initial conditions, we proceed with solving the

second order linear differential equation whose characteristic equation is

2α2 +
1

RC
α+

1

LC
= 0

=⇒ α = − 1

4RC
±
√

1

16R2C2
− 1

2LC
.
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If 1
16R2C2 >

1
2LC , we let ω =

√
1

16R2C2 − 1
2LC . The general solution for V is

of the form

V = e−
1

4RC
t(Aeωt +B−ωt).

The initial conditions imply that

A+B =
ε

2
,

A

(
− 1

4RC
+ ω

)
−B

(
1

4RC
+ ω

)
= − ε

4RC
.

Solving,

A =
ε

4
− ε

16ωRC
,

B =
ε

4
+

ε

16ωRC
,

V = e−
1

4RC
t
[(ε

4
− ε

16ωRC

)
eωt +

(ε
4
+

ε

16ωRC

)
e−ωt

]
.

Moving on, when 1
16R2C2 = 1

2LC , the general solution for V is

V = Ae−
1

4RC
t +Bte−

1
4RC

t.

The initial conditions imply

A =
ε

2
,

− A

4RC
+B = − ε

4RC

B = − ε

8RC
.

Therefore,

V =
ε

2
e−

1
4RC

t − ε

8RC
te−

1
4RC

t.

Finally, in the last case where 1
16R2C2 <

1
2LC , let iω =

√
1

16R2C2 − 1
2LC . The

general solution for V is of the form

V = e−
1

4RC
t(Aeiωt +Be−iωt).
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Since V must be real, A and B must be complex conjugates.

A =
D

2
eiφ,

B =
D

2
e−iφ,

for some real constants D and φ. Then,

V =
D

2
e−

1
4RC

t(ei(ωt+φ) + e−i(ωt+φ)) = De−
1

4RC
t cos(ωt+ φ).

The initial conditions yield

D cosφ =
ε

2
,

− D

4RC
cosφ− ωD sinφ = − ε

4RC

=⇒ D sinφ = − ε

8ωRC
.

Thus,

D =

√
1

4
+

1

64ω2R2C2
ε

where we have chosen the positive sign because the exact sign of D doesn’t

matter (it can be adjusted by a π-radian offset of φ). With this choice of D,

φ is given by

φ = cos−1 ε

2D
= cos−1 1√

1 + 1
16ω2R2C2

.

Then,

V =

√
1

4
+

1

64ω2R2C2
ε cos(ωt+ φ).

Now that we have computed V (t) for all possible cases, the charge on the top

capacitor is simply CV . The instantaneous voltage of the bottom capacitor is

given by Kirchhoff’s loop rule to be ε−V . Thus, it possesses charge εC−CV .

14. Contracting Capacitor***

Let Q(t) be the common charge stored in the left plate of the top capacitor

and the right plate of the bottom capacitor. The charges stored must be
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identical as the segment connecting the two left plates of the capacitors is

electrically isolated and neutral. Initially, Q = Q0. By Kirchhoff’s law,

ε− Q0

C1
− Q0

C0
2

= 0

where C0
2 is the initial capacitance of the top capacitor.

C0
2 = ε0

A

d0
.

Then,

Q0 =
εC1C

0
2

C1 + C0
2

=
εε0C1A

C1d0 + ε0A
.

Now, when the top capacitor is released, the plates attract each other which

causes the plate separation to decrease — hence changing the capacitance

of the top capacitor. Let the plate separation at time t be d(t) and the

capacitance of the top capacitor be C2(t). Then,

C2(t) = ε0
A

d(t)
.

Furthermore, we know from Gauss’ law that the electric field due to one

plate at the location of the other is Q
2Aε0

. Therefore, the acceleration of each

plate is Q2

2mAε0
towards one another — implying that

d̈ = − Q2

mAε0

where we have multiplied by two as the second time derivative of the plate

separation is compounded by the accelerations of the two plates. By Kirch-

hoff’s loop rule,

ε− Q

C1
− Q

C2(t)
= 0,

ε− Q

C1
− Qd

ε0A
= 0.

Dividing by Q,

ε

Q
− 1

C1
− d

ε0A
= 0.

Differentiating the above with respect to time,

− ε

Q2
Q̇ =

ḋ

ε0A
.
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The above equation implies that the initial current Q̇ is zero as the ini-

tial velocities of the plates are zero (this will be an initial condition later).

Differentiating once again,

2ε

Q3
Q̇2 − ε

Q2
Q̈ =

d̈

ε0A
.

Substituting d̈ = − Q2

Aε0
,

ε

Q2
Q̈− 2ε

Q3
Q̇2 =

Q2

mA2ε20
.

Using the trick Q̈ = dQ̇2

2dQ and simplifying,

dQ̇2

dQ
− 4

Q
Q̇2 =

2Q4

mA2ε20ε
.

Multiplying the above by the integrating factor 1
Q4 ,

1

Q4

dQ̇2

dQ
− 4

Q5
Q̇2 =

d
(
Q̇2

Q4

)
dQ

=
2

mA2ε20ε
.

Therefore,

ˆ Q̇2

Q4

0
d

(
Q̇2

Q4

)
=

ˆ Q

Q0

2

mA2ε0ε
dQ

Q̇2

Q4
=

2(Q−Q0)

mA2ε20ε

Q̇ =

√
2(Q−Q0)Q4

mA2ε20ε
,

where we have used the facts that Q(0) = Q0 and Q̇(0) = 0. We have chosen

the positive value, as the equivalent capacitance of the system increases

such that the capacitors can store more charge for a given total potential

difference. Separating variable and integrating,

ˆ Q

Q0

1√
Q−Q0Q2

dQ =

ˆ t

0

√
2

mA2ε20ε
dt.

The integral on the left can be evaluated via the following procedure — we

shall leave out the limits of integration lest the expressions get too cluttered.
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First, we use the substitution x = Q−Q0 and dx = dQ. Then,ˆ
1√

Q−Q0Q2
dQ =

ˆ
1√

x(x+Q0)2
dx.

Next, use the substitution y =
√
x such that x = y2 and dx = 2ydy. Then,ˆ

1√
x(x+Q0)2

dx =

ˆ
2

(y2 +Q0)2
dy

which is a standard integral that can be solved by substituting y =
√
Q0 tan θ

for some variable θ. Overall, the integral evaluates to

ˆ Q

Q0

1√
Q−Q0Q2

dQ =
1√
Q3

0

⎛
⎜⎝sin

(
2 tan−1

√
Q
Q0

− 1
)

2
+ tan−1

√
Q

Q0
− 1

⎞
⎟⎠,

which can also be expressed as

ˆ Q

Q0

1√
Q−Q0Q2

dQ =
1√
Q3

0

⎛
⎝
√
Q0

Q
− Q2

0

Q2
+ tan−1

√
Q

Q0
− 1

⎞
⎠.

Thus,

t =

√
mA2ε20ε

2Q3
0

⎛
⎝
√
Q0

Q
− Q2

0

Q2
+ tan−1

√
Q

Q0
− 1

⎞
⎠.

This expression for t in terms of Q is only valid until the plates of the top

capacitor converge (it breaks down at the first assumption that the charges

stored by the two capacitors are equal as the segment connecting their left

plates is no longer electrically isolated). After this juncture, the top capacitor

essentially becomes an ideal wire — causing it to store zero charge and the

bottom capacitor to store a constant εC1 charge.

15. Current in Parallel RLC Circuit*

The power dissipated by the resistor is

P =
V 2

R
=
ε20
R

cos2 ωt.

The energy stored in a capacitor with capacitance C across a potential dif-

ference V is

UC =
1

2
CV 2.
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The rate of change of the energy stored in a capacitor is thus

dUC
dt

= CV
dV

dt
.

Since V = ε0 cosωt,

dUC
dt

= −ε20ωC sinωt cosωt.

Finally, the energy stored in an inductor carrying current I is

UL =
1

2
LI2.

The rate of change of energy stored is then

dUL
dt

= LI
dI

dt
= VLI = ε0I cosωt,

where VL = LdIdt = ε0 cosωt is the voltage across the inductor. The cur-

rent through the inductor in this case can be computed via the complex

impedance method. Since the impedance of an inductor is iωL, the complex

current through it is

Ĩ =
ε0e

iωt

iωL
.

The actual current through the inductor is the real part of this which is

I = Re(Ĩ) =
ε0
ωL

sinωt.

The rate of change of energy stored in the capacitor is then

dUL
dt

=
ε20
ωL

sinωt cosωt.

The current through the AC source, IAC , can be computed by equating the

power delivered by the AC source (ε0 cosωtIAC) with the rate of change of

the other forms of energy. Thus,

IAC =
P + dUC

dt + dUL
dt

ε0 cosωt
=
ε0
R

cosωt+ ε0

(
1

ωL
− ωC

)
sinωt.

16. Bridge*

The equivalent impedance of the 6L inductor and the capacitor is

6iωL− i

ωC
= 6iωL− 2iωL = 4iωL.

Notice that the ratio between this equivalent impedance and the impedance

of the 2L inductor in the bottom row is 2 : 1 — a value that is equal to
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that between the 2L inductor and the L inductor in the top row. Due to this

equal ratio of impedances, the two ends of the resistor must be “equipotential

points” and the resistor can effectively be removed. The total impedance of

the set-up is then

Zeq =
3iωL · 6iωL
3iωL+ 6iωL

= 2iωL.

The complex current through the AC source is consequently

Ĩ =
ε0

2iωL
eiωt.

The actual current is the real component of this.

I = Re(Ĩ) =
ε0
2ωL

sinωt.

17. Transformer Circuit**

Define I1 and I2 as the clockwise and anti-clockwise currents in the left and

right loops respectively. Applying Kirchhoff’s loop rule to the left loop in

the clockwise direction,

ε0 cosωt− I1R− L1
dI1
dt

−M
dI2
dt

= 0.

Denoting the charge on the left plate of the capacitor as Q, we apply Kirch-

hoff’s loop rule to the right loop in the anti-clockwise direction.

−L2
dI2
dt

−M
dI1
dt

− I2R− Q

C
= 0.

Now, exploiting the linear nature of these equations, we consider the complex

forms of the above.

ε0e
iωt − Ĩ1R− L1

dĨ1
dt

−M
dĨ2
dt

= 0

L2
dĨ2
dt

+M
dĨ1
dt

+ Ĩ2R+

´
Ĩ2dt

C
= 0

where we have used the fact that I2 = dQ
dt . We then guess exponential solu-

tions for the complex currents.

Ĩ1 = A1e
i(ωt+φ1),

Ĩ2 = A2e
i(ωt+φ2).
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Substituting these expressions into the equations above,

ε0e
iωt − Ĩ1R− iωL1Ĩ1 − iωMĨ2 = 0

iωL2Ĩ2 + iωMĨ1 + Ĩ2R+
Ĩ2
iωC

= 0,

where we have used the fact that the constant of integration in
´
Ĩ2dt must

be zero, for the same reason in Section 10.2.3. Simplifying and substituting

C = 1
ω2L2

,

(R+ iωL1)Ĩ1 + iωMĨ2 = ε0e
iωt

iωMĨ1 +RĨ2 = 0.

Solving these equations simultaneously,

Ĩ1 =
ε0R

(R2 + ω2M2) + iωRL1
eiωt,

Ĩ2 = − ε0iωM

(R2 + ω2M2) + iωRL1
eiωt.

The actual currents are the real components of the above.

I1 = Re(Ĩ1) =
ε0R√

(R2 + ω2M2)2 + ω2R2L2
1

cos(ωt− φ),

I2 = Re(Ĩ2) =
ε0ωM√

(R2 + ω2M2)2 + ω2R2L2
1

sin(φ− ωt),

where φ = tan−1 ωRL1
R2−ω2M2 . The role of the capacitor is to nullify the self-

inductance L2 in this case. I2 leads I1 by π
2 -phase since cos(ωt − φ + π

2 ) =

− cos(π2 − ωt+ φ) = − sin(ωt− φ) = sin(φ− ωt).

18. Mutual Inductors**

We first consider real variables. Let V be the common voltage across the

inductors and propose currents I1 and I2 to flow through the respective

inductors rightwards. The voltage across each inductor is caused by its self-

inductance and the mutual inductance due to the change in current through
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the other inductor. Thus,

V = −L1
dI1
dt

−M
dI2
dt
,

V = −L2
dI2
dt

−M
dI1
dt
.

Observe that these expressions are still linear in the derivatives of I1 and I2.

Therefore, the particular solution for the complex variables Ĩ1 and Ĩ2 should

still be exponential — implying that the method of complex impedance

should still work. Now, replace V , I1 and I2 with their complex counterparts

Ṽ , Ĩ1 and Ĩ2. Then,

Ṽ = −L1
dĨ1
dt

−M
dĨ2
dt
,

Ṽ = −L2
dĨ2
dt

−M
dĨ1
dt
.

Rearranging and eliminating dĨ2
dt ,

Ṽ = −L1L2 +M2

L2 −M

dĨ1
dt

= −iωL1L2 +M2

L2 −M
Ĩ1

as Ĩ1 should be exponential with frequency ω. Therefore, the equivalent

impedance of the first inductor is Z1 = iωL1L2+M2

L2−M . Similarly, the impedance

of the second inductor is Z2 = iωL1L2+M2

L1−M . The equivalent impedance of

these two inductors in parallel is given by Zeq =
Z1Z2
Z1+Z2

.

Zeq = iω

(L1L2+M2)2

(L1−M)(L2−M)

L1L2+M2

L1−M + L1L2+M2

L2−M
= iω

L1L2 +M2

L1 + L2 − 2M
.

We can check that this expression is consistent with the equivalent induc-

tance that we have calculated in Section 10.1.5. The total impedance of the

circuit is

R+ iω
L1L2 +M2

L1 + L2 − 2M
.

Therefore, the complex current flowing through the AC source is

Ĩ =
ε0e

iωt

R+ iω L1L2+M2

L1+L2−2M

.
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The current through the top inductor is given by the current divider principle

(refer to DC Circuits).

Ĩ1 =
Z2

Z1 + Z2
· Ĩ

=
1

L1−M
1

L2−M + 1
L1−M

· ε0e
iωt

R+ iω L1L2+M2

L1+L2−2M

=
L2 −M

L1 + L2 − 2M
· ε0e

iωt

R+ iω L1L2+M2

L1+L2−2M

=
(L2 −M)ε0√

R2(L1 + L2 − 2M)2 + ω2(L1L2 +M2)2
ei(ωt−φ)

where φ = tan−1 ω(L1L2+M2)
R(L1+L2−2M) . The actual current is the real part of the

above.

I1 = Re(Ĩ1) =
(L2 −M)ε0√

(L1 + L2 − 2M)2 + ω2(L1L2 +M2)2
cos(ωt− φ).
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Chapter 11

Relativistic Kinematics

This chapter will study relativistic kinematics from the two fundamental

postulates of special relativity. Special relativity is one of the more excit-

ing and popular topics due to its profound consequences, many of which

are contrary to common sense. Many apparent paradoxes will arise but one

should note that special theory is a perfectly sound and coherent theory.

Most of the time, these situations are not paradoxical at all and are contra-

dictory purely because we made them to be so. Hopefully, these puzzles will

be conducive to our understanding of the theory and help us to acclimatize

to the strange phenomena in relativity. It may be helpful to dispel ourselves

of our “common sense” in approaching this topic and accept the concepts

on a clean slate — given that many effects feel extremely counter-intuitive.

There is a ubiquitous misconception that special relativity is incapable

of analyzing accelerating objects or accelerating frames of reference. The

former had better be false as any kinematic theory would be utterly useless

if it could not describe acceleration. In fact, accelerating objects are relatively

easy to handle as their motions can still be quantified in an inertial frame.

Accelerating frames are much harder but can still be dealt with, in a manner

similar to classical mechanics in a non-inertial frame (notice that Newton’s

laws are only valid in inertial frames), though it will not be elaborated in

this chapter.

Finally, you will notice that most special relativity problems do not

involve gravity. Well, it turns out that special relativity was not the most

accurate theory for systems with gravity — general relativity is. This is to

be expected as special relativity was not designed as a theory of gravitation

in the first place! In fact, Einstein’s special relativity was partly inspired by

electromagnetism, as evidenced by the title of his famous 1905 paper: On

the Electrodynamics of Moving Bodies. Nevertheless, the idea of objects on

763
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Earth experiencing a uniform, constant downwards force remains a decent

approximation for our purposes.

11.1 Frames of Reference

A frame of reference is an important concept in relativity and physics in

general. A frame of reference sets a standardized state of motion such that

physical quantities, such as displacement and velocity can be measured rel-

ative to that frame. It is pivotal in ascribing meaning to a measurement as

physical measurements are relative. For example, you may observe a car to

be traveling at a certain velocity towards you when you are stationary with

respect to the ground. However, if you run towards the car, you will then

observe that it moves at a greater velocity with respect to yourself. Evi-

dently, there is little meaning in proclaiming that the velocity of an object is

a certain value without explicitly mentioning the frame of reference in which

it was measured.

Events are of particular concern in physics and we quantify them with

respect to certain frames of reference. Similar to how organizing real-life

meetings requires a venue and a time, events have spatial and temporal

coordinates in a certain frame of reference. However, there is a distinction

between a frame of reference and a coordinate system.

Formally, the frame of an observer is a set of infinite virtual or tangible

points that move rigidly with the observer such that they are perpetually at

rest simultaneously in the frame of the observer. There is no relative motion

(i.e. their separations do not vary) between individual particles or between

a particle and the observer in the frame of the observer. These particles set

a standardized state of motion at every point such that a physical quantity

at a point in space can be measured with respect to a particle at that same

point in space. Furthermore, there exists a universal time for all the particles

in the frame such that the time of an event at a point in space in a certain

frame can be defined to be that recorded by a particle of that frame at that

same point in space.

A coordinate system, on the other hand, is merely a construct used to

quantify measurements in a frame. A frame can have infinitely many possible

coordinate systems. In that sense, a coordinate system is merely a mathe-

matical language used to describe observations in a frame. Consider a vector

in a frame, assuming that a Cartesian coordinate system is chosen, there

can be many different values for the î, ĵ, k̂ components of the vector due

to various possible orientations of the coordinate axes. However, these all

describe the same unique vector.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch11 page 765

Relativistic Kinematics 765

To define an event, a coordinate system must have spatial axes, which

are usually Cartesian in special relativity, and a temporal axis. To visual-

ize a coordinate system, we can imagine three infinite rows of meter sticks,

extending from an observer who is usually defined as the origin of the coor-

dinate frame, and a clock held by every particle that is perennially at rest in

the frame of the observer. These clocks are synchronized in the frame of the

observer; the possible methods of synchronization will be elaborated later.

The spatial coordinate of an event along a certain coordinate axes is

then quantified by the number of meter sticks between the origin and the

location of that event along the infinite row of meter sticks extending in that

direction. The temporal coordinate of an event is then the reading of a clock

at the spatial location of the event.

11.2 The Two Postulates

11.2.1 The Principle of Relativity

The first postulate in special relativity states that

• All inertial frames of reference are equivalent. That is, the laws of physics

hold as well in one inertial frame as in any other inertial frame.

First and foremost, we have to understand the meaning of the term “rela-

tivity”. The principle of relativity is a creed that physicists believe in — we

trust that the laws of nature are symmetric and elegant on the fundamental

level. The principle of relativity is an intuitive axiom that ordains all laws of

physics to exist in similar forms to observers in certain frames of reference.

If this were not the case, physical laws would have severely limited utility

and predictive power.

The notion of relativity extends way back to the times of Galileo and

Newton. Galileo identified an extremely important class of frames of refer-

ence, known as inertial frames, in which the laws of motion are observed

to be the same.1 Formally, an inertial frame is a frame of reference, whose

geometry is Euclidean, in which all laws of physics appear in their simplest

forms (i.e. no fictitious forces). Free particles, which are not subjected to net

forces, undergo rectilinear motion at a constant velocity or remain station-

ary in an inertial frame. Furthermore, any frame that moves rectilinearly at

a constant velocity relative to an inertial frame is also an inertial frame. In

1Note that there is a distinction here between the laws of motion (Newton’s laws) and
all laws of physics. Galilean relativity was proposed to only apply for mechanical laws.
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his development of classical mechanics, Newton hypothesized the existence

of an absolute space and that the distant stars were stationary relative to

the frame of absolute space. Thus, by considering the frame of fixed stars,

all other inertial frames can be defined. However in the context of special

relativity, the notion of an absolute space seems superfluous and is thus dis-

missed. After all, why should the frame of fixed stars be so special? In either

case, inertial frames are a class of infinite frames of reference that travel

at a constant velocity with respect to each other. In order for the laws of

physics to hold in their simplest forms in all space, inertial frames must be

non-accelerating.

One of the defining consequences of the principle of relativity is the rel-

ativity of velocity. Because of the uniformity of the physical laws across all

inertial frames, it is impossible for an observer to identify the exact inertial

frame that he is in. A common depiction of this usually goes as follows.

Given your adventurous and playful nature, you sneak into a train that is

initially stationary with respect to the ground. You decide to settle down in

your new “camp” and thus, carry on with your daily activities. You rinse

your mouth with a cup of water when you wake up, read this book under

a candle light and play billiards. However, on one night, the train departs

while you are sleeping and then travels at a uniform velocity relative to the

ground. Will you be able to conclude that you are on a train, that is moving

with respect to the ground, the next day, solely by conducting experiments

inside the train? Assume that the windows are clamped shut so that you are

unable to peek outside the train.

From your perspective, nothing has changed. If you hit a billiard ball

under the exact same conditions as those on the previous day, the exact

same results will be observed. If you toss a basketball vertically upwards,

it will still land at the same spot on the floor from which it was thrown. It

is impossible for you to conclude that the train you are on is moving with

respect to the ground — this is the crux of the principle of relativity. It

guarantees that traveling at a constant velocity with respect to the ground

leaves no impact on the world around you.

Since we are unable to distinguish between inertial frames due to the

principle of relativity, we are unable to isolate a truly stationary inertial

frame, if it even exists. Velocity then becomes an inherently relative con-

cept as we are unable to say whether something is “moving”, we can only

conclude that something is moving with respect to something else — this is

the relativity of velocity. When describing velocity, it is always paramount

to mention what the velocity was measured with respect to.
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Though velocity is relative, acceleration still remains absolute as the laws

of physics are no longer presumed to be uniform across accelerating frames.

Returning to the previous thought experiment, if the train speeds up or slows

down abruptly, you will definitely be able to tell that a change in the train’s

velocity has occurred. The surface of the water in your cup tilts, the candle

flame slants and you slam into your seat due to a fictitious force. Because of

the mutability of the physical laws across accelerating frames, an observer

is able to determine whether he or she is accelerating and even quantify the

acceleration.

Now, you may oppose the absoluteness of acceleration by posing the

following problem: if you, an observer, measure a particle to have a certain

acceleration in your frame, how can you tell it is you who accelerates and not

the particle or a combination of both? The answer is that you can observe a

free particle (i.e. another particle). If it has an acceleration in your frame, you

know that you are accelerating (as a free particle should travel at a constant

velocity when you are not accelerating). Furthermore, the magnitude of your

acceleration will also be reflected by that of the free particle. Afterwards,

you can determine the absolute acceleration of the first particle by taking

into account your own acceleration and its acceleration in your frame. For

an intuitive argument, let us return to the train analogy again. This time,

you observe another train to have a certain acceleration with respect to your

train. However, you can tell that you are accelerating while the other train

is not, as you are the one hitting your head against your seat and feeling

nauseated while a person on the other train is perfectly fine. In other words,

the change in the physical laws is unique to your frame and helps you to

determine your acceleration.

11.2.2 Invariance of the Speed of Light

The second postulate in special relativity asserts that

• The speed of light in vacuum is the same in all inertial frames of reference.

This second postulate is not at all obvious and is extremely counter-intuitive.

From our everyday experiences, if a train is traveling towards us while we

are traveling on a car at a constant velocity directed at the train afore, our

observed speed of the train is faster than its speed measured by a stationary

observer on the road per se. However, in the case of light, its observed speed

will be the same with respect to any observer moving at a constant velocity

with respect to the ground! This seems extremely surreal but at the same
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time, slightly plausible, considering the fact that we are used to dealing with

speeds much smaller than the speed of light.

Now, where does this bizarre claim stem from? The revolutionary

Michelson–Morley experiment2 led to the widely-accepted conclusion that

light does not require a medium to propagate in. To illustrate why this con-

clusion leads to the second postulate, consider the following argument. An

inertial observer A, who is stationary relative to the ground, observes the

speed of light in vacuum to be c in his own frame. Then, another inertial

observer B that is traveling at a velocity v with respect to the first observer

on a train must observe the speed of light in vacuum to be c in his own frame

too. If the speed of light were to depend on the inertial frame of reference

(e.g. via the Galilean transformations), observer B will be able to conclude

that he is on a moving train with respect to the ground, without looking

outside the window, by conducting experiments with light! This violates the

principle of relativity which is a sacrosanct pillar in physics. Therefore, the

speed of light must be invariant across all inertial frames.

This reasoning does not apply to sound waves as they propagate in com-

pressible media such as air or water. Sound waves travel at 343m/s in air.

When we run towards sound waves, we observe the sound waves to travel at

a greater velocity, as the air that is carrying the sound is now moving with

respect to us. However, sound still travels at 343m/s relative to the frame

of air. Therefore, even though observer B observes sound waves to travel in

air at a speed that is different from 343m/s, he is unable to conclude that

his train is moving relative to the ground from this relative speed of sound

as the conditions of his experiments are different (the air is now moving in

his frame, which is contrary to the still air that was observed in the ground

frame). If the air were stationary in his frame, because it is dragged along by

the train per se, the observer will still observe sound to travel at 343m/s. On

the other hand, in the case of light, there is no such medium of propagation.

Hence, the conditions for a light experiment are the same in two inertial

frames moving relative to each other — leading to the conclusion that light

must be observed to travel at the same speed c in both frames due to the

principle of relativity.

Actually, any disturbance, that does not require a medium to propa-

gate in, will possess a speed that is invariant across inertial frames. It

just happens that light undertakes this role in our universe. Finally, light

also has other special properties. Due to the logical consequences of these

2See Appendix A.
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two postulates, the speed of light in vacuum c is also established as the

theoretically maximum possible speed of information and physical objects.

If this were not the case, situations that are contrary to common human

experiences will arise as a corollary of the postulates. This will be elaborated

in a later section.

11.2.3 Underlying Assumptions

Besides the principle of relativity, there are deeper, underlying assumptions

about the properties of space and time in an inertial frame. Firstly, it is

presumed that an inertial frame is both spatially and temporally homoge-

neous. That is, an experiment conducted at a certain point in space and

time will produce the exact same results at that performed at another point

in space and time, ceteris paribus (with all other conditions held constant).

Fundamentally, this is the epistemological basis of physics which stems from

inductive reasoning.

Imagine a scenario where we toss a ball into the air and observe it to

fall to the ground. If we repeat this experiment multiple times on different

occasions, with all other conditions held the same, and still observe that

the ball falls, we might surmise that the ball will fall to the ground at all

instances in time, ceteris paribus. However, there is actually no guarantee

that the ball will actually do so — this is a striking and inherent flaw in

inductive reasoning. Observing a certain phenomenon to occur at a certain

instance, given certain conditions, does not ordain the same phenomenon to

occur at the next instance, ceteris paribus. The ball could possibly accelerate

into space and crash into the Moon the next time we throw it, for all we

know. However, we believe in the validity of inductive reasoning — that the

ball still falls to the ground when thrown at the next instance — when backed

by a reasonable amount of empirical evidence. In that sense, scientists are

hardly free from bias as they possess an intrinsic predilection towards elegant

and general theories that describe the world around them. If the same results

were not obtained from experiments performed at different times, with all

other conditions held constant, physical laws would be useless as they would

have to be constantly modified. A similar statement can be made about

the properties of space. Therefore, the homogeneity of space and time is a

fundamental assumption of physics.

Due to the presumed homogeneity of space and time in an inertial frame,

spatial and temporal translations of the coordinate axes of a frame of refer-

ence or the observer in that frame do not change the observed results of an

experiment.
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Next, a frame of reference is isotropic in space and time. Experiments

that are conducted at rotationally symmetric spatial locations will produce

identical observed results, ceteris paribus. Similarly, experiments that are

conducted n seconds in the future will produce the same observed results as

those n seconds in the past. In other words, all spatial and temporal direc-

tions are equal — there is no preferred direction in space and time. Con-

comitantly, a rotation of the spatial coordinate axes of a frame of reference

will not affect the observed results of an experiment. Actually, homogeneity

necessarily implies isotropy but the reverse is not true.

The assumptions afore have a direct impact on our study of relativity.

Generally, a coordinate system in an inertial frame may undergo a trans-

lational transformation, rotational transformation or a Lorentz boost — a

process during which one changes from one inertial frame to another with a

constant relative velocity, without any rotation of the coordinate axes. Due

to the homogeneity and isotropy of space and time, only the last form of

transformation is of primary concern in this chapter as the previous two can

be performed trivially.

11.3 Consequences of the Postulates

In this section, we will “start physics anew” and deduce the consequences of

the postulates on the nature of space and time. Notice that the notion of a

universal time, that is invariant across all inertial frames, is not presumed as

part of the theory. Therefore, it is beneficial for us to dispel ourselves of such

preconceptions about time in approaching this section. As a last precursor,

observe that half of our postulates talks about light. As such, light will be a

fundamental part of our thought experiments as it is the only entity whose

nature we are sure of, as of now. In this sense, we are about to be enlightened

by light.

11.3.1 Conventions

Several conventions regarding the definitions of coordinate systems in iner-

tial frames will be adopted in the following sections. Generally, there are

three spatial coordinates, which are Cartesian, and one time coordinate that

is of interest. Furthermore, we are often concerned about how coordinates in

one inertial frame transform to those in another inertial frame. Thus, we use

primed coordinates to denote the coordinates of a primed inertial frame. Usu-

ally, we will have two inertial frames, S and S’, that are moving with respect

to each other and have coordinate axes in x, y, z, t and x’, y’, z’, t’ respec-

tively. The axes in S’ are defined to be parallel to the corresponding axes in
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S by default. Furthermore, the x and x’-axes are oriented such that S’ travels

at a velocity v purely along the x-direction, as observed in frame S. More-

over, the origins of the two coordinate axes are assumed to coincide (i.e. x′ =
x = 0, y′ = y = 0, z′ = z = 0) when t′ = t = 0 unless otherwise stated. A

pair of coordinate systems that obeys these guidelines will be known as the

standard configuration. In the analysis of the fundamental effects of the pos-

tulates, we will be referring to the frames of observers instead of S and S’ so

that they can be better associated with the physical situation. Despite this,

these observers’ frames follow similar conventions to those stated above.

Lastly, as the coordinates along the y and z-directions are unchanged

across different inertial frames and hence uninteresting (as we shall discover),

we will primarily be concerned with the x and x’-coordinates and neglect the

other spatial coordinates. Therefore, our analysis is essentially reduced to a

one-dimensional problem in spatial terms but can also be easily be extended

to the three-dimensional case.

11.3.2 Time

Before we analyze a concrete application of the postulates, let us first under-

stand how the time difference between two events that occur in different

positions in space can be measured in a particular frame. The occurrence of

an event is defined by its position and its time with respect to an inertial

frame. Note that absolute time does not exist and we really mean the time

elapsed between the occurrence of a certain event and that of another event

which we use as a reference when we refer to the time of an event.

We can imagine placing miniature clocks at every point in space that are

stationary with respect to the given inertial frame. Then, the clocks can be

synchronized. There are various methods to accomplish this. For example, we

can place a light source at the middle of two points in space. The light source

emits a flash which simultaneously triggers the starts of the clocks at the two

points in space when they receive the signal. Alas, this method only works for

synchronizing two clocks. For a more general set-up, one method would be

to first start many clocks simultaneously at the same point in space. Then,

one can move the clocks ever so slowly towards their respective destinations.

Finally, another famous method is due to Einstein. In order to synchronize

two clocks, send a light signal from clock A when it reads tA towards clock

B. When clock B receives the light signal, its reading tB is recorded and it

reflects the light signal back towards clock A which receives it at t′A. The
observers at the locations of the clocks can then meet up to exchange their

findings about tA, tB and t′A. If tB = 1
2 (tA + t′A), they can conclude that
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the clocks are synchronized. Otherwise, the poor engineers then have to go

back to tweaking the readings of the clocks until this condition is eventually

fulfilled! This process can be repeated for all pairs of clocks in an inertial

frame to synchronize them.

Now that we have synchronized clocks that are operating in all space

in a certain frame (it doesn’t matter how this is achieved as long as the

clocks are synchronized), whenever an event transpires at a position in that

frame, its time of occurrence in that frame can be defined to be the recorded

reading of the clock (of that frame) at that particular point in space. The

time when the clocks were started can be used as a temporal reference point

in this case. Accordingly, the time difference between two events in a frame

is simply the difference between the times recorded by the clocks of that

frame at the corresponding positions.

When there are multiple inertial frames, an array of synchronized clocks

can be defined for each frame in general. These arrays may or may not

be identical. In fact, we will discover that they are vastly different in the

following sections due to the ramifications of the postulates. Figure 11.1

depicts two arrays of clocks synchronized with respect to two inertial frames,

S and S’, with conventional definitions. Note that the clocks in frame S

appear like the following with respect to frame S. An observer in frame S’

may or may not observe clocks in frame S to be the same as that observed

by an observer in frame S. The reverse is also true.

Figure 11.1: Two arrays of clocks viewed in their own frames

Finally, a core aspect of special relativity is the grounding of time on

a firmer observable foundation. Time is no longer an abstract concept that

is independent of physical processes. It is necessarily measured by physical

systems such as sandglasses and oscillating pendulums. Therefore, since an

event requires a time of occurrence in order to be defined, the observation of

the same event in different inertial frames can conversely be used to relate

the times in different frames (e.g. in S and S’). This will be a key component
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of the following section. To this end, keep in mind that the time of an event,

as recorded by a clock, must be independent of the frame that we observe the

same clock3 from (we need not only observe it from its rest frame). However,

the process through which the reading on the clock undergoes in attaining

the final coherent reading may differ across inertial frames.

11.3.3 The Relativity of Simultaneity

As a consequence of the postulates, events that are simultaneous in one

inertial frame are not simultaneous in another! Then, clocks that are syn-

chronized in one inertial frame of reference are not synchronized in another!

Consider the following situation: observer A sits on a train that is trav-

eling at a speed v towards the right in observer B’s frame. Similarly, A

observes B to move towards the left at a speed v. Subsequently, A observes

lightning to simultaneously strike the opposite ends of the train in his own

frame. However, observer B will conclude that the lightning does not syn-

chronously strike both ends of the train in his frame, as we shall see!

Figure 11.2: Observer A’s frame

Referring to Fig. 11.2, we can imagine placing a light source at the center

of the train, that is stationary relative to the train. The light source then

emits two photons towards the two ends of the train. We define the times

of these emissions to be zero in both observers’ frames. Then, we can define

the times of occurrence of the lightning strikes in a particular frame to be

those when the corresponding photons collide with the walls of the train in

that frame. It does not matter if there isn’t an actual light source in the

set-up. What matters is that we could have placed one if we wanted to and

used it as a temporal yardstick to “call lightning to strike upon a wall” when

that wall receives a photon. Thus, the following analysis is valid regardless

of whether an actual physical light source is used.

3Clocks of different frames can be observed to possess different readings for the same
event as they are different clocks.
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In the frame of A, the train is not moving and if we define the train to

be of length L′, the photons will strike the ends of the wall in time

tA =
L′

2c

simultaneously in A’s frame (this is the reason why we placed the light source

in the middle of the train). Now consider the frame of B in Fig. 11.3, both

walls of the train move towards the right at speed v.

Figure 11.3: Observer B’s frame

As the speed of light remains at a constant value c in B’s frame of refer-

ence, the times taken for the photons to reach the left and right ends of the

train are respectively

tL =
L

2(c+ v)
,

tR =
L

2(c− v)
,

where L is the length of the train in B’s frame. L may or may not be equal

to L′ (we can’t be certain right now as the postulates did not state so). We

see that these two events are in fact not simultaneous with respect to B’s

frame of reference as long as v �= 0. In fact,

Δt = tR − tL =
L

2(c − v)
− L

2(c+ v)
=

Lv

c2 − v2
.

It turns out that L is indeed different from L′. We shall just invoke the result

from a later argument that

L =
L′

γ
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where

γ =
1√

1− v2

c2

.

Thus,

Δt =
L′v
c2

·
√

1− v2

c2

1− v2

c2

=
γL′v
c2

.

This is a solemn admonishment that events that we consider simultaneous

in one inertial frame are not simultaneous in another. We should always

take care in identifying the frame that is currently under consideration. It

makes no sense to say that two events occur concurrently without explicitly

mentioning the inertial frame of observation.

Now, let A’s frame be S’ and B’s frame be S, under the standard con-

figuration. Define the origins O’ and O to coincide at t′ = t = 0 at the

instantaneous location of the left end of the train. Attach two clocks, syn-

chronized in S’, to the left and right ends of the train and consider two

clocks, synchronized and stationary in S (i.e. these clocks do not move with

the train but rest on the ground), that coincide with the instantaneous loca-

tions of the ends of the train at t′ = 0. If the left and right clocks of S’

(by clocks of a frame, we mean clocks synchronized in that frame) record

t′L = t′R = 0 when lightning strikes the two ends of the train, we know

from the previous scenario that the right clock of S will indicate a reading

tR = γL′v
c2

while the left clock of S will record tL = 0 (as the left clocks

of S and S’ are synchronized under the standard configuration). From B’s

perspective, he would simply claim that the lightning struck the clocks of S

at different junctures — resulting in the discrepancy in readings. However, A

must also be able to explain the readings of the clocks synchronized in S (as

the readings are physical events4 that should be immutable across inertial

frames) so it is interesting to consider his perspective. Since A observes the

two lightning events to occur simultaneously, the clocks of S must have been

observed by A to have differing readings in the first place! That is, A observes

clocks that are synchronized in S to be asynchronous! Thus, A explains the

loss of simultaneity of two concurrent events in S’, as observed by B in S, as

follows: since the clocks in B were asynchronous in the first place, they will

naturally have a discrepancy in readings when lightning strikes them at the

same instance in my frame!

4We can stop the clock once it is struck by lightning.
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In retrospect, it is rather intuitive that the above argument leads to the

conclusion that clocks synchronized in one frame are not synchronized when

observed in another frame as our train set-up is reminiscent of a particular

method of synchronizing two clocks (putting a light source at the center) of

a single frame.

Figure 11.4: Clocks in corresponding positions in S as viewed by observer A in S’

To illustrate what A observes at t′ = 0, consider Fig. 11.4 which comprises

an array of clocks synchronized in each of S’ and S. The clocks in S’ are

stationary in S’ while the clocks in S are moving towards the left at speed

v. At t′ = 0, the clocks in S’ coincide with the corresponding clocks in S

(i.e. x′1 at t′ = 0 corresponds to a clock at x-coordinate5 x1 with respect to

the x-axis in S). The clocks at the origins O and O′ are synchronized such

that t = t′ = 0 there. When A observes the clocks of S’ to read t′ = 0, the

clock of S that corresponds to the x’-coordinate x′ reads t = γx′v
c2

, such that

the reading of the clocks of S increases towards the right as observed by

A. A neat way of identifying the direction of increase is to remember that

the rear clock is ahead (rear with respect to the velocity of the clocks). In

summary, a moving array of clocks — synchronized in their common rest

frame — is observed to possess a positive “gradient” in readings opposite

to the direction of their velocities. Now, we have only established this result

for t′ = 0 (i.e. a certain juncture in S’) and are unsure about other values of

t′. It turns out, from the later section on time dilation, that the clocks of S

tick at the same rate (as they are multiplied by the same dilation factor), as

observed by A, so the “gradient” is maintained at all times t′.

5Actually, we can deduce that x1 = γx′
1 as x1 is akin to the length of a train in its rest

frame (L′) while x′
1 is the observed length of the moving train (L). Since we have used the

result L = L′
γ
, x1 = γx′

1 correspondingly.
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As a word of caution for those who have had some exposure to time

dilation, be wary that this result is not implying that the rear clock in frame

S ticks at a faster rate than the front clock with respect to an observer in

frame S’. They actually tick at the same rate as viewed by an observer in

frame S’ but the rear clock in frame S is simply a constant time ahead of

the front clock, as observed by A in S’, because the clocks are asynchronous

as observed by A.

Simultaneous Events with Respect to Observer B

Now consider the previous situation again, except that this time, lightning

strikes the ends of the train simultaneously in B’s frame. How will the timings

of the two lightning strikes differ in A’s frame if the length of the train in

A’s frame is L′?
Similarly, imagine placing a light source which emits two photons in

opposite directions on the train. We shall denote the time of a lightning

strike at a wall in a frame to be that when a photon hits that wall. In order

for the photons to strike the walls concurrently in B’s frame, we know from

the previous analysis that the light source must divide the train into sections

of ratio c + v : c − v in B’s frame. This ratio must also hold in A’s frame.6

Thus, the set-up looks like Fig. 11.5 in A’s frame.

Figure 11.5: Light source in train with respect to A’s frame

The time taken by the left photon to hit the left wall is longer than that

required by the right photon to collide with the right wall in A’s frame by

Δt = tL − tR =
L′(c+ v)− L′(c− v)

2c2
=
L′v
c2
.

6One way to see this is that if the ratio of two relatively stationary objects is different
across inertial frames, we would be able to tell if we switched between inertial frames —
violating the principle of relativity.
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Formally, if we define observer A’s and B’s frames to be S’ and S respectively

and their positive axes, x’ and x, to be along the direction of the train’s

velocity in frame S, B will observe the reading of the rear clock in frame S’

to lead that of the front clock by time L′v
c2

, where L′ is the difference in the

x’-coordinates of the two clocks in frame S’.

In order words, spatially separated events that are deemed by B to be

simultaneous are events that differ by a time of L
′v
c2

in frame S’. Specifically,

the spatially leading event must lag behind the spatially trailing event by
L′v
c2

in frame S’ in order for them to be simultaneous in frame S.7

To visualize this from the perspective of B, assume that the clocks at the

origins of S and S’, O and O′, are synchronized when they coincide such that

t = t′ = 0 at that juncture.

Figure 11.6: Clocks in S’ as viewed by observer B in S

At t = 0, if the x’-coordinate of a clock of S’ is x′, its reading will be −x′v
c2

as observed by B. In Fig. 11.6, all clocks of S’ — except that at O′ — are

displaying negative times as the reading of the clock at O′ — which leads

the other clocks — is zero. Finally, we comment on an aside for readers who

are interested in the x-coordinate x that corresponds to x’-coordinate x′ at
t = 0. Since x′ is akin to the length of a train in its own rest frame while x

is the observed length of the moving train in another frame, we can deduce

that x = x′
γ from the equation L = L′

γ that we have used earlier. It remains

for the reader to check if the two time discrepancies for simultaneous events

with respect to A and with respect to B are coherent.8

7Leading and trailing with respect to the direction of v (the velocity of frame S’ with
respect to frame S).

8Observe that the first situation becomes the second if we swap S and S’ (technically,
we need to reverse the direction of the velocity v but that only changes the direction of the
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The Andromeda Paradox

The crux of the relativity of simultaneity is that observers in different inertial

frames have different planes of simultaneity and hence observe different sets

of present events. Roger Penrose proposed an argument that magnifies this

effect to the extent of bizarreness.

Consider two twins that are situated at the same place on Earth, one

walks in a direction towards the Andromeda galaxy while the other walks in

the opposite direction. The twin that walks towards the Andromeda galaxy

observes aliens traveling on spaceships en route to invade the Earth as the

clock on the Andromeda galaxy is the rear clock in his frame. Thus, this twin

observes events on the Andromeda galaxy to unfold much earlier than a sta-

tionary observer on the Earth. On the other hand, the other twin observes

aliens convening a meeting to decide whether they should attack the med-

dlesome humans. This is because the Earth is now the rear clock relative

to this twin. Thus, this twin will observe events at Andromeda that have

already occurred in the frame of a stationary observer on Earth.

There is an apparent paradox here. How can there still be a hint of uncer-

tainty of an alien invasion as observed by one twin while the other concludes

that an imminent attack is inevitable? Before we resolve this apparent para-

dox, there is a clear distinction to be made between “seeing” and “observing”

an event. Each twin “observes” an event on Andromeda that occurs concur-

rently with the present in their own inertial frame. However, he or she does

not “see” that event yet as it takes time for information or photons to travel

towards his or her location as the transmission of information cannot be

faster than the speed of light in vacuum, c.

Well, there are usually two types of paradoxes in special relativity —

those that result from fallacious reasoning and those whose consequences

are so counter-intuitive that we reject them in disbelief. The situation above

happens to fall into the latter category. They indeed make those observations

without any contradiction. Thankfully or unfortunately, logical consistency

is still maintained as it takes time for the information to reach the two twins.

Suppose that the observed distance between the Earth and the Andromeda

galaxy by the “prophetic” twin is L′ and v is the relative velocity between

him and Andromeda galaxy. The minimum time that it takes for information

from the Andromeda galaxy to travel to him (assuming that information

“gradient” and not the magnitude). Therefore, if we switch the primed quantities in the

first result γL′v
c

into the unprimed quantities, we obtain γLv
c2

= L′v
c2

which is the second

result (we have used L = L′
γ
)
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travels at the theoretically maximum speed of light) is

t =
L′

c
>
L′v
c2

which is greater that the L′v
c2

“time lead into the future”. Thus, the twin

who “observes the future” is unable to change the fate of his planet as he is

unable to “see the future” in time.

11.3.4 Time Dilation

The time interval between spatially coincident events in frame S’, as mea-

sured by an observer in S, is larger than that as measured by an observer in

S’. A direct ramification of this is that a clock that is moving with respect

to an observer will be observed to run slower in that observer’s frame. Con-

sider the set-up in Fig. 11.7: observer A is in a train traveling at a speed v

towards the right relative to observer B. From A’s perspective, a stationary

light source emits a vertical beam that is reflected normally by a mirror

attached to the ceiling of the train.

Figure 11.7: Time dilation set-up

The time taken by the light during its roundabout trip in A’s frame is

simply

tA =
2h

c
.

However, from B’s perspective, the situation is shown in Fig. 11.8: the light

has a component of velocity in the horizontal direction as the train is moving
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towards the right. However, the speed of light must still be maintained at c

in B’s frame.

Figure 11.8: Situation in B’s frame

The journey in B’s frame takes

tB =
2h√
c2 − v2

where we have applied Pythagoras’ theorem in calculating the vertical com-

ponent of the velocity of light.9 We realize that

tB = γtA

where

γ =
1√

1− v2

c2

.

This γ factor is ubiquitous in special relativity and thus deserves a special

symbol on its own for simplicity. We see that gamma is always greater or

equal to unity. Now, the above result means that B observes the time interval

between two events that occur at the same spatial position in A’s frame to

be larger than that measured by A. Note that the only spatial position

of concern is along the direction of the relative velocity between the two

frames (as the result holds as long as light can traverse a straight path

perpendicular to v in A’s frame). In this case, it is the horizontal direction.

The time dilation result still applies to the time difference between two events

that are of the same horizontal position but different vertical positions in

9We have used h, which is the height of the train in A’s frame, as the height of the train
in B’s frame without any justification here. This is because length contraction does not
occur in the transverse direction. Refer to the section on length contraction for further
elaboration.
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A’s frame (e.g. the time elapsed between the release of the beam and its

incidence on the mirror).

It is paramount for the events under consideration to be at the same

spatial coordinate of concern in A’s frame in order for the time dilation

equation above to be valid. If the two events are not at the same spatial

coordinate in A’s frame, there needs to be an additional correction for the

loss of simultaneity of the clocks, synchronized in A’s frame, as observed by

B. Thus, the time dilation equation cannot be directly applied in this case.

Now, what does time dilation imply for the operation of clocks? The

release and the receiving events of the light beam are analogous to the begin-

ning and end of a clock-tick on A’s “light clock.” Then, B observes A’s clock

to tick at a slower rate than that observed by A, as the time interval between

successive ticks is longer. As always, keep in mind that this statement is inde-

pendent of whether a physical “light clock” is actually used. The point is

that we could have used it to measure time if we wanted to.

Now, one may ask if time dilation actually happens in B’s frame or is

simply perceived to happen. The answer is that time dilation actually occurs

in B’s frame. If γ = 3
2 and A’s heart beats every 2 seconds as observed by

himself (these pulsating events occur at the same location in A’s frame), B

will observe A’s heart to beat every 3 seconds. Equivalently, it means that

from B’s perspective, the transition between two events that are spatially

coincident in A’s frame plays in slow motion. Therefore, B will actually

observe A to age slower than he does as biological processes, too, slow down.

Figure 11.9: Clocks after 15 seconds have passed in frame S

To visualize time dilation, consider the set-up in Fig. 11.9 with γ = 2. At

time t = 0 in frame S, the one-minute clocks in frame S’ are asynchronous

with respect to an observer in S due to the loss of simultaneity. Note that

the four clocks on the right of O’ all measure a negative reading as the
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rear clock — which is the clock at O’ in frame S’ in this case — leads the

front clocks. However, the clocks at the origin are synchronized such that

t = t′ = 0 when the origins O and O’ coincide. After 15 seconds have passed

in frame S such that t = 15s, only a time interval Δt′ = 7.5s has passed in

frame S’ as observed in S. Thus the readings on the clocks10 in frame S’ only

increase by 7.5s, as tracked by an observer in S.

Apparent Paradox: Now you might argue that from A’s frame, B’s clock

also seems to run slower. There is an apparent paradox, as we seem to be

asserting that A’s clock ticks at a slower rate than B’s but also that B’s clock

ticks at a slower rate than A’s. How is this possible?

The above is indeed true — as long as we define the inertial frame we are

considering. In A’s frame, B’s clock runs slower while in B’s frame, A’s clock

runs slower. There is no contradiction here as these are different events. One

is the tick of B’s clock and the other is the tick of A’s. Let us consider the

clock-tick of A’s clock as an example. In A’s frame, the start and end of

the clock-tick trivially occur at the same position. Thus, we can say that

tB = γtA where tA and tB are the times between consecutive ticks of A’s

clock in the frames of A and B respectively. However, the clock-ticks of A

obviously do not happen at the same position in B’s frame. Thus, we cannot

conclude that tA = γtB . We can only say so if tA and tB refer to the times

between the ticks of B’s clock in A and B’s frames respectively. To illustrate

this, we refer to the previous diagram. Suppose that we now consider the

frame of S’ such that the clocks of S are traveling towards the left at speed

v. If γ = 2 and Δt′ = 15s passes in S’, an observer in S’ will only observe

the readings of the clocks of S to increase by 7.5s too (note that you need

to account for the loss of simultaneity if you want to talk about the exact

readings).

11.3.5 Length Contraction

The final piece of the puzzle concerns how moving objects are observed to

be shortened longitudinally, parallel to their direction of motion. Consider

the situation in Fig. 11.10. There are two twins, A and B, that are on the

Earth. Twin A rapidly travels to the Moon at a speed v relative to twin

B who remains on the Earth. The Moon is a distance L from the Earth as

observed by twin B.

10The clocks still remain at the same x’-coordinates in S’ as they are stationary in S’.
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Figure 11.10: Twin A traveling to the Moon in B’s frame

The time taken for twin A to reach the Moon in B’s inertial frame is

simply

tB =
L

v
.

Now, notice that the starting and ending events in B’s frame occur at dif-

ferent spatial locations. Therefore, tB is really calculated by taking the dif-

ference in the readings of two synchronized clocks, one in B’s hands that

measures A’s deparature and one on the Moon that measures A’s arrival,

in B’s frame. Moving on, we know from the previous section that moving

clocks run slower. Thus, during this period of time, a clock held by twin A

measures a reading of

tA =
tB
γ

=
L

γv
.

In A’s inertial frame, the situation is depicted in Fig. 11.11: the Moon is now

traveling towards A.

Figure 11.11: Twin A’s frame

Since A’s clock records a reading of L
γv after the entire process and the

Moon travels at speed v, the distance between the Earth and the Moon as
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observed by twin A is

L′ = vtA =
L

γ
.

Thus, the distance between the Earth and the Moon must have shrunk by

a factor of 1
γ in A’s frame. The observed distance between the Earth and

the Moon is analogous to the observed length of an object with its ends

defined to be the Earth and the Moon. Generally, if an object has a length

L in its own inertial frame (rest frame), a stationary observer in another

frame will observe that same object to have length L
γ if the object travels

at a longitudinal speed v relative to this new frame. Furthermore, length

contraction is independent of the position on an object — all parts of the

object are shortened by the same proportion (see Footnote 6). On another

note, since the longitudinal length of an object is dependent on the inertial

frame of reference, the proper length of an object is defined to be the length

measured in its own rest frame (i.e. the object is stationary in that inertial

frame).

Length contraction does not occur in the transverse direction. This can

be proven by a simple argument that relies on the fact that physical conse-

quences must be coherent across inertial frames, though measurements may

differ. Consider a truck of proper height L traveling at a speed v into a tunnel

of identical proper height L. If length contraction occurred in the transverse

direction, the truck will observe the tunnel to be shortened in its inertial

frame. Then in the truck’s frame, the truck will crash into the tunnel. How-

ever, in the inertial frame of the tunnel, the truck is shortened and the truck

passes scot-free. Evidently, there is a contradiction here. A similar argument

can be used to prove that the transverse length of a moving object does not

increase either. Thus, the transverse length of an object must be identical

across different inertial frames.

What does Measuring Length Really Mean?

To establish a rigorous meaning for measuring length, let us return to the case

of measuring the length of an object in a high school physics laboratory. We

take a ruler11 and record the readings of the ends of the object of concern via

the markings on the ruler. Then, the length of the object can be obtained by

taking the difference of these two readings. Now, an important qualification

needs to be made here. The two readings need to be made at the same

11Recall that our coordinate system consists of meter sticks!
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time. If our object were to move at a certain velocity relative to us (which is

certainly possible), it makes no sense to jot down the coordinates of its ends

at different times. In light of this discussion, the distance between two events,

as observed in a frame S, is the difference in their spatial coordinates when

they are observed simultaneously. This understanding is crucial in analyzing

many situations.

For example, an intriguing question to ask is how A convinces himself

that if his observed distance between the Earth and the Moon is L′, the
distance observed by B must be L = γL′ from the model of clocks and meter

sticks. Denote A’s frame as S’ and B’s frame as S. Suppose that we attach

two clocks synchronized in S to the Earth and Moon.

Figure 11.12: Clocks synchronized in S, as observed in S’

Referring to Fig. 11.12, if A measures the distance between the Earth

and the Moon to be L′ at time t′ = 0 and if the clock of S on the Earth

reads t = 0 at this juncture, the rear clock (on the Moon) must have a

reading t = Δt = Lv
c2
, as spatially separated events that are simultaneous in

S’ are those that are a time interval Lv
c2

apart in S (where L is the spatial

separation between the events in S). Now, A knows that B must measure

the distance between these clocks at the same time t in S, such as when

both clocks display t = 0. Therefore, A can retain the position of the left

clock (which already displays t = 0 at t′ = 0), while considering the position

of the right clock at t′ = −γΔt = γLv
c2

(dotted in Fig. 11.12) such that the

right clock reads t = 0. Note that we have multiplied by a factor of γ as the

ticking of the clock of S slows down by a factor of γ due to time dilation.

Observer A measures the spatial separation between the left and right clocks

at these specific junctures to be

x′ = L′ +
γLv2

c2
,

so he can reason that the distance between these events (which are now

simultaneous in S and hence reflect the distance between the Earth and
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Moon) will be observed by B to be

L =
x′

γ
=
L′

γ
+
Lv2

c2
,

as A understands that meter sticks (which form the spatial coordinate axes

of S’) attached to his frame are shrunk by a factor of γ (because they

are moving in frame S) such that the separation in x’-coordinates of two

events simultaneous in S is amplified by a factor of γ as compared to the

corresponding separation in x-coordinates. Solving,

L

(
1− v2

c2

)
=
L′

γ

L

γ2
=
L′

γ

L = γL′.

Incidentally, a pivotal concept is revealed in the analysis above. In measuring

the lengths of objects by different observers (e.g. A and B), the pairs of events

that are considered differ across observers, as a set of events simultaneous in

one frame is asynchronous in another. Referring to the set-up that we have

just dissected, even though both observers consider the clock on the Earth

when it reads t = t′ = 0, A uses the clock of S on the Moon when it reads

t = Lv
c2

(corresponding to t′ = 0) while B uses the clock on the Moon when it

reads t = 0 in determining their observed distances between the Earth and

the Moon.

Problem: In the previous set-up, it is known that B’s clock reads L
γv during

the entire journey, where L is the distance between Earth and the Moon as

observed by A. In B’s frame, how does B reason that his journey took L
v

time in A’s frame? That is, how do the relevant clocks of A’s frame play out

in B’s frame?

B syncs his clock with A on Earth. The time of the starting event as

measured by A is thus zero. The duration of B’s journey in A’s frame is then

simply the reading of the clock on the Moon. In B’s frame, the clock on the

Moon is ahead of A’s clock by Lv
c2 as it is the rear clock. Furthermore, in

B’s frame, the time elapsed on his clock is L
γv . Therefore, the time elapsed

on the Moon’s clock during B’s journey, as observed by B, is L
γ2v by time

dilation. The final reading on the Moon’s clock is

L

γ2v
+
Lv

c2
=
L

v

(
1− v2

c2
+
v2

c2

)
=
L

v
.
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11.4 Space-Time

By now, you may have realized that our model of the arrays of clocks and

meter sticks is becoming extremely complicated. It is intuitive to extend this

crude model by replacing the clocks synchronized in a frame with a unified

time axis, which adds a fourth dimension to our analysis. Then, we can

obtain a diagram with space-time as its fabric, which is commonly known as

a Minkowski diagram. Usually, it is more convenient to use ct as the time axis

as opposed to t. The speed of light, c, is then similar to a conversion factor

between space and time. Let us draw a space-time diagram of ct against x

of an arbitrary frame S in Fig. 11.13 and superimpose part of the original

model of clocks on it.

Figure 11.13: Minkowski diagram with superimposed clocks

The array of clocks in this frame is synchronized so that they all record

a reading of zero at t = 0 in this frame. Now imagine a vertical line, x = k,

on the space-time diagram. This line corresponds to the space-time states of

a stationary clock at coordinate k in frame S as time passes. Basically, the

clock is motionless and its reading just increases at a constant rate as time

elapses. The reading on the clock at a point on that line increases with the

height of the vertical position of that point.

An event corresponds to a point on the space-time diagram. It has a

position as indicated by its x-coordinate and a time of occurrence that is

implied by its ct-coordinate. This ct-coordinate is essentially the reading on

a clock (times c) that is placed at the event’s spatial location when the event

transpires.

Lastly, a world line of an object is the set of points x(t) that corresponds

to the path of the object on the space-time diagram as time elapses. For
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an object that is moving at a constant velocity with respect to the current

inertial frame, its world line is a straight line on the space-time diagram.

The world line of a photon is always a 45◦ line, regardless of the inertial

frame of reference, due to the constancy of the speed of light. Note that the

instantaneous gradient at all points on all possible world lines must have an

angle12 of inclination greater or equal to 45◦ as no matter or information

can travel at a speed greater than the speed of light in a vacuum.

Generally, we are interested in the coordinates of certain events in an iner-

tial frame and how they vary across different frames. When switching between

inertial frames, we are essentially transforming the coordinates of a point or a

set of points into those of a new inertial frame. Generally, there are two views

of the transformation of coordinates. An active transformation shifts the set

of points of concern into new positions on the original axes and then replaces

the x and ct-axes with the new axes x’ and ct’. It is obtained by transforming

the coordinates of an event in frame S into that in frame S′ directly.

x′ = f1(x, ct),

ct′ = g1(x, ct),

where f1(x, ct) and g1(x, ct) are the appropriate transformation functions.

A passive transformation modifies the axes while leaving the set of points

unchanged. Then, the coordinates of the points are read off the new axes x’

and ct’. If we define êx, êt, êx′ , êt′ to be unit vectors along the x, ct, x’ and

ct’-axes respectively (also known as the basis vectors), the transformation is

obtained by performing

êx′ = f2(êx, êt),

êt′ = g2(êx, êt).

Moving on, the transformation of coordinates from one inertial frame to

another must be linear as a consequence of the homogeneity of space and

time in inertial frames. Suppose two events occur at coordinates x1 and x2
in frame S at the same time t. Then let

x′1 = f1(x1, ct),

x′2 = f1(x2, ct),

12In this paragraph, we have assumed that the length scales along the ct and x-axes are
the same (i.e. measure x in units of light distances such as light seconds). This is definitely
not true in general, but it is indeed a convention in drawing Minkowski diagrams.
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be the x’-coordinates of the events in the new inertial frame S’. Then, the

spatial separation of these events in frame S’ is

l = f1(x2, ct)− f1(x1, ct).

Next, by the homogeneity of space in inertial frames, if we modify our original

coordinate system by a simple translation in the x-direction such that x1 and

x2 become x1+ k and x2+ k for some constant k, their spatial separation in

S’ should still be l, as it is a tangible, spatial separation between two events.

Then,

f1(x2 + k, ct) − f1(x1 + k, ct) = f1(x2, ct)− f1(x1, ct),

f1(x1 + k, ct) − f1(x1, ct) = f1(x2 + k, ct)− f1(x2, ct).

Dividing the above equation by k and taking the limit as k → 0,

∂f1
∂x

∣∣∣∣
x=x1

=
∂f1
∂x

∣∣∣∣
x=x2

from the first principles of calculus. Since x1 and x2 are arbitrary, this means

that

∂f1
∂x

= α

for some constant α which implies that f1 is linear in x. A similar argument

can be invoked to show that f1 in linear in t by the homogeneity of time (by

considering a translation in time). Lastly, similar arguments also be used to

prove that g1 is linear in x and t as well (by considering a temporal separation

in S’). Then,

x′ = a1x− a2ct,

ct′ = a3ct− a4x,

for some constants a1, a2, a3 and a4, as each transformation should be linear

in x and t. We shall derive these constants in the next section.

11.5 The Lorentz Transformations and Active
Transformations

Instead of having to repeat the error-prone process of accounting for the

relativity of simultaneity, time dilation and length contraction effects, it is

much more desirable to have an integrated transformation procedure. The

Lorentz transformations empower us with the ability to algebraically calcu-

late the coordinates of an event in a new inertial frame, given its coordinates
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in a previous inertial frame and the relative velocity between the two frames.

Formally, the spatial and temporal separation between two events in frame

S as a function of those in frame S’, which is moving at a velocity v with

respect to the x-axis in frame S, is given by

Δx = γ(Δx′ + vΔt′),

Δt = γ(Δt′ +
v

c2
Δx′),

where Δx′ and Δt′ are the spatial and temporal separations of two events

in frame S’ while Δx and Δt are those in frame S. These equations can be

written in a more convenient and symmetric form

Δx = γ(Δx′ + βcΔt′), (11.1)

cΔt = γ(cΔt′ + βΔx′), (11.2)

where β = v
c . They can be expressed even more compactly with the use of

matrices: (
Δx

cΔt

)
=

(
γ γβ

γβ γ

)(
Δx′

cΔt′

)
. (11.3)

The inverse transformations from frame S to frame S’ are obtained from

substituting −v for v.

Δx′ = γ(Δx− βcΔt), (11.4)

cΔt′ = γ(cΔt− βΔx), (11.5)

or (
Δx′

cΔt′

)
=

(
γ −γβ

−γβ γ

)(
Δx

cΔt

)
, (11.6)

with the same definitions of v and γ.

The above transformations can be proven by employing the relativistic

effects that we have derived before and the linearity of the transformations

between inertial frames. This can be visualized better by considering space-

time diagrams undergoing an active transformation. Consider two inertial

frames S and S’. S’ is moving at a velocity v relative to S along the positive

x-axis of S. As only the separation between two events are of interest, coordi-

nate systems in the inertial frames can be chosen such that one of the events

are at the origins, O and O’, in both of the inertial frames S and S’. This is

due to the invariance of the separation between two events when the coor-

dinate systems undergo a translation — a consequence of the homogeneity

of inertial frames.
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Following from this, two events, P and Q, occur at the origin O’ and

point (x′, ct′) on the space-time diagram in frame S’. We wish to find the

coordinates of Q on the space-time diagram in frame S. Event P is again

located at the origin of the space-time diagram in frame S, O.

Figure 11.14: Events P, Q and R in frame S’

Referring to Fig. 11.14, consider another point R at coordinates (x′, 0)
in frame S’. Physically, it may represent a clock that is at coordinate x′ and
synchronized with the clock at the origin, O′. The world line of a clock at

coordinate x′ passes through the point Q in frame S’. Now, consider the

same situation in frame S. In frame S, objects that are stationary in S’ now

travel at a velocity v. Thus, the space-time diagram for frame S is illustrated

by Fig. 11.15.

The two world lines are those of the two stationary clocks at

x’-coordinates 0 and x′ when viewed in frame S’. We know that the slope of

the world lines of the two clocks are cΔt
Δx = c

v . Furthermore, point Q must

still lie on the world line of the clock at R in frame S as it did so in frame S’.

The distance between these world lines that is measured at the same time t

in frame S is x′
γ due to length contraction. Furthermore, it is known from the

relativity of simultaneity that two clocks that are synchronous and separated

by a distance of x′ in frame S’ differ by a time t = γx′v
c2

in frame S. Applied to

the situation at hand, the two clocks are those at P and R respectively. More-

over, the time interval between two events that are at the same x’-coordinate

in frame S’ is observed to be time-dilated in frame S. The two events in this

case refer to Q and R (the readings of the clock at x′) which differ by a
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Figure 11.15: Fundamental effects and events in frame S

time interval γct′ in frame S. These effects are labeled appropriately in the

diagram above.

Combining the information obtained from these effects, the coordinates

of Q in this frame can then be easily found.

x =
x′

γ
+
v

c

(
γx′v
c

+ γct′
)

= γx′
(

1

γ2
+
v2

c2

)
+ γvt′

= γx′
(
1− v2

c2
+
v2

c2

)
+ γvt′

= γ(x′ + vt′),

ct = γ
(
ct′ +

v

c
x′
)
.

The inverse transformations from frame S to frame S’ can then be obtained

by substituting −v for v in the equations above, as frame S travels at −v
relative to the positive x’-axis of frame S’, the primed coordinates for the

unprimed ones and vice-versa.

x′ = γ(x− vt),

ct′ = γ
(
ct− v

c
x
)
.
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Note that the spatial separations of two events along directions that are

perpendicular to the x-direction are unchanged across inertial frames.

Δy′ = Δy,

Δz′ = Δz,

as there is no loss of simultaneity (use a similar set-up involving light in a

train) nor length contraction in the transverse direction.

Finally, let us obtain some form of closure by showing how the Lorentz

transformations can be intuitively understood by our previous model of

clocks and meter sticks.

Figure 11.16: Clocks and meter sticks of S’ (top) and S (bottom) as observed in S

At time t = 0 in frame S, the origins of the two coordinate systems of

S’ and S are aligned in Fig. 11.16. At this juncture, a clock of S that is at

x-coordinate x coincides (in terms of location) with a clock of S’ that is at

x’-coordinate x′ = γx (x′ is scaled by a factor of γ as the meter sticks of S’

are shrunk by a factor of γ). However, a clock synchronized in frame S’, that

is located at x’-coordinate x′, is observed in frame S’ to possess a reading

−x′v
c2

due to the relativity of simultaneity.

At time t in frame S, origin O’ of S’ would have traveled towards the right,

relative to O, by a distance vt. Therefore, a clock of S that is at x-coordinate x

now coincides (in terms of location) with a clock of S’ that is at x’-coordinate

x′ = γ(x− vt). We immediately obtain the first transformation rule

x′ = γ(x− vt).

Next, since time t has passed in frame S, the readings of the clocks of S’

would have increased by Δt′ = t
γ (reduced by a factor of 1

γ as the clocks of

S’ tick slower due to time dilation). Therefore, a clock of S at x-coordinate
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x and time t corresponds to a clock of S’ at x-coordinate x′ which displays

a time

t′ = −x
′v
c2

+
t

γ
.

Substituting the expression for x′,

t′ = −γxv
c2

+
γv2

c2
t+

t

γ
= −γxv

c2
+ γt

(
v2

c2
+

1

γ2

)
.

Plugging in 1
γ2

= 1− v2

c2
, we retrieve the second transformation rule.

t′ = γ
(
t− v

c2
x
)
.

Problem: Derive the length contraction result from the Lorentz transfor-

mations.

Let the longitudinal proper length of an object be L′ in its rest frame S’.

Define the origin in S’ such that the left and right ends of the object are

located at x′ = 0 and x′ = L′ respectively (at all times t′). Now, suppose
that we are interested in determining the length of this object in a frame

S that travels at a velocity −v in the x’-direction relative to S’. To do so,

we need to determine the spatial separation of the two ends of the object

simultaneously in S. Presuming that we want to do this when t = 0 in S, the

left end is at x = 0 (since the origins of S and S’ coincide at t = t′ = 0). Now,

we just need to determine the x-coordinate of the right end at t = 0. Notice

that the (x′, ct′) coordinates of the right end in S’ are generally (L′, ct′).
Applying the Lorentz transformations, the time of this event in frame S is

t = γ
(
t′ +

v

c2
L′
)

so we must choose to observe the right end at t′ = −L′v
c2

in S’, as it

corresponds to t = 0 in S. Applying the Lorentz transformations to (L′,−L′v
c )

in S’, the x-coordinate of the right end at t = 0 in S is then

x = γ(L′ + vt′) = γ

(
L′ − L′v2

c2

)
=
L′

γ
.

The spatial separation of the two ends of the object at t = 0 (which is the

observed length in S) is

L = x− 0 =
L′

γ
.
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11.6 Passive Transformations

Remember that there is an alternate perspective to the transformation of

coordinates. Instead of modifying the position of the points, the axes can be

changed. In this section, we will consider the passive transformation from

frame S to frame S’. It is then natural to determine how the new axes, x’ and

ct’ of frame S’ will look like when superimposed on the space-time diagram

of frame S with x and ct as its axes.

Even without any calculations, it can be concluded that these x’ and

ct’-axes must be straight lines on the space-time diagram in frame S as the

Lorentz transformations are linear. Thus, straight lines must be mapped onto

straight lines. Assume that the origins of the two coordinate systems in the

two inertial frames coincide. The equation of the x’-axis can be determined

by using the fact that t′ = 0 along it. Then, by the Lorentz transformations,

γ(ct− βx) = ct′ = 0

=⇒ ct = βx.

Similarly, along the t’-axis, x′ = 0.

γ(x− βct) = x′ = 0

=⇒ x = βct.

These are the equations of the lines on the Minkowski diagram of frame

S that delineate the x’ and ct’-axes respectively. They are plotted on the

space-time diagram in frame S in Fig. 11.17.

Figure 11.17: Superimposed x’ and ct’-axes on Minkowski diagram in frame S
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By considering the line equations above, it can easily be proven that the

two angles labeled in the figure obey the relation

tan θ1 = tan θ2 = β. (11.7)

Observe that the superimposed x’ and ct’-axes are not mutually perpendic-

ular. Orthogonal vectors in one inertial frame need not be perpendicular in

another. Lines on the space-time diagram that are parallel to the superim-

posed x’ and ct’-axes are sets of events that are simultaneous and occur at

the same x’-coordinate in frame S’ respectively.

The relativity of simultaneity can be easily visualized with the

superimposed x’ and ct’-axes. Consider Figs. 11.18 and 11.19.

Figure 11.18: Clocks synchronized in frame S

Figure 11.19: Clocks synchronized in frame S’
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In both diagrams, the horizontal and slanted lines represent the lines

of simultaneity in frames S and S’ in the Minkowski diagram of frame S

respectively. The array of clocks on the left is synchronized in frame S. It

can be seen that the events that are simultaneous in frame S, represented by

horizontal lines, are not simultaneous in frame S’ whose lines of simultaneity

are represented by the slanted lines (parallel to the overlapping x’-axis). An

observer in S’ that observes certain clocks of S simultaneously will conclude

that the readings on the clocks are asynchronous (consider the clocks along

any slanted dotted line as an example). Similarly, the array of clocks on the

right is synchronized in frame S’. Conversely, an observer in S that observes

certain clocks of S’ simultaneously will conclude that the readings on the

clocks are asynchronous. It is natural for an observer in either frame to

conclude that the clocks in the other’s frame are asynchronous — a fact

that is evident from the asymmetrical lines of simultaneity.

To complete our analysis of the superimposed axes, we need to find how

the magnitude of one unit along the x’ and ct’-axes in frame S’ is reflected

on the x’ and ct’-axes that are superimposed on the space-time diagram of

frame S. There is a need to do so as the coordinates are now measured with

respect to the x and ct-axes (i.e. there is no guarantee that they will be the

same). Consider the point (1, 0) in frame S’; the first and second coordinates

correspond to the x’ and ct’-coordinates respectively. Thus by the Lorentz

transformations, the coordinates of this point in frame S is (γ, γβ). This

signifies that one unit along the x’-axis in frame S’ corresponds to

√
γ2 + γ2β2 =

√
1 + β2

1− β2
(11.8)

units of length as measured by the x and ct-axes in the space-time diagram

in frame S. In other words, a point with coordinates (x′, 0) in frame S’ will

be a length
√

1+β2

1−β2x
′ along the superimposed x’-axis in frame S as measured

by the x- and ct-axes. Similarly, a point (0, 1) in frame S’ will transform to a

point (γβ, γ). Thus, one unit along the ct’-axis in frame S’ also corresponds to

√
γ2β2 + γ2 =

√
1 + β2

1− β2
(11.9)

units of length as measured by the x and ct-axes in the space-time diagram

in frame S. Following from this, the x’ and ct’-coordinates of an event can

be deduced by drawing lines that pass through that event and are parallel

to the superimposed ct’ and x’-axes in the Minkowski diagram of frame S

respectively. Afterwards, one can identify the points of intersection of these
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two lines with the superimposed x’ and ct’-axes and divide the distances

between these points of intersection and the origin by the scaling factor

=
√

1+β2

1−β2 to obtain the x’ and ct’-coordinates of the event in frame S’.

The Twins’ Paradox

Problem: Consider two twins, A and B, who are initially on Earth. In

Fig. 11.20, twin B remains on Earth while twin A travels on a rocket to a

distant star at a constant speed v relative to B’s frame and back to Earth at

a constant speed v, in the opposite direction, rapidly. When the two twins

eventually compare the readings on their clocks, which twin is younger?

Figure 11.20: A’s outbound journey in the frame of B

Let the frame of twin A be S’ and that of twin B be S. There is an

apparent paradox here. In frame S, twin B sees twin A’s clock running slower

by a factor of 1
γ . Thus, B will conclude that A is younger. However in frame

S’, twin A also sees twin B’s clock running slow. Thus, A will seemingly

also conclude that B is younger. There appears to be a paradox here as the

readings on both clocks must be the same, as observed by the twins, when

they are compared at the same location. However, the correct answer is, in

fact, that twin A is younger!

This is because the symmetry in this system is broken when twin A

reverses the direction of his velocity, as he must experience an acceleration

then. In other words, twin A is actually stationary in two different inertial

frames during his outbound and inbound journeys. Thus, the above reasoning

in frame S’ is invalid as there are really two different inertial frames of A.

However, this reasoning only explains why the latter analysis in A’s frame

is wrong but does not show how to correct that reasoning. There are many

ways of resolving this. One argument will be presented here. Let us first

consider the situation in frame S. Let the distance between the distant star
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and Earth in frame S be L. Then, the time of the entire journey by A in S is

t =
2L

v
.

The elapsed time of the entire journey in A’s two inertial frames is then

t′ =
2L

γv
,

as B observes A’s clock to slow down by a factor of 1
γ . Therefore, B will

conclude that A is younger than him by a factor of 1
γ . Next, we would like

to consider the situation from A’s perspective. This is better visualized by

drawing a space-time diagram in frame S and superimposing the axes of A’s

inertial frames, as there are in fact two inertial frames of A.

Figure 11.21: Minkowski diagram in B’s frame (S)

The line OQR in Fig. 11.21 represents the world line of twin A in frame

S while the line OR is the world line of twin B whose stationary clock just

ticks with time. The two inertial frames of A consist of one before the kink

at point Q and one after the kink. Let the axes of the two inertial frames

be x’, ct’ and x”, ct” respectively. We know that the lines of simultaneity

in those frames are represented by the lines parallel to the x’- and x”-axes.

Consider the point Q at which twin A turns, causing him to switch from

the first inertial frame to the second. This causes the line of simultaneity

through point Q to instantaneously change from line 1 to line 2, which are

parallel to the x’ and x”-axes respectively, as indicated on the diagram.

Since points on the line OR correspond to the readings of B’s clock, this

physically means that twin A observes twin B to spontaneously age by a
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certain amount as he turns. Here lies the crux of this resolution. From A’s

perspective, B instantaneously ages by the time interval between points T

and P in frame S, which is equal to 2Δt as labeled on the diagram. Δt can

be easily found by utilizing the facts that the spatial separation between P

and Q is L and that tan θ = β.

cΔt = L · β =
Lv

c
.

Thus,

2Δt =
2Lv

c2
.

This is the amount that twin B instantaneously ages as observed by A in his

own frame when he turns around. Actually, this particular value can also be

explained from the relativity of simultaneity. In A’s outbound journey, the

star’s clock was the “rear clock” and thus led the Earth’s clock by Lv
c2 . How-

ever, when A turned around, the Earth’s clock became the “rear clock” —

leading to a total discontinuity of 2Lv
c2

time. With this, the entire process

from A’s perspective can be outlined as follows — we start with the reading

of A’s clock. The distance between the Earth and the distant star is Lγ in both

of A’s frames due to length contraction. Furthermore, twin A observes the

distant star and Earth to approach him at a speed v in his first and second

inertial frames respectively. Thus, the total time elapsed on A’s clock is

t′ =
2L

γv
.

To investigate how the reading of B’s clock changes from the perspective of

A, we divide the entire process into three parts — namely before the turn,

during the turn and after the turn. The situation of the first part in A’s first

frame appears in Fig. 11.22 — A observes both the Earth and the distant

star to travel at speed v.

Figure 11.22: First half of the journey in A’s first inertial frame
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This takes L
γv for the distant star to reach A in A’s frame due to length

contraction. As twin A observes B’s clock to run slow by a factor of 1
γ ,

the time elapsed as measured by twin B’s clock during the first part of the

process is

t1 =
L

γ2v

which corresponds to the distance between points O and P (divided by c).

Next, when twin A turns around, he observes the reading of B’s clock to

immediately increase by

t2 =
2Lv

c2

due to the switching of inertial frames. Lastly, during twin A’s return journey,

the reading of B’s clock increases by

t3 =
L

γ2v
,

by an argument similar to that for t1. Thus, the total time elapsed by twin

B’s clock from the perspective of twin A is

t = t1 + t2 + t3 =
2Lv

c2
+

2L

γ2v

=
2L

v

(
1

γ2
+
v2

c2

)
=

2L

v
,

which is consistent with the result obtained by considering the set-up in B’s

frame. Hence, twin A also concludes that he is younger than twin B by a

factor of 1
γ .

11.7 The Invariant Interval

The interval Δs between two events in frame S is defined as

(Δs)2 = (cΔt)2 − (Δx)2 − (Δy)2 − (Δz)2 (11.10)

where the Δ’s represent the spatial and temporal separations between the

two events. The interval Δs has a unique property — consider the right-

hand side of the expression in a different inertial frame S’ that is moving at a
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velocity v with respect to frame S. By applying the Lorentz transformations,

(cΔt′)2 − (Δx′)2 − (Δy′)2 − (Δz′)2

= γ2
(
cΔt− v

c
Δx
)2 − γ2

(
Δx− v

c
cΔt

)2 − (Δy)2 − (Δz)2

= γ2(cΔt)2
(
1− v2

c2

)
− γ2(Δx)2

(
1− v2

c2

)
− (Δy)2 + (Δz)2

= (cΔt)2 − (Δx)2 − (Δy)2 − (Δz)2

= (Δs)2,

where we have used the fact that Δy = Δy′ and Δz = Δz′ as the y and

z separations do not vary when switching between frames that travel with

a relative velocity solely along the x-axis. It can be seen that the quantity

(Δs)2 is invariant under the Lorentz transformations. The invariance of this

quantity across various inertial frames is similar to the invariance of the

squared distance between two points in an Euclidean space under rotations.

(Δr)2 = (Δx)2 + (Δy)2 + (Δz)2.

Therefore, the interval can be treated as the “squared distance” in Minkowski

space. In fact, the Lorentz transformations are hyperbolic rotations of

Minkowski space which makes the analogy even more apt. Now, three spe-

cific cases of the value of (Δs)2 between two events will be considered. In

doing so, we align the x-axis of our coordinate system with the line joining

the positions of the two events such that

(Δs)2 = (cΔt)2 − (Δx)2

for the sake of convenience.

Case 1: (Δs)2 < 0

Firstly, there is no need to worry that a squared term yields a negative value

as Δs lacks physical meaning in itself and can be imaginary. In this situation,

(Δx)2 > c2(Δt)2 and these events are said to be space-like separated. This

means that there exists a frame S’ such that these two events occur at the

same time t′. The Lorentz transformations give

Δt′ = γ
(
Δt− v

c2
Δx
)
.

Therefore, there exists a velocity with magnitude less than the speed of light,

specifically v = c2Δt
Δx < c, that leads to Δt′ = 0. However, these two events
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do not occur at the same x’-coordinate with respect to any inertial frame S’.

This can be shown easily by contradiction. If Δx′ = 0,

(Δs)2 = c2(Δt′)2 − (Δx′)2 = c2(Δt′)2

where (Δs)2 < 0, leading to a contradiction as the right-hand side consists

of physical quantities that must be real.

Lastly, it makes no sense to say whether event A occurs before or after

event B when these two events are space-like separated. This is because there

always exist inertial frames where A precedes B and where B precedes A.

By the Lorentz transformations again,

Δt′ = γ
(
Δt− v

c2
Δx
)
.

If Δt > 0, Δt′ < 0 when

c > v >
c2Δt

Δx
.

A similar argument can be made for the case where Δt < 0 to show that it

is possible for Δt′ > 0. This proves that event A may precede event B in one

inertial frame and that the reverse may be true in another. Concomitantly,

these two events must not have a causality relationship (i.e. event A induces

event B or vice-versa). If this were not the case, there will be a violation

of causality as the relative order of A and B in time varies across different

inertial frames.

Case 2: (Δs)2 = 0

In this situation, (Δx)2 = c2(Δt)2 and these events are said to be light-like

separated. These events then correspond to the points of a photon’s path on

a space-time diagram. It is impossible to find an inertial frame S’ in which

the two events are simultaneous or occurs at the same x-coordinate as two

points on the world line of an undisturbed photon cannot exist at different

locations at the same time or at the same location at different times.

Case 3: (Δs)2 > 0

In this scenario, (Δx)2 < c2(Δt)2 and we say that these two events are time-

like separated. Employing similar arguments as before, it can be proven that

there exists an inertial frame S’ in which the two events occur at the same

x’-coordinate while an inertial frame S’ in which the two events occur at

the same time does not exist. If events A and B are time-like separated

events and event A precedes B in a certain inertial frame, event A precedes

B in all inertial frames. Therefore, it is possible for there to be a causality

relationship between events A and B.
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Proper Time and Proper Distance

Proper Time

The proper time, τ , of a point along a world line refers to the time measured

by the clock which is perpetually at rest relative to the observer in the world

line. Let us denote that observer as O. One can imagine observer O holding a

clock that is constantly stationary to him or a fictitious time axis protruding

from observer O. Then, O describes events with his own “local time”. The

proper time interval between two events on the world line is then simply

the time interval as observed by observer O in the world line.13 Evidently,

these two events must be time-like separated in order for a proper world

line to be defined. Furthermore, these two events must have the same spatial

coordinates in the frame of observer O, as he is stationary. Now let observer

O’s world line be r(t) with respect to a fixed inertial frame S. Consider an

infinitesimal interval

(ds)2 = c2(dt)2 − (dx)2 − (dy)2 − (dz)2,

where dx, dy, dz and dt are the infinitesimal spatial and temporal separations

between two neighboring events along the world line of O with respect to

the frame S. Since the interval is invariant, the infinitesimal proper time dτ

between these two events is given by

c2(dτ)2 = c2(dτ)2 − (dx′)2 − (dy′)2 − (dz′)2 = (ds)2

= c2(dt)2 − (dx)2 − (dy)2 − (dz)2

as the components of the spatial separation between any two events along

the world line of O, as observed by O, are zero since O is stationary in his

own frame (dx′ = dy′ = dz′ = 0). Then,

dτ =

√√√√
1−

(
dx
dt

)2
+
(
dy
dt

)2
+
(
dz
dt

)2
c2

dt

=

√
1− v2

c2
dt

=
dt

γ
,

13Note that there may not be a single inertial frame associated with observer O as he
might be accelerating.
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where v is the speed of observer O as observed in frame S. The proper time

interval between two time-like separated events on O’s world line is then

obtained from integrating the expression above.ˆ τ2

τ1

dτ =

ˆ t2

t1

dt

γ
.

If O is traveling at a constant speed, the integral can be performed trivially.

Δτ =
Δt

γ
,

which is simply the time dilation equation. It is natural for us to obtain this

result, as Δτ simply means the time elapsed as measured by a still clock

while Δt is that of a moving clock.

Proper Distance

The proper distance Δσ between two space-like separated events is defined

as the distance between the two events, as observed in an inertial frame

in which they are simultaneous. Since the interval between two events is

invariant and because their temporal separation in that particular inertial

frame is zero,

Δσ =
√

−Δs2 =
√

Δx2 +Δy2 +Δz2 − c2Δt2

where the quantities on the right-hand side are measured with respect to an

arbitrary frame S.

11.8 The Relativistic Speed Limit

So far, we have asserted that no information or massive particle can travel

faster than the speed of light in vacuum c. Some justifications shall be pro-

vided here. Firstly, consider the expression for γ:

γ =
1√

1− v2

c2

.

If |v| > c, γ is imaginary. Else if |v| = c, γ tends to infinity. This results in a

loss in the physical meaning of our coordinate transformations and implies

that these cases for |v| should be rejected.

The second argument pertains to the violation of causality. As shown

before, if two events A and B are space-like separated such that |ΔxΔt | > c,

there exist inertial frames in which A precedes B and others in which B

precedes A. This is perfectly fine in itself if these two events do not have a
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causality relationship mediated by physical entities or information. However,

if there exists a particle or information that can travel at a velocity greater

than the speed of light, it is possible for events A and B to be affected by

one another due to the transmission of information via particles traveling at

superluminal speeds. Then, these particles will be traveling back in time with

respect to some inertial frames. Causality will be violated as the “effect” may

precede the cause of an event in certain inertial frames. Here is an example.

In an arbitrary frame S, observer A sends a superluminal signal to observer

B. Immediately upon receiving the signal, observer B sends a superluminal

signal back to observer A. This contravenes the causality relationship as

there are inertial frames in which observer A receives the signal from B

before he sends one himself (as the events are space-like separated)!

The last argument is relevant to the next chapter. As we shall see, it

takes an infinite amount of energy for a particle with mass to travel at the

speed of light — a feat that is physically infeasible.

In conclusion, the speed limit imposed by the speed of light is considered

a corollary in special relativity. If this were to be breached, situations that are

contrary to common experiences will arise. Therefore, it is widely accepted

that neither information nor matter can travel at a speed greater than c.

Finally, there is a qualification to be made here, no matter or information

can travel at a speed greater than c, the speed of light in vacuum. This is

an important point to take note of as light propagates at different speeds in

different media.

11.9 Other Effects

This section elaborates on the subsidiary effects due to the fundamental

consequences of special relativity. We will adopt the conventional definitions

for frames S and S’ and v. In approaching this section, remember that v

refers to the relative velocity between frames while the symbol u (and u′)
will be used to denote the velocity of a particle in a certain frame. Keep in

mind that γ = 1√
1− v2

c2

and is independent of u, as it is associated with the

transformation between frames.

11.9.1 Relativistic Velocity Addition

Longitudinal Addition

If an observer in frame S’ observes a particle to travel at a velocity u′ in the

direction of the x’-axis, what is the speed of the particle as observed by a

person in frame S?
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The relativistic result differs from the classical result of u′+ v due to the

fundamental effects of special relativity. Assume that the particle undergoes

a displacement dx′ in a time period dt′ in frame S’, the expressions for the

corresponding displacement and time interval, dx and dt, in frame S can be

obtained via the Lorentz transformations.

dx = γ(dx′ + vdt′),

dt = γ
(
dt′ +

v

c2
dx′
)
.

The velocity of the particle in S’ is u′ = dx′
dt′ while the velocity of it in S is

u = dx
dt . Thus, dividing the first equation by the second, we obtain

u =
dx′
dt′ + v

1 + v
c2
dx′
dt′

=
u′ + v

1 + u′v
c2

in the direction along the x-axis. The inverse transformations from frame S

to S’ can easily be obtained by replacing v with −v.

u′ =
u− v

1− uv
c2
. (11.11)

Transverse Addition

In a new set-up, an observer in S’ now observes a particle to travel at (u′x, u′y).
Keep in mind that S’ travels at v relative to S in the positive x-direction.

We would again like to determine the particle’s velocity (ux, uy) in frame S.

Firstly, note that this motion in the y’-direction does not change the

validity of the previous equation. The u and u′ just need to be substituted by

their corresponding x and x’ components, ux and u′x which are the particle’s

velocities in the x and x’-directions in frames S and S’ respectively. That is,

ux =
u′x + v

1 + u′xv
c2

. (11.12)

Moving on, we are concerned with finding uy. Using the Lorentz transfor-

mations once again, we obtain

dy = dy′,

dt = γ
(
dt′ +

v

c2
dx′
)
.
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In this case we have u′y =
dy′
dt′ , uy =

dy
dt and u′x = dx′

dt′ . Thus,

uy =
dy′
dt′

γ(1 + v
c2
dx′
dt′ )

=
u′y

γ
(
1 + u′xv

c2

) (11.13)

in the direction along the y-axis. Similarly, the inverse transformations from

frame S to S’ are

u′y =
uy

γ(1− uxv
c2 )

. (11.14)

It is paramount to note that the transformation of the time elapsed between

two events between frames S and S’ is independent of the relative y positions

of the two events in the derivation above as the relativity of simultaneity only

applies for events separated in the x- or x’-direction while the time dilation

effect is only dependent on the relative velocity between frames.

11.9.2 Acceleration

Acceleration Transformations

It is also useful to determine how an acceleration a in inertial frame S will

transform to the acceleration a′ in inertial frame S’. It is known from the

velocity transformations that

u′x =
ux − v

1− uxv
c2
.

Then, taking the derivative of u′x with respect to ux and using the

quotient rule,

du′x
dux

=
1 · (1− uxv

c2

)
+ v

c2
(ux − v)(

1− uxv
c2

)2
=

1− v
c2ux +

v
c2ux − v2

c2(
1− uxv

c2

)2
=

1

γ2
(
1− uxv

c2

)2
=⇒ du′x =

1

γ2
(
1− uxv

c2

)2dux. (11.15)
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Furthermore, from the Lorentz transformations,

t′ = γ
(
t− v

c2
x
)

dt′

dt
= γ

(
1− uxv

c2

)
dt′ = γ

(
1− uxv

c2

)
dt. (11.16)

Dividing Eq. (11.15) by Eq. (11.16),

a′x =
ax

γ3
(
1− uxv

c2

)3 . (11.17)

Similarly, from the transverse velocity addition,

u′y =
uy

γ
(
1− uxv

c2

)
du′y =

∂u′y
∂uy

duy +
∂u′y
∂ux

dux

du′y =
1

γ
(
1− uxv

c2

)duy + v
c2
uy

γ
(
1− uxv

c2

)2dux. (11.18)

Dividing Eq. (11.18) by Eq. (11.16),

a′y =
1

γ2
(
1− uxv

c2

)2ay + vuy

c2γ2
(
1− uxv

c2

)3ax. (11.19)

Therefore, we see that accelerations are no longer invariant when switching

between inertial frames in special relativity — contrary to the situation in

Galilean relativity.

Proper Acceleration

When objects are accelerating, there isn’t one inertial frame associated with

them. However, a momentarily co-moving reference frame (MCRF) is useful

in analyzing its motion. An MCRF is an inertial frame that travels at the

same instantaneous velocity of the particle with respect to another inertial

frame S (defined as the lab frame). Thus, the instantaneous velocity of a par-

ticle is zero in an MCRF defined at that instant. As an object accelerates, we

have to switch from one MCRF to another new MCRF at every instant as

the velocity of the object in frame S changes. With this definition, the proper

acceleration of an object is the acceleration of that object observed in the

MCRF defined at that instant. The transformation from the acceleration of
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an object in frame S to that in its MCRF can be obtained from Eqs. (11.17)

and (11.19) via adroit substitutions. Firstly, we choose the coordinate sys-

tems of S and the MCRF such that the velocity of the particle is solely along

the x-direction in frame S (though with this definition, the axes may have

to be modified constantly in a manner analogous to how polar unit vectors

change with the angular coordinate θ). Then, we can substitute uy = 0 and

v = u into Eqs. (11.17) and (11.19) to obtain the relevant transformations.

For the following section, we will use γu instead of γ where

γu =
1√

1− u2

c2

,

to remind ourselves that v = u. Thus, substituting v = u and uy = 0 into

Eqs. (11.17) and (11.19), the proper accelerations of a point particle in the

x’ and y’-directions, αx and αy are

αx = γ3uax, (11.20)

αy = γ2uay. (11.21)

Problem: A particle is undergoing circular motion with a velocity u and a

radius of orbit r in the lab frame. Find the magnitude of its proper acceler-

ation.

The centripetal acceleration of the particle in the lab frame is

a =
u2

r
.

Since the instantaneous acceleration of the particle is constantly perpen-

dicular to its instantaneous velocity, its proper acceleration is given by

Eq. (11.21).

α =
γ2uu

2

r
.

One-Dimensional Motion Under Constant Proper

Acceleration

In this section, we consider the motion of a point particle, undergoing a

constant proper acceleration, as observed in the lab frame S. It is assumed

that the direction of the initial velocity of the particle is parallel to that of

its acceleration in frame S. As such, we do not have to constantly modify the

orientation of the axes of frame S and the MCRF to ensure that uy = 0 —

reducing this to a one-dimensional problem in spatial terms (all quantities
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in this problem will be with respect to the x-direction that has been aligned

with the direction of concern). From Eq. (11.20),

α = γ3ua

where α is the proper acceleration and a is the acceleration of the particle in

frame S. The right-hand side can be written as d
dt(γuu), where t is the time

in S, as seen from the fact that

d

dt

⎛
⎝ u√

1− u2

c2

⎞
⎠ =

1√
1− u2

c2

· du
dt

+
u(

1− u2

c2

) 3
2

· −1

2
· −2 · u

c2
· du
dt

=
1√

1− u2

c2

a+
u2

c2(
1− u2

c2

) 3
2

a

= γ3ua.

Thus,

α =
d

dt
(γuu).

Before we integrate this expression, we claim that we can always define an

origin in time such that u = 0 at t = 0. This can be subsequently justified

(after finding u(t)) by showing that for any given value of velocity u0, there

is a time t for which u(t) = u0. Integrating and applying the proposed initial

conditions, we obtain

αt = γuu.

Substituting γu = 1√
1−u2

c2

,

αt =
u√

1− u2

c2

where the right-hand side is a monotonically increasing function in u. Thus,

for a given value of u, we can always find a unique, corresponding value of

t — implying that we can indeed set a temporal origin such that u = 0 at

t = 0. Next, solving for u,

u =
αt√

α2t2

c2
+ 1

.
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Defining p = α2t2

c2 + 1 and dp = 2α2

c2 tdt and expressing u = dx
dt ,ˆ x

x0

dx =

ˆ p

1

c2

2α
√
p
dp.

Integrating and letting x = x0 when t = 0,

x− x0 =
c2

α

√
p− c2

α
.

Substituting the expression for p back into the equation above and rewriting,(
x− x0 +

c2

α

)2

− c2t2 =
c4

α2
. (11.22)

We can choose a spatial origin such that x0 =
c2

α . Then,

x2 − c2t2 =
c4

α2
.

Note that we only need to consider the x > 0 region of this graph if α > 0,

and the x < 0 region otherwise. It is always possible to choose the coordinate

system of frame S such that the initial conditions above (u = 0 and x(0) =

x0 =
c2

α at t = 0) are satisfied. As we can see, the motion of the point particle

is a hyperbola on the space-time diagram in frame S.

Figure 11.23: World line of particle undergoing constant proper acceleration in frame S

As t → ∞, x2 → c2t2 which implies that |u| = |dxdt | → c. This is a

limit that makes sense in the context of special relativity as the particle’s
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speed cannot surpass c. Now there are some interesting properties of this

hyperbola. Consider a point P on the hyperbola shown in Fig. 11.23. The

gradient of line OP can be calculated as follows. The x-coordinate of P in

terms of t is

x =

√
c4

α2
+ c2t2 =

c

α

√
c2 + α2t2.

The gradient is then

m =
ct

x
=

αt√
c2 + α2t2

=
u

c
.

We see that the line OP is simply the superimposed instantaneous x’-axis of

the MCRF (when the particle is at P) as it subtends an angle tan θ = u
c with

the positive x-axis! What this means is that a so-called pivot event, which

is the origin O in this case, is always simultaneous with the instantaneous

event of the particle in an MCRF. From Eq. (11.22), it can be seen that the

pivot event is at x0 − c2

α in general for a point particle, undergoing constant

proper acceleration α in the x-direction, that is located at x = x0 with zero

speed at t = 0 in frame S. If we choose the pivot event to be the origin of

the particle’s MCRFs too, the instantaneous event of the particle will also

be at t′ = 0 in its MCRFs. The next useful property is even a stranger one.

The distance between the pivot event in an MCRF, and the instantaneous

event of the particle in the MCRF is given by length contraction to be

x′ =
x

γu
.

γu can be computed as

γu =
1

1 + u2

c2

=
1√

1− α2t2

α2t2+c2

=

√
α2t2 + c2

c
=
α

c2
x.

Thus,

x′ =
x

γu
=
c2

α

which is a constant value. A quicker way of proving this is to consider the

invariant interval. Since the particle’s event occurs at t′ = 0 in the MCRF,
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we immediately obtain from the equation of the hyperbola

x′2 = x2 − c2t2 =
c4

α2

=⇒ x′ =
c2

α

where we choose the positive value of x′ as it corresponds to the regime of

interest. We see that not only is the pivot event always simultaneous with

the instantaneous event of the particle in an MCRF, the distance between

them is uniform across all MCRFs14! The weird part is that even though

the point particle accelerates away from the pivot point in frame S, the

distance between them never changes as measured in its own instantaneous

inertial frame. This is because the increase in the length contraction factor

perfectly cancels the increase in distance between the two events as observed

in frame S.

11.9.3 Rigid Objects

The classical definition of a rigid object is one whose particles maintain a

constant separation in space. This is in fact impractical even in classical

mechanics. The interactions between particles of an object are electromag-

netic in nature, thus the speed of an electromagnetic wave imposes a speed

limit on force propagation speed through the object. In fact, the force prop-

agation speed in matter is the speed of sound in that medium. Thus, if one

end of the object experiences a sudden change, such as an abrupt stop, the

other end of the object cannot instantaneously respond to it. In the case of

a sudden stop, at the next instant, the ends of the object will be closer to

each other, compressing the object and thus changing the relative positions

of the particles on the object. This limitation also holds in the context of

special relativity, as signals cannot travel faster at a speed greater than c

which is, theoretically, the maximum possible speed.

The next flaw in the classical definition of rigid objects pertains to a

relativistic effect. A moving object in a certain inertial frame is length-

contracted. Thus, an object does not maintain a constant separation in space

across different inertial frames. In this sense, the criteria of maintaining a

constant separation in space is ambiguous as there is no explicit mention of

the frame of reference. Therefore, the classical definition of a rigid object

makes no sense in the relativistic case.

14Actually, the invariant interval trivially and necessarily implies this.
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Failure to take into account the effects above may lead to fallacious rea-

soning and seemingly paradoxical situations.

Problem: Consider a variant of the classic pole-and-barn paradox. A pole

and barn have proper lengths L. The pole travels towards the barn at a

velocity v in the barn’s frame S. The end of the barn farther away from

the rod, denoted as the rear end, is blocked by a massive and impenetrable

door while its front end is initially open. In the barn’s frame, the pole is

length-contracted and is able to fit into the barn. When the back of the pole

enters the barn, the door closes in the barn’s frame and traps the pole. The

pole then collides with the impermeable rear end of the barn and comes to

a stop eventually.

In this frame, the back of the pole crosses the front of the barn. Thus,

the front door of the barn can be closed. However, in the pole’s frame S’, the

barn is length-contracted so the ladder is not able to fit inside the garage in

the first place. How can the front door be closed then? In other words, does

the back end of the pole really cross the front end of the barn?

The resolution to this apparent paradox is the fact that points on the pole

are unable to stop instantaneously when the front end of the pole collides

with the rear of the barn. Formally, we define the frame of the pole to be

that of the particle at the rear tip of the pole as it is the last to stop. In

frame S, the situation is depicted in Fig. 11.24.

Figure 11.24: Frame S

The pole is length-contracted to a length L
γ in frame S. Thus, the back

end of the pole definitely crosses the front end of the barn in frame S. In

fact, the eventual distance between the rear ends of the pole and barn must
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be smaller than L
γ . Assume that a signal propagates at the speed of light c

through the pole in frame S’. This is not really a physical situation but it

can give us a rough notion of what happens in the boundary case by yielding

an upper limit of the distance between the rear ends of the pole and barn.

If the rear end of the pole crosses the front end of the barn under such an

assumption, it will definitely do the same for an arbitrary signal speed which

must be smaller than c. Next, it is assumed that when the signal passes by a

certain part of the pole, that section immediately stops in the current frame.

Let the front end of the pole collide with the walls of the barn at t = 0

in frame S. The speed of the signal is still c in frame S as the speed of light

is invariant across inertial frames. Then the time required for the signal to

travel to the rear end of the pole in frame S is

t =
L

γ(c+ v)
,

as c + v is the relative velocity between the signal and the back end of the

pole in frame S while L
γ is the Lorentz-contracted length of the pole in frame

S. An important point to note here is that the rear of the pole does not stop

traveling until it receives the signal (i.e. the rear end continues to move for a

while after the front end collides with the barn). Then, the eventual distance

between the rear ends of the pole and barn is simply that traveled by the

signal during the time t above.

Δx =
Lc

γ(c+ v)
=

√
1− β

1 + β
L.

In frame S’, the situation is illustrated in Fig. 11.25.

Figure 11.25: Frame S’
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The length of the barn is contracted to L
γ while the length of the pole

is its proper length L. The barn is now approaching the stationary pole.

Similarly, we define the time of the collision between the front end of the

pole and the rear of the barn to be t′ = 0 in frame S’. Then, the signal

reaches the back end of the pole at

t′ =
L

c

in frame S’. During this time, the impermeable rear wall would have traveled

a certain distance while compressing the pole. We assume that the velocity

of the wall does not change in this process. This could approximately be

attained if the mass of the rear door is large. The distance traveled by the

wall during this time interval is Lv
c . Thus, the final distance between the rear

ends of the barn and the pole is

Δx′ = L− Lv

c
= L(1− β)

in frame S’. This is smaller than the length of the barn in S’ as seen from

the fact that

Δx′
L
γ

=

√
1− β

1 + β
< 1.

Thus, the back end of the pole crosses the front of the barn in both frames

and the front door of the barn can be closed. Incidentally, there is also

another interesting result which agrees with the principle of relativity: the

ratios of the eventual distance between the rear ends of the pole and barn

to the observed length of the barn are identical in both frames. This can be

seen from the fact that

Δx′
L
γ

=

√
1− β

1 + β
=

Δx

L
.

Born Rigidity

Considering the ineptness of the classical definition of a rigid object in the

context of special relativity, novel concepts of a rigid object have to be devel-

oped. Max Born proposed that rigid objects in special relativity obey the

following property: the distance between all points on a rigid object is locally

constant in the MCRF of any point on the object. This definition rectifies

the loophole in the classical definition due to length contraction. However,

this definition of a rigid object is still physically impossible as it does not
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circumvent the limitation of the speed of sound in a body which is the first

flaw highlighted in the section above. Despite this, it is still a viable ana-

log of the classical definition since the classical definition also idealized the

propagation of “signals” within a body.

To fulfil the Born criterion, the proper accelerations of the points of the

body must satisfy a certain relationship. In that sense, in order to achieve

Born rigidity, the motion of an object has to be planned carefully beforehand.

It is an extremely restrictive class of motions.

We shall consider the case where all points on the Born rigid body

undergo a one-dimensional motion due to a constant proper acceleration

in the x’-direction (where the primed frame is its MCRF). Recall that a

point particle that is initially stationary at x = x0 when t = 0 in the lab

frame S and undergoing a constant proper acceleration α will follow a hyper-

bolic path with the pivot event at coordinate x = x0 − c2

α . Furthermore, in

any MCRF of the particle at an arbitrary time t in frame S, the difference

in the x’-coordinates of the particle and the pivot event, measured simulta-

neously, is c2

α .

Therefore, if the pivot events of all points on an object coincide, the Born

rigid condition will be satisfied! Consider two points on the object at coordi-

nates x1 and x2, when t = 0 in frame S, undergoing proper accelerations α1

and α2 respectively. If their pivot events are concurrent and if we consider the

MCRF of any of the two particles at any instant in time, the two particles

have a difference in x’-coordinates of c2

α1
and c2

α2
with the pivot event, as

measured simultaneously. The pivot events of the two particles are shown

to be concurrent at the origin O in Fig. 11.26. The diagonal line represents

a possible line of simultaneity if we were to consider the MCRF of either

of the particles, defined at the corresponding point of intersection of the

line with its hyperbolic path (actually, the two MCRFs are identical as the

particles possess the same velocity at the points of intersection). The bold

segment indirectly15 reflects the difference in x’-coordinates between the two

particles, measured simultaneously in their MCRF, as superimposed on the

space-time diagram of frame S. The “proper length” between them is main-

tained at c2

α2
− c2

α1
in the MCRF (Fig. 11.27) as the distance between each

individual particle and the pivot event is constant. Furthermore, in order for

15Indirectly, in the sense that the magnitude of the difference in x’-coordinates is different
from the length of the bold line in frame S (concretely, we must divide this length by the

scaling factor
√

1+β2

1−β2 , where β is the tangent of the angle of inclination of the line).
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Figure 11.26: World lines of two points on a Born rigid object in frame S

Figure 11.27: Points P and Q in one MCRF

the pivot events to coincide in the first place,

x1 − c2

α1
= x2 − c2

α2

=⇒ c2

α2
− c2

α1
= x2 − x1
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which shows that the distance x2 − x1, which is also the initial distance at

t = 0 in frame S, is maintained throughout the motion in any MCRF of

either of the particles. Thus, if an object spans the entire region between

coordinates x = x1 and x = x2 and the proper acceleration is α0 at some

x0 (x1 ≤ x0 ≤ x2), the proper acceleration, α, of a point at an arbitrary

x-coordinate x (x1 ≤ x ≤ x2) must satisfy

c2

α
=
c2

α0
+ x− x0

in order for the object to be Born rigid. With this, the length of the rod

in any MCRF is also maintained at x2 − x1. We see that this definition

of a rigid body is extremely restrictive, as the motion of one point on the

object constrains the motion of all other points if all points were to undergo

constant proper accelerations. However, note that Born rigidity is merely

one of the many proposed definitions of a relativistic rigid object — other

less restrictive definitions have also been suggested.

11.9.4 Relativistic Longitudinal Doppler Effect

Consider a source, that emits waves (not necessarily electromagnetic),

approaching a stationary observer at a speed v in frame S in Fig. 11.28.

Figure 11.28: Source approaching an observer

We would like to determine the frequency of the waves received by the

observer in frame S if the waves travel along the line joining the source and

the observer. The frequency and the speed of the waves emitted in the frame

of the source S’ are f ′ and u′ respectively.
There are two main effects which lead to a shift in the observed frequency

here. The first is time dilation which causes the observed frequency of emis-

sion in the frame of the observer to differ as the source is moving. The second

factor is the relative motion between the source and the observer during the

time interval between consecutive emissions of wavefronts — the essence of

the classical Doppler effect.

Let T and T ′ be the observed period of emission of the source in frames S

and S’ respectively. Then by time dilation, T = γT ′ as the observer sees the

clock on the source running slow. In frame S, imagine a wavefront emitted
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at a certain instant. During the time interval between this instant and the

release of the next wavefront, the source would have traveled a distance

vT = vγT ′. The emitted wavefront would have traveled a displacement uT

where u is the velocity of a wavefront in frame S. It can be computed via

the velocity-addition formula.

u =
u′ + v

1 + u′v
c2

.

Thus, if we define λ and λ′ to be the observed wavelengths of the waves in

frames S and S’ respectively, λ can be calculated as

λ = (u− v)T =
u′
(
1− v2

c2

)
1 + u′v

c2

γT ′ =
u′

γ(1 + u′v
c2 )

T ′,

which corresponds to the distance between consecutive wavefronts in frame

S. Thus, the observed frequency of waves received by the observer is

f =
u

λ
=
γ(u′ + v)

u′
1

T ′ = γ
(
1 +

v

u′
)
f ′. (11.23)

In the case of light, u′ = c and we obtain

f =
1 + v

c√
1− v2

c2

f ′ =

√
1 + β

1− β
f ′. (11.24)

Remember that v is defined to be positive if the source and observer are

approaching each other and negative if they are retracting away from each

other. When v > 0, the frequency of the received waves is larger in frame S

than S’ and the waves are said to be blue-shifted (higher frequency and thus

shorter wavelength). When v < 0, the converse occurs and the waves are

said to be red-shifted (lower frequency and thus longer wavelength). This

result is truly relativistic as it only depends on the relative velocity between

the source and observer as observed in the frame of one — as opposed to

the non-relativistic Doppler effect which has different dependencies on the

velocities of the observer and source in the lab frame.

Lastly, there is generally a distinction between an observer observing and

seeing something. In the context of waves, when we refer to the frequency of

the emitted waves as observed by an observer, we usually mean the frequency

of the waves that are emitted at the source in the frame of the observer

(i.e. the emission event is of concern). On the other hand, the frequency

of waves as seen by an observer explicitly refers to the frequency of the
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waves that reaches him as observed in his frame (i.e. the receiving event is

of concern). In the case of the longitudinal Doppler effect, the frequency of

emission observed by the observer is f ′
γ (due to time dilation solely) while the

frequency of waves seen by the observer is
√

1+β
1−β f

′ (both mentioned effects

have to be accounted for).
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Problems

As a word of advice, it is often easier to express everything in units of c, the

speed of light in a vacuum, to preclude c’s from floating around everywhere.

For example, instead of v = 0.9c, one can rewrite it as v = 0.9. γ then

becomes γ = 1√
1−v2 . Afterwards, one can add back the c’s at the appropriate

positions by dimensional analysis. For instance, u′ = u+v
1+uv in units of c

becomes u′ = u+v
1+uv

c2
by observing that there is an addition between uv,

which has units in m2s−2, and a constant 1, which is dimensionless.

Fundamental Consequences

1. Superluminal Travel*

Adrian shines a laser towards the Moon and forms a red spot on a crater.

He claims that if he twists his wrist, the spot on the Moon will travel a great

distance in a very short amount of time and thus achieve a superluminal

speed — thus violating special relativity. What is wrong with his reasoning?

Now, Betty invents the following thought experiment. Suppose that you

build a pair of scissors with very long blades. If you decrease the angle

between the handles of the scissors during a certain time interval, the angle

between the blades should also decrease by the same amount in the same

time interval. Then, points arbitrarily far away from the joint should travel

at superluminal speeds as the angular distance covered is fixed! Where does

Betty’s idea fail?

2. Muon Decay*

Muons have a half-life of proper time th. They are released at a distance L

above the surface of the Earth and travel at a constant velocity v towards the

Earth. What is the proportion of muons that reach the surface of the Earth?

Solve this problem from both the muons’ frame and the Earth’s frame.

3. Rod*

Consider two frames S and S’; S’ is traveling at a velocity v along the positive

x-axis of frame S. A rod, of length L as measured in its rest frame S, subtends

an angle θ1 with the x-axis in frame S. Find the angle subtended by the rod

and the x’-axis, θ2, in frame S’.
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4. Ladder-and-Barn Paradox*

A ladder of proper length, L, travels at a relative velocity v towards a barn

with proper length L. The barn has two doors at its ends that are initially

open. From the frame of the barn, frame S, the ladder is length-contracted

and thus fits into the barn. However, from the frame of the ladder, S’, the

barn is length-contracted and thus the ladder does not fit. Resolve this appar-

ent paradox. Consider the following: one can show that the ladder fits in the

garage by closing the two doors of the barn simultaneously in the current

reference frame during the brief period of time that the ladder is completely

inside the barn. The doors are then opened to release the ladder when it is

about to collide with the doors (so that the doors do not affect the ladder’s

motion).

5. Spaceships*

Consider a spaceship A of proper length L traveling towards an identical

spaceship B at a relative velocity v. When the right of A reaches the right

of B, a cannon is simultaneously fired from the left end of A in S’, the

frame of spaceship A. In frame S’, spaceship B is length-contracted which

causes the cannon to miss. However in ship B’s frame S, spaceship A is

length-contracted and the cannonball seemingly hits. Resolve this apparent

paradox. Warning: misleading figure.

Velocity Addition and Doppler Effect

6. Stellar Aberration*

A stationary light source is situated at the origin of frame S. It emits a

flash that is received by a receding observer traveling at a velocity v in the

positive x-direction. Let the observer’s frame be S’. If θ and θ′ are the angles
subtended by the path of the light and the positive x-axis in frame S and
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the positive x’-axis in frame S’ respectively, show that

cos θ′ =
cos θ − β

1− β cos θ

where β = v
c is defined to be positive in the positive x or x’-direction.

7. Relative Speed*

Consider two particles traveling at constant velocities v and u in the lab

frame. The angle subtended by their velocities is θ. Find the speed of one

particle in the frame of the other.

8. Another Velocity Addition Derivation*

A train of proper length L is moving longitudinally with velocity v relative

to a stationary observer on the ground. A person inside the train, standing

at the tail end of the train, throws a ball horizontally with constant velocity

u towards the front (assume that there is no gravity) as observed in his own

frame, and simultaneously sends a light signal in the same direction. The

light hits the front end of the train and is reflected back, meeting the ball

at some point. This meeting point of interest is a certain distance from the

tail end of the train (as observed in the ground or train’s frame).

(a) Find the ratio R of this distance to the proper length of the train L in

the train’s frame.

(b) In the ground frame, find the ratio R′ of this distance to the observed

length of the train. In your answer, let the length of the train and the

velocity of the ball be L′ and u′, respectively in the ground frame.

(c) What can you say about your answers in a) and b)? Explain. Hence,

derive u′ in terms of u and v.

9. Two Trains**

Two identical trains are traveling at speeds 4c
5 and 3c

5 towards the right in

frame S. The faster train is initially behind the slower train. Define events
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P and Q to be the front of the faster train crossing the back of the slower

train and the back of the faster train crossing the front of the slower train

respectively. When event P occurs in frame S, an observer R begins walking

from the back of the slower train to the front of the slower train. Coinciden-

tally, the time during which he reaches the front of the slower train coincides

with event Q. Find the velocity of the faster train in the frame of the slower

train. Thus, find the speed of observer R in the frame S. (“An Introduction

to Mechanics”)

10. Velocity Additions via Rapidity**

All velocities in this problem are assumed to be aligned in the x-direction.

The rapidity φ of a particle or frame with respect to a frame S is defined as

tanhφ = β =
v

c
,

where v is the velocity of the particle or frame with respect to S. tanhφ =
eφ−e−φ

eφ+e−φ is the hyperbolic tangent function. Show that if a particle has rapidity

φ1 with respect to frame 1 and frame 1 has rapidity φ2 with respect to frame

2, the particle has rapidity φ1+φ2 with respect to frame 2. It may be useful

to know that tanh(φ1 + φ2) =
tanh φ1+tanh φ2
1+tanh φ1 tanh φ2

.

Now, consider a particle which travels at a velocity v1 with respect to

frame S1, which travels at velocity v2 with respect to frame S2, which travels

at velocity v3 with respect to frame S3, and so on until frame Sn−1 which

travels at velocity vn with respect to frame Sn. All of these velocities are

aligned. Show that the velocity of the particle in frame Sn is

u = c ·
∏N
i=1(1 + βi)−

∏N
i=1(1− βi)∏N

i=1(1 + βi) +
∏N
i=1(1− βi)

where βi =
vi
c .

11. Collision**

In the lab frame S, a particle is traveling at a velocity v towards an identical,

stationary particle. From classical mechanics, we know the resultant veloci-

ties of the two particles must be perpendicular after the imminent collision

as they have equal masses. Show that it is impossible for the two parti-

cles to have non-zero velocities that are perpendicular in special relativity

by considering another inertial frame where the situation is symmetric, and

assuming that the dynamical laws are reversible. We do not know anything
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else about the dynamical laws in special relativity now. In fact, you can

show that the angle of separation must be smaller than 90◦. Finally, prove
the classical result, that a head-on collision causes the particles to exchange

velocities in frame S, holds in the context of special relativity.

12. General Doppler Effect**

A source that emits photons at frequency f ′ in its own frame, S’, is moving

across the field of vision of a stationary observer at the origin in the frame of

the observer, S. What is the observed frequency of emissions by the source

in frame S? Now, what is the frequency of the photons emitted at angle θ in

the left diagram below, as seen by the observer when the photons eventually

reach his eyes? At the instant where the source is at the closest distance of

approach to the observer, what is the frequency of the photons that enter

the eyes of the observer? When the observer sees the source at the closest

distance of approach, what is the frequency of the photons that enter the

observer’s eyes? You may find the pictures below to be useful.

Figure 11.29: General situation

Figure 11.30: Last situation
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13. The Twins’ Paradox Revisited**

Consider the twins’ paradox set-up again. Now the two twins send out a

radio pulse once per second in their own frames. As before, twin A travels

to the distant star, that is a distance L from the Earth in twin B’s frame,

and back at speed v while twin B remains on the Earth. During the entire

process,

(a) How many pulses did twin A broadcast in total?

(b) How many pulses from B did A receive in total? Hence, who does twin

A conclude to be younger?

(c) How many pulses did twin B broadcast in total?

(d) How many pulses from A did B receive in total? Hence, who does twin

B conclude to be younger?

14. Moving Glass**

In lab frame S, a stationary source emits light of frequency f in vacuum,

in the positive x-direction. The photons then pass through a glass block of

refractive index n and proper length l that is traveling at a velocity v in

the positive x-direction. Determine the time taken by the light to cross the

block, the frequency and wavelength of light inside the block in the frame of

the block, S′. Ditto for the lab frame.

Minkowski Diagrams

15. Simultaneous Lamps*

In the lab frame S, three lamps at coordinates x1, x2 and x3 are observed

to be illuminated at times t1, t2 and t3. At t = 0 in S, a car is observed to

travel from the origin at a constant velocity v > 0 in the positive x-direction.

Under what conditions will the person P in the car observe all three lamps

to be lit up simultaneously? Next, assume that P observes the events to

occur at t′ = 0 in his own frame S′. Let the time intervals between the

illumination of the lamps and the receipt of the corresponding photons be

Δt1, Δt2 and Δt3 in frame S′. If person P observes the ratio of these intervals

to be Δt1 : Δt2 : Δt3 = 1 : 2 : 3, and given x1, determine the x-coordinates

of the other lamps in frame S and the times at which the lights were lit up

in frame S. Solve this problem via a Minkowski diagram.
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16. Diverging Cars**

In the lab frame, car 1 travels at speed v1 = tan 15◦c in the negative x-

direction while car 2 travels at speed v2 = c√
3
in the positive x-direction.

The cars start from the origin O at time t = 0. At a certain later time,

car 1 emits a light signal in the positive x-direction. If an observer in car

1 measures the time interval between the emission event and the receiving

event by car 2 to be t′, determine the distance that car 2 has traveled from

its initial position in the lab frame when it receives the light signal with the

aid of a Minkowski diagram.

Proper Time

17. Particle’s Motion*

The velocity of a particle as a function of time t in the lab frame is given by

u(t) = c

√
1− 1(gt

c + 1
)2

and is oriented along the positive x-axis.

(a) Show that the proper time elapsed in the particle’s frame is

τ = c
g ln(

gt
c + 1).

(b) Let x denote the instantaneous x-coordinate of the particle in the lab

frame. If the particle starts at the origin in the lab frame originally, show

that x(τ) = c2

g [

√
e

2gτ
c − 1− tan−1

√
e

2gτ
c − 1].

18. World-Line*

In the standard configuration, a particle moves in the x-direction. In the lab

frame, its x-coordinate is described by

x(τ) =
c2

g

(
cosh

(gτ
c

)
− 1
)
,

where g is a constant with units of acceleration and τ is the proper time

of the object. Define γu as the gamma factor ascribed to the speed of the

object u in the lab frame.

(a) Express u in terms of γu, g, c and τ .

(b) Hence, express γu in terms of g, c and τ .

(c) Using the result of (b), re-express u solely in terms of g, c and τ .

(d) Express t as a function of τ and hence, u(t) and a(t). Show that u(t)

and a(t) make sense for t → ∞.
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Solutions

1. Superluminal Travel*

Let the distance between Adrian and the Moon be L. After Adrian has

shifted the direction of the laser, it takes time, on the order of Lc , for photons

emitted in this new direction to form a spot on the Moon. Suppose that the

direction of the laser changes by a small angle θ in time Δt. The distance

that the spot moves is on the order of Lθ. Therefore, the “average velocity”

of the spot is on the order of Lθ
L
c

= c
θ > c in the time interval Δt, especially

if θ is small. The spot on the Moon seemingly achieves superluminal travel!

Well, the resolution to this paradox is that the spot is not a physical entity

and is unable to carry information. The spot simply marks the location at

which incident photons impinge on — its movement is no different from a

fickle cartographer suddenly placing a dot on his map to define a new origin

(and this requires no time). Therefore, the spot does not need to comply to

physical laws such as special relativity and its speed can seemingly exceed the

speed of light (but it makes no sense to define a speed for such an intangible

construct anyway). However, the mediating particles, which are photons in

this case, must still be unable to achieve superluminal speeds.

Betty’s argument breaks down when she claims that the angle between

the blades should also decrease by the same amount in the same time interval

as the rigid body assumption is inherently flawed. The scissors cannot remain

rigid and points on the blade do not cover the same angular distance in the

same time interval (even if they rotate by the same angle so eventually).

Firstly, it takes time for signals to travel from the handles to points on the

blade to inform them that they should move. Therefore, points far away will

begin moving at a later time and the rigid body assumption fails. Afterwards,

when different points on the blade start to move, they still cannot move at

a speed faster than the speed of light. Hence, they cannot “teleport” to the

correct positions to maintain the rigid body property. The points on the

blade do not and need not cover the same angular distance in the same time

interval and hence Betty’s idea fails.

2. Muon Decay*

From the frame of the muons, the distance between its initial position and

the Earth is length-contracted. Thus, the total time taken for the journey in

the muons’ frame is

t′ =
L

γv
.
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In the frame of the Earth, the muons require a time interval of

t =
L

v

to reach the Earth. However, an observer on the Earth will observe that the

clocks on the muons tick slower due to time dilation. Thus, the time elapsed

on the clocks of the muons during this process is

t′ =
t

γ
=

L

γv
,

which is consistent with the result above. The proportion of the muons that

reach the Earth is then

2
− L

γthv ,

as the proportion left after n half lives is 2−n.

3. Rod*

The difference between the x and y-coordinates of the two ends of the rod

in frame S at simultaneous times are

Δx = L cos θ1,

Δy = L sin θ1,

where L is the length of the rod in frame S. The difference between the x’-

and y’-coordinates of the two ends of the rod in frame S’ at simultaneous

times are

Δx′ =
L cos θ1

γ
,

Δy′ = L sin θ1,

due to length contraction. Remember that length contraction does not occur

in the transverse direction. Then, the new angle subtended by the rod and

the x’-axis is

θ2 = tan−1 Δy′

Δx′
= tan−1(γ tan θ1).

4. Ladder-and-Barn Paradox*

The resolution is that it is perfectly fine for observers in the different frames

to reach different conclusions as to whether the ladder will fit into the barn.

In this problem, we define the fronts and backs of the ladder and barn to
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be the sides that are the closest to and furthest away from each other. Even

though the front and back doors of the barn may trap the ladder for a

period of time in frame S, they fail to do so in frame S’ due to the relativity

of simultaneity. Concretely, let the origins of the two frames, O and O’,

coincide at t = t′ = 0. At t = 0, the rear end of the ladder crosses the front

of the barn in frame S. Thus at this instant, both front and rear doors close

simultaneously in frame S. Let events 1 to 4 be defined as that of the front

door closing, rear door closing, front door opening and rear door opening

respectively. The (x, ct) coordinates of these events in frame S are

Event 1: (0, 0),

Event 2: (L, 0),

Event 3:

(
0,
Lc

v

(
1− 1

γ

))
,

Event 4:

(
L,
Lc

v

(
1− 1

γ

))
.

The ct-coordinates of events 3 and 4 are obtained by utilizing the fact that

the gap between the front end of the ladder and the rear of the barn is L− L
γ

at time t = 0 as the ladder is length-contracted in frame S. Evidently, the

ladder is completely inside the barn during the time interval between t = 0

and t = L
v (1− 1

γ ) in frame S. Applying the Lorentz transformations to these

events, the corresponding coordinates in frame S’ can be obtained.

Event 1: (0, 0),

Event 2:

(
γL,−γLv

c

)
,

Event 3:

(
L(1− γ),

Lc

v
(γ − 1)

)
,

Event 4:

(
L,
Lc

v

(
1

γ
− 1

))
.

Note that the back of the rod still reaches the front of the barn at event 1 and

that the front of the rod still reaches the back of the barn at event 3. This

is because, they are technically the same events as they occur at the same

x-coordinate and time in frame S. Rearranging these events in chronological

order in S’,

Event 2:

(
γL,−γLv

c

)
,
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Event 4:

(
L,
Lc

v

(
1

γ
− 1

))
,

Event 1: (0, 0),

Event 3:

(
L(1− γ),

Lc

v
(γ − 1)

)
.

This means that the rear door of the barn first closes before the front of

the ladder reaches the back of the barn and then opens when the front end

of the ladder reaches the rear of the barn such that the ladder is released.

Afterwards, the front door of the barn closes as the rear of the ladder passes

by it. Lastly, the front door opens. It can be seen that there is no moment

at which the ladder is completely trapped within the closed doors in frame

S’ due to the relativity of simultaneity. It is perfectly fine for observers in

the two frames to reach different conclusions in this set-up, as whether the

ladder fits into the barn is merely a human construct and not a physical

event. A brief outline of the entire process in the two frames is depicted in

Figs. 11.31 and 11.32.

Figure 11.31: Situation in frame S
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Figure 11.32: Situation in frame S’

5. Spaceships*

The second reasoning is flawed as the event of the right of A reaching the

right of B and the firing of the cannon are no longer simultaneous in frame

S (the diagram is misleading). Let the origin of the two frames, O and O’,

coincide at time t = t′ = 0. Let the (x′, ct′) coordinates of the firing event in

frame S’ be

Firing Event: (0, 0),

and that of the right of A reaching the right of B in S’ be

Event AB: (L, 0).

The cannon obviously misses as the left and right ends of spaceship B are

at x-coordinates L(1 − 1
γ ) and L at t′ = 0 respectively. Then, the (x, ct)
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coordinates of these two events in frame S can be obtained via the Lorentz

transformations.

Firing Event: (0, 0).

Event AB:

(
γL,

γLv

c

)
.

Figure 11.33: Corrected diagram of the situation in B’s frame, S

Referring to Fig. 11.33, it can be seen that the firing event occurs before

the right of A reaches the right of B! This can also be concluded from the

fact that the firing event is the rear clock as observed in frame S, which

leads the front clock (event AB) by γLv
c2

. Next, from the coordinates of event

AB, we can conclude that the rear end of the stationary spaceship B is at

x-coordinate

x = γL− L > 0

at all times t in S, where 0 is the x-coordinate of the firing event. Hence, the

cannon still misses in S.

6. Stellar Aberration*

Since the speed of light is c in both S and S’, the x and x’-components of

the photon’s velocities in S and S’ are c cos θ and c cos θ′, respectively. By
the longitudinal velocity addition formula,

c cos θ′ =
c cos θ − v

1− v
c cos θ

=⇒ cos θ′ =
cos θ − β

1− β cos θ
.
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7. Relative Speed*

Let u‖ and u⊥ be the components of u parallel and perpendicular to v

respectively. Then,

u‖ = u cos θ,

u⊥ = u sin θ.

Thus, in the frame of the particle traveling at velocity v, these two compo-

nents obey the following velocity transformation rules:

u′‖ =
u cos θ − v

1− uv cos θ
c2

,

u′⊥ =
u sin θ

γv
(
1− uv cos θ

c2

) ,
where γv =

1√
1− v2

c2

. Thus, the speed of the other particle in this frame is

u′ =
√
u′2‖ + u′2⊥ =

√
u2 − 2uv cos θ + v2 − u2v2 sin2 θ

c2

1− uv cos θ
c2

.

8. Another Velocity Addition Derivation*

(a) In the train’s frame, the total distance traversed by the ball and the

photon until their collision is 2L. Therefore, the time of collision is 2L
u+c and

the distance between the ball and the back end of the train at this juncture

is 2Lu
u+c .

R =
2Lu

L(u+ c)
=

2u

u+ c
.

(b) Since the distance between the front end of the train and the photon

narrows at a rate c − v in the ground frame, the distance traversed by the

photon until it impinges the front end of the train is L′c
c−v . The total distance

covered by the ball and the photon until their collision is then 2L′c
c−v such that

the time of collision is 2L′c
(c−v)(u′+c) . The distance between the ball and the

back end of the train at this juncture is 2L′c(u′−v)
(c−v)(u′+c) as it increases at a rate
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of u′ − v.

=⇒ R′ =
2c(u′ − v)

(c− v)(u′ + c)
.

(c) The two ratios must be equal, else this experiment can be used to distin-

guish between the two inertial frames — violating the principle of relativity.

R = R′ =⇒ 2u

u+ c
=

2c(u′ − v)

(c− v)(u′ + c)

u(c− v)(u′ + c) = c(u′ − v)(u+ c)

u(c− v)u′ + cu(c− v) = c(u+ c)u′ − c(u+ c)v

(c2 + uv)u′ = c2(u+ v)

u′ =
u+ v

1 + uv
c2
.

9. Two Trains**

Let us define the faster and slower trains to be A and B respectively. By the

relativistic longitudinal velocity addition formula, the velocity of train A in

the frame of B is

v′A =
4
5c− 3

5c

1− 12
25

=
5

13
c.

Let us now consider the frame of the observer. In the frame of the observer,

only the two trains are moving and he or she is stationary. The two trains

must travel at velocities of equal magnitudes and opposite directions in order

for events P and Q to occur at the location of the observer. In search of a

contradiction, suppose that the trains traveled at different speeds — the

faster train would be length-contracted to a greater extent while traveling

at a greater speed, causing its end to reach the observer in a shorter time.

Let the magnitude of these velocities be v. Thus, train A travels at speed v

towards the right while B travels at speed v towards the left. The velocity of

train A in the frame of train B obtained by applying the velocity addition

formula should be the same as that derived earlier. Thus,

2v

1 + v2

c2

=
5

13
c =⇒ v =

1

5
c

where we have rejected the impractical solution v = 5c. Next, let the velocity

of the observer be u in frame S. Then again, the relativistic addition of 1
5c
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to u should give 4
5c which corresponds to the velocity of train A in frame S.

Thus,

1
5c+ u

1 + u
5c

=
4

5
c.

Solving,

u =
5

7
c.

10. Velocity Additions via Rapidity**

Let β1 = tanhφ1, β2 = tanhφ2 and β′ be the β factor of the particle in

frame 2. By the relativistic velocity addition formula,

β′ =
β1 + β2
1 + β1β2

=
tanhφ1 + tanhφ2
1 + tanhφ1 tanhφ2

= tanh(φ1 + φ2).

Therefore, the rapidity is additive across frames. In the second part of the

question, the rapidity of the particle with respect to frame SN is

φ′ =
N∑
i=1

φi.

Then,

u = c tanhφ′ = c · e
∑N

i=1 φi − e−
∑N

i=1 φi

e
∑N

i=1 φi + e−
∑N

i=1 φi
.

Now, simple manipulations of tanhφ = eφ−e−φ

eφ+e−φ yield

eφi =
1 + tanhφi√
1− tanh2 φi

=
1 + βi√
1− β2i

.

Thus,

u = c ·
∏N
i=1

(
1+βi√
1−β2

i

)
−∏N

i=1

(
1−βi√
1−β2

i

)
∏N
i=1

(
1+βi√
1−β2

i

)
+
∏N
i=1

(
1−βi√
1−β2

i

)

= c ·
∏N
i=1(1 + βi)−

∏N
i=1(1− βi)∏N

i=1(1 + βi) +
∏N
i=1(1− βi)

.
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11. Collision**

In the lab frame S, define our coordinate system such that v is in the positive

x-direction. Number the moving particle 1 and the other particle 2. Now,

consider the inertial frame S’ where particle 1 travels at velocity u while

particle 2 travels at velocity −u in the x’-direction. Since particle 2 was

stationary in S, S’ must travel at velocity u relative to S. Thus, u can be

determined by applying the velocity addition formula to v.

v − u

1− uv
c2

= u.

The actual value of u can be solved from the quadratic equation above

but it is not particularly important here. The pivotal point is that it exists

for some value smaller than c. Now in this frame, the situation exhibits

mirror symmetry. Therefore, if the final velocity of particle 2 in S’ makes an

angle θ anti-clockwise with the positive x’-axis, the final velocity of particle

1 in S’ must subtend an angle θ anti-clockwise with the negative x’-axis.

Furthermore, the magnitude of their final velocities must still be u as the

set-up must be reversible. Then, the final velocities of particles 1 and 2 are

(−u cos θ,−u sin θ) and (u cos θ, u sin θ) in frame S’. The y-direction is chosen

such that the velocities lie in the xy-plane. The final velocities of the two

particles in frame S can then be obtained from the velocity addition formula,

as S’ travels at velocity u relative to S.

v1 =

⎛
⎝ u−u cos θ

1−u2 cos θ
c2−u sin θ

γu
(
1−u2 cos θ

c2

)

⎞
⎠,

v2 =

⎛
⎝ u+u cos θ

1+u2 cos θ
c2

u sin θ

γu
(
1+u2 cos θ

c2

)

⎞
⎠,

where γu = 1√
1−u2

c2

. The dot product of the two velocities is

v1 · v2 =
u2(1− cos2 θ)

1− u4 cos2 θ
c4

− u2 sin θ

γ2u

(
1− u4 cos2 θ

c4

) =
u4 sin2 θ

c2
(
1− u4 cos2 θ

c4

) .
This expression can only be zero when θ = 0 or θ = π. However, in both

cases, the dot product is zero, not because the velocities are perpendicular

but because one of the velocities is zero. Therefore, it is impossible for the
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particles to leave with perpendicular non-zero velocities in frame S. In fact,

if we let φ denote the angle of separation between v1 and v2,

cosφ =
v1 · v2

|v1||v2| > 0

which implies that |φ| < π
2 . Next, when the particles undergo a head-on

collision, θ = 0 which yields

v1 =

(
0

0

)
,

v2 =

(
v

0

)
.

We do not need to take an intermediate step in explicitly evaluating u to

determine 2u

1+u2

c2

in the x-component of v2, as it is simply the inverse trans-

formation, from S’ to S, of the transformation from v in S to u in S’.

12. General Doppler Effect**

In all scenarios, the observer observes the source to emit a wavefront every

T = γT ′ seconds. Thus, the observer observes the source to emit at a lower

frequency f = f ′
γ . Moving onto the general problem, consider Fig. 11.34.

Figure 11.34: Transverse Doppler effect at an arbitrary angle in frame S

Consider two beams emitted by the moving light source in frame S. The

time interval between these two beams is T = γT ′ in S. In this time inter-

val, the source travels v cos θT = γvT ′ cos θ along the first beam — thus

narrowing the wavelength. The perceived wavelength of these light waves is
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then

λ = (c− v cos θ)T = γcT ′(1− β cos θ).

Thus, the perceived frequency of these wavefronts by the observer is

f =
c

λ
=

f ′

γ(1− β cos θ)
.

Now, we shall analyze how to substitute θ for the last two situations in

the problem. In the first scenario, the light that reaches the eyes of the

observer must have been emitted before the source reaches the point of clos-

est approach in frame S. In the second situation, the wavefront of concern is

emitted when the light source reaches the closest point of approach in frame

S. Thus, the wavefront is emitted vertically downwards in frame S. Evidently,

θ = π
2 radians in the second case — leading to a perceived frequency of

f =
f ′

γ
.

Now, in the first situation, cos θ = v
c as the ratio between the distance

traveled by the beam (emitted before crossing the y-axis) and the distance

traveled by the source must be c : v. Substituting this expression into the

formula for f ,

f = γf ′.

13. The Twins’ Paradox Revisited**

(a) Again, there are two different inertial frames associated with twin A

during his outbound and inbound journeys. In both of twin A’s frames, the

distance between the Earth and the star is length-contracted. Thus, the

whole process takes

tA =
2L

γv
,

and he releases

NA =
2L

γv

pulses.

(b) During the first half of the journey, twin A receives pulses from B at a

frequency of
√

1−β
1+β due to the relativistic Doppler effect as the Earth travels

away from twin A in A’s frame. During the second half of the journey, the
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frequency of the pulses instantaneously becomes
√

1+β
1−β when twin A switches

frames. Therefore, the total number of pulses from B received by A is

NB =
L

γv
·
(√

1− β

1 + β
+

√
1 + β

1− β

)
=

L

γv
· γ(1− β + 1 + β) =

2L

v
.

Hence, twin A concludes that he is younger than twin B by a factor of 1
γ .

(c) The total time of the journey in B’s frame is simply

tB =
2L

v
.

Thus, he emits

NB =
2L

v

pulses.

(d) The important point to take note of is that twin B does not immediately

receive pulses of a higher frequency when twin A turns around as there are

already pulses that are en route to twin B. The total time during which

B receives low-frequency pulses from twin A is L
v + L

c where the first term

arises during the first half of the journey of twin A and the second term

corresponds to the subsequent time taken for the last low-frequency pulse to

reach B. For the rest of the L
v − L

c time, B receives high-frequency pulses.

Therefore, the total number of pulses emitted by A that is received by B

during the entire process is

NA =

(
L

v
+
L

c

)
·
√

1− β

1 + β
+

(
L

v
− L

c

)
·
√

1 + β

1− β
=

2L

γv
.

Therefore, twin B similarly concludes that twin A is younger than him by a

factor of 1
γ .

14. Moving Glass**

In the frame of the block, S′, the length of the block is just its proper length

l and the velocity of light with respect to the block is just c
n but the light is

Doppler-shifted. The time taken for the light ray to exit the block in S′ is
just t′ = nl

c . The frequency of light in the block fS′ is related to the frequency
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in vacuum f by

fS′ =

√
1− β

1 + β
f

where β = v
c — this is the longitudinal relativistic Doppler formula as the

source now moves in the frame of the block. Note that the frequencies of

light in vacuum and in the block must match as the block is stationary. The

wavelength inside the block in frame S’ is then

λS′ =
c
n

fS′
=

c

nf

√
1 + β

1− β
.

Now, consider things in the lab frame — the situation is much trickier. We

know that light travels at speed c
n with respect to the glass block. Therefore,

the velocity of light within the block in the lab frame is given by the velocity

addition formula as

c′ =
c
n + v

1 + v
nc

.

Next, the length of the glass block in the lab frame is l
γ where γ = 1√

1− v2

c2

,

as it is Lorentz-contracted. Now, notice that the block also travels at v, in

an attempt to chase after the light. Therefore, the relative velocity between

the light and the glass block in the lab frame is c′ − v. The total time taken

for the light to escape the glass block is

t =
l

γ(c′ − v)
=
γl
(
n+ v

c

)
c

.

To determine the frequency of light inside the block, first observe that light

from the source impinges on the closer end of the block at a frequency c−v
c f ,

as the block retracts at a velocity v (this is just the classical Doppler effect

as there is no time dilation). However, note that this is not the frequency of

light inside the block. When the edge of the block receives light, its atoms re-

emit light into the block — that is, the end of the block now acts a source.

Observe that the end of the block is moving at speed v. The light inside

the block is then Doppler-shifted again as the “source” (the edge of the

block) is now moving in the direction of the waves it emits. Thus, we need

to multiply c−v
c f by a correction factor of c′

c′−v , as the wavelength inside the

block decreases by a factor of c′−v
c′ in the lab frame. The frequency in the
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block in the lab frame is thus

fS =
c− v

c
f · c′

c′ − v
= (1− β) f ·

c
n + v

c
n(1− β2)

=
(1 + nβ) f

1 + β
.

The wavelength of light inside the block in the lab frame is

λS =
c′

(1+nβ)f
1+β

=
c(1 + β)

(n+ β)f
.

15. Simultaneous Lamps*

Consider a Minkowski diagram in the lab frame S (depicted in Fig. 11.35)

and plot the illumination events of the lamps as points A1, A2 and A3.

Figure 11.35: Minkowski diagram in frame S

A line of simultaneity of the car, when superimposed on the current

diagram, is inclined at an angle θ = tan−1 β anti-clockwise from the positive

x-axis. Therefore, the events must be collinear through a line l that subtends

an angle θ with respect to the horizontal. This requires

c(t2 − t1)

x2 − x1
= β

and

c(t3 − t2)

x3 − x2
= β.

Since we know that a line ct = x
β represents the world line of the car and the

ct’-axis when superimposed on the current Minkowski diagram, line l must

cross the origin of frame S, as shown in the figure above (in order for the

lights to be observed at t′ = 0 by person P). Now draw three 45◦ lines, which
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represent the path of photons, from the corresponding illumination events

and label their intersections with the world line of the car as B1, B2 and

B3 respectively. These events denote person P receiving the photons. Since

OB1 : OB2 : OB3 = 1 : 2 : 3 and �OA1B1 ∼ �OA2B2 ∼ �OA3B3 (AA),

OA1 : OA2 : OA3 = 1 : 2 : 3 by similar triangles. Since xi = OAi cos θ,

x1 : x2 : x3 = 1 : 2 : 3. Thus,

x2 = 2x1,

x3 = 3x1.

Finally, the respective times of the illumination events can be calculated via

cti = tan θxi = βxi.

16. Diverging Cars**

Figure 11.36 is a Minkowski diagram in the lab frame S. We first draw the

world lines of cars 1 and 2, which are straight lines that subtend 15◦ and

30◦ with the ct-axis, respectively.

Figure 11.36: Minkowski diagram in frame S

Let event A be the emission of the light signal from car 1 and event B

be the receiving event by car 2. Then, the photons take the path AB on

the Minkowski diagram, which makes a 45◦ angle with the vertical. Now, we

superimpose the x’ and ct’-axes of car 1 onto the current diagram. Draw a

line that subtends 15◦ with the x-axis that crosses through B — this is a line

of simultaneity with respect to car 1. Define the intersection of this line and

the ct’-axis (which is just the world line of car 1) as C. Since the time between

the emission event and the receiving event in frame S’ is t′ and since a time

ct′ in frame S′ corresponds to a “length” of

√
1+β2

1

1−β2
1
ct′ =

√
1+tan2 15◦
1−tan2 15◦ ct

′ =
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√
1

cos2 15◦−sin2 15◦ ct
′ = ct′√

cos 30◦
=

√
2

4√3
ct′ on the superimposed ct’-axis in the

Minkowski diagram of frame S,

AC =

√
2

4
√
3
ct′.

Now, let us consider a few angles. Firstly, ∠O′BO = 60◦. Since ∠O′BC = 15◦

(recall that line BC is a line of simultaneity with respect to car 1), ∠CBO =

75◦. Next, since lines AC and AB subtend 15◦ and 45◦ with respect to the

vertical respectively, ∠CAB = 60◦ and ∠OAB = 120◦. Then, ∠ABO =

180◦−45◦−120◦ = 15◦. This implies that ∠CBA = ∠CBO−∠ABO = 60◦.
Since ∠CAB = ∠ABC = 60◦, �ABC is equilateral. Therefore,

AB = AC =

√
2

4
√
3
ct′.

Then, OB is given by the sine rule.

OB =
AB sin 120◦

sin 45◦
=

4
√
3ct′.

The x-coordinate of event B is

xB = OB sin 30◦ =
4
√
3

2
ct′.

17. Particle’s Motion*

(a) The infinitesimal proper time interval is

dτ =
dt

γu

with

γu =
1√

1− u2

c2

=
gt

c
+ 1

=⇒ dτ =
dt

gt
c + 1

.

τ =

ˆ t

0

c

g
· 1

t+ c
g

dt
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=
c

g

[
ln

∣∣∣∣t+ c

g

∣∣∣∣
]t
0

=
c

g
ln

(
gt

c
+ 1

)
.

(b) Adopt the substitutions sec y = gt
c + 1 and tan y sec ydy = g

cdt.

x(t) =

ˆ t

0
u(t)dt

=

ˆ t

0
c

√
1− 1(gt

c + 1
)2dt

=

ˆ sec−1( gt
c
+1)

0

c2

g

√
1− cos2 y tan y sec ydy

=

ˆ sec−1( gt
c
+1)

0

c2

g

sin2 y

cos2 y
dy

=

ˆ sec−1( gt
c
+1)

0

(
c2

g
sec2 y − c2

g

)
dy

=

[
c2

g
tan y − c2

g
y

]sec−1( gt
c
+1)

0

=
c2

g

⎡
⎣
√(

gt

c
+ 1

)2

− 1− sec−1

(
gt

c
+ 1

)⎤⎦.

Observe that sec−1(gtc + 1) = tan−1
√

(gtc + 1)2 − 1. Furthermore, from the

result of a), we can write gt
c + 1 = e

gτ
c so

x(τ) =
c2

g

[√
e

2gτ
c − 1− tan−1

√
e

2gτ
c − 1

]
.

18. World Line*

(a) Since dt = γudτ ,

u =
dx

dt
=

1

γu

dx

dτ
=

c

γu
sinh

(gτ
c

)
.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch11 page 849

Relativistic Kinematics 849

(b)

γ2u

(
1− u2

c2

)
= 1

=⇒ γ2u − sinh2
(gτ
c

)
= 1

γu =

√
1 + sinh2

(gτ
c

)
= cosh

(gτ
c

)
,

where we have chosen the positive root since γu ≥ 1.

(c)

u =
c sinh

( gτ
c

)
γu

= c tanh
(gτ
c

)
.

(d)

t =

ˆ τ

0
γudτ

=

ˆ τ

0
cosh

(gτ
c

)
dτ

=
c

g
sinh

(gτ
c

)
.

From the above,

sinh
(gτ
c

)
=
gt

c

cosh
(gτ
c

)
=

√
1 +

g2t2

c2

u(t) = c tanh
(gτ
c

)
=

gt√
1 + g2t2

c2

a(t) =
du

dt
=

g√
1 + g2t2

c2

−
g3

c2
t2(

1 + g2t2

c2

) 3
2

=
g(

1 + g2t2

c2

) 3
2

.

As t → ∞, u(t) = g√
1
t2

+ g2

c2

→ c while a(t) → 0. This limit makes sense as

the particle’s speed in the lab frame cannot exceed c.
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Chapter 12

Relativistic Dynamics

The previous chapter analyzed how particles “move” in space and time with-

out considering the interactions that led to their motion. In this chapter, rel-

ativistic formulations of various physical concepts such as momentum and

energy will be introduced. The elegant 4-vector formulation, which captures

the quintessence of relativistic dynamics, in simple matrices with just four

entries, will also be explored. The prefix “relativistic” that appears in front

of many concepts in this chapter is misleading in certain aspects as the prin-

ciple of relativity also exists in the classical regime — with the caveat that

Galilean relativity is assumed instead. However, this prefix shall still be used

to distinguish quantities in this chapter from their classical counterparts.

12.1 Momentum

Classical Definition

In classical mechanics, the momentum of a particle in a particular inertial

frame S is defined as

p = mv,

where m is the mass of the particle and v is the velocity of the particle

in frame S. There is no ambiguity about which frame m is measured with

respect to as the mass of a particle is assumed to be an intrinsic property that

is invariant across inertial frames. The importance of this formulation lies

in the law of conservation of momentum. It is empirically observed that the

total momentum of a system that is not under the influence of net external

forces is conserved. In an isolated system of particles, even if the particles

interacted with one another in a certain manner, the total momentum of the

particles remains constant.

851
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The combination of the classical definition of momentum, mass invariance

and the principle of relativity (that all laws hold similar forms in all iner-

tial frames) implies the conservation of mass in closed systems. Take note of

the distinction between mass invariance and the conservation of mass. Mass

invariance means that if a particle is observed to have a certain mass m in an

inertial frame S, its observed mass in another inertial frame S’ is also m. On

the other hand, the conservation of mass means that the total mass in a closed

system remains the same, regardless of the inner workings of the system.

Consider a closed system of n particles in which the ith particle has an ini-

tial mass mi and an initial velocity ui as observed in an inertial frame S.

The particles may undergo arbitrary interactions with one another. Non-

conservative forces such as friction may exist such that the total mechanical

energy of the system is not conserved. Furthermore, there may also be changes

in the mass of each individual particle and the total number of particles as

atoms may be scraped off during collisions, particles may stick together or

decay. After the particles are allowed to interact for a certain amount of time,

there are n′ particles and the ith particle has a mass m′
i and a velocity vi in

the same frame S. By the conservation of momentum in this frame,

n∑
i=1

miui =
n′∑
j=1

m′
jvj . (12.1)

Now if we were to switch to another inertial frame S’ that moves at a velocity

V relative to frame S, the law of the conservation of momentum should also

be valid in frame S’ by the principle of relativity as all inertial frames are

“equivalent.” Based on Galilean relativity, if a particle is observed to have

a velocity u in frame S, it will be observed to possess a velocity u − V in

frame S’. Furthermore, since the mass of a particle is assumed to be invariant

across inertial frames (that is, the particle with mass mi in S still has mass

mi in S’), the conservation of momentum in frame S’ becomes

n∑
i=1

mi(ui − V ) =

n′∑
j=1

m′
j(vj − V ). (12.2)

Subtracting Eq. (12.1) from Eq. (12.2) and simplifying,

n∑
i=1

mi =
n′∑
j=1

m′
j. (12.3)

Equation (12.3) states the conservation of mass in a closed system. If a closed

system has a certain amount of total mass at a certain instance, it will also
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contain the same amount of mass at the next instance. This is what allows us

to conclude that the perfectly inelastic collision of a particle of mass m and

another particle of mass M produces a combined particle of mass m+M .

Relativistic Momentum

It turns out that the classical definition of momentum is not quite conserved

in an isolated system. Instead, the relativistic momentum is conserved and

is defined for a particle with respect to an inertial frame S as

p = γumu (12.4)

where

γu =
1√

1− u2

c2

=
1√

1− u2x+u
2
y+u

2
z

c2

.

u is the velocity of the particle in frame S and m refers to the mass of the

particle observed in a frame in which it is at rest — a quantity denoted as the

rest mass of the particle. Henceforth, the term “mass” will refer to the rest

mass, unless explicitly stated otherwise. Again, the rest mass of a particle is

presumed to be an intrinsic property of the particle and is invariant across

inertial frames.

The total relativistic momentum of particles in a system that is free from

a net external force, is conserved. This assertion, similar to the classical

conservation of momentum, cannot be proven and should be regarded as an

axiom. However, it has been empirically verified by rigorous test and hence

shall be believed to be true.

An immediate consequence of this new postulate is that the total (rest)

mass of a closed system may not be conserved! The premise of the previous

section (Eq. (12.1) and the Galilean velocity transformation) is inaccurate.

To illustrate the mutability of the total rest mass, consider the set-up in

Fig. 12.1.

Figure 12.1: Two particles in frame S



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 854

854 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Two identical particles, of rest massm, initially travel at speed u in oppo-

site directions in an inertial frame S. They collide with one another and stick

together to form a resultant particle of rest massM , which is not necessarily

2m. Due to the symmetry of this set-up, there is zero total momentum and

the resultant particle remains stationary in this frame S by the conservation

of momentum (analogous to the right-hand side of Eq. (12.1) being zero).

Similar to how we proceeded from Eq. (12.1) to (12.2), consider the inertial

frame S’ that travels at the initial velocity of the particle on the right. In

this frame, the situation is depicted by Fig. 12.2.

Figure 12.2: Two particles in frame S’

The velocity u′ of the left mass in frame S’ can be computed via the

relativistic velocity addition formula as 2u

1+u2

c2

. Again, the invariance of the

rest mass allows us to conclude that the rest masses of these particles are

the same in frame S’. By the principle of relativity, the total momenta of the

system before and after the collision are identical.

1√√√√√1−
⎛
⎝ 2u

1+u2

c2

c

⎞
⎠
2
m

2u

1 + u2

c2

=
1√

1− u2

c2

Mu.

Solving for M ,

M =
2√

1− u2

c2

m.

It can be seen that the rest mass of the resultant particle is larger than the

rest mass of its constituents! It is natural to question where this additional

mass comes from. Answering this shall be the goal of the next section.

At this point, we underscore the fact that we will adopt the same conven-

tional definitions as the previous chapter. The velocity of a particle or wave
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in frame S will be denoted by u by default. Usually, we will be concerned

with switching to another inertial frame S’. Hence, we will reserve v to be

the velocity that S’ travels with respect to S in the positive x-direction in

general. A similar statement holds for β = v
c which is only associated with

the transformations. Sometimes, we will switch to the frame of the particle

and will thus substitute a quantity related to u into v.

In a general inertial frame S, we will append the prefix “coordinate” to

the measurements to explicitly indicate that they are measured with respect

to a general frame. For example, the coordinate time refers to time measured

in S. Often, we will be concerned with quantities observed in the frame of a

particle. We then append the prefix “proper” to such measurements.

12.2 Relativistic Energy

It is postulated that the total relativistic energy in an isolated system is

conserved. The total energy of a particle, which includes both its kinetic

energy and internal energy, in a particular inertial frame S is proposed to be

E = γumc
2, (12.5)

where

γu =
1√

1− u2

c2

.

m and u are again the rest mass and the speed of the particle in frame

S, respectively. Once again, this is another axiom which cannot be derived

from first principles.1 However, it has also been extensively tested by experi-

mentalists as it establishes a fundamental basis in many branches of physics

such as nuclear physics. Next, let us analyze the constituents of this energy

in greater detail.

E =
1√

1− u2

c2

mc2

≈ mc2 +
1

2
mu2 + · · · ,

1The expression for the kinetic energy of the particle (in the section after this) can be
deduced from integrating the rate of change of relativistic momentum (relativistic force)
with respect to displacement, which is the relativistic analog of work. However, the “rest
energy” is indeed a bold assertion.
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where we have expanded the Taylor series of γu. We begin to see a familiar
1
2mu

2 term followed by other higher order terms in u2

c2 that are not shown.

However, there is an enormousmc2 term in the expression as well, depending

only on the rest mass of the particle. This is known as the rest energy of the

particle, E0.

E0 = mc2. (12.6)

The rest energy of a particle is equivalent to its internal energy and is an

intrinsic property of the particle. The rest energy is eponymously the energy

of the particle when it is at rest and remains constant regardless of the

particle’s motion. Furthermore, since the rest mass is invariant across inertial

frames, the rest energy of a particle is also invariant. In general, the internal

energy of a particle or system consists of the (microscopic) kinetic and rest

energy of its constituents as well as the potential energy associated with its

constituents due to interactions between its constituents or fields produced

by its constituents (this excludes fields generated by sources external to the

system). A consequence of this postulate is that heating a system increases

its rest mass, as its internal energy is increased.

Next, the kinetic energy of a particle is then the remaining portion of

energy associated with the motion of the particle.

KE = (γu − 1)mc2. (12.7)

As seen from the previous Taylor series expansion, this expression indeed

reduces to the familiar formula for kinetic energy in the classical limit.

Lastly, note that the potential energy of a particle by virtue of its posi-

tion in an external field is not included in the particle’s total energy. This

is because this potential energy is “associated” with the particle and not

possessed by it. The concept of potential energy is merely a “book-keeping”

device that simplifies our calculations. When the kinetic energy of a par-

ticle increases as it is acted upon by a force due to an external field, the

gain in kinetic energy should not be ascribed to its loss in potential energy.

Rather, it should be understood that the field itself loses an equivalent

amount of energy. Potential energy is an imaginary construct that helps

us to keep track of the total energy of a system without taking into account

where this energy “belongs” to. The “location” of energy matters in the

context of relativity as it manifests itself in the local distortion of space

and time. Hence, the potential energy due to an external field cannot be

ascribed to a particle as a “real” form of energy and is forgone in special

relativity.
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Armed with the knowledge of relativistic energy and the conservation of

relativistic energy (we will drop the “relativistic” prefix henceforth), let us

revisit the previous question and verify if the total energy of the system is

indeed conserved in Fig. 12.1. The total energy in the system of two particles

before the collision in frame S is

E =
2√

1− u2

c2

mc2.

As we have previously computed that the rest mass of the resultant particle

is M = 2√
1−u2

c2

, the energy of the system after the collision is

E′ =Mc2 =
2√

1− u2

c2

mc2

as the resultant particle is at rest. It can be seen that they are indeed equal.

But wait! How can the total energy in this perfectly inelastic collision be

conserved? Furthermore, we have yet to answer the question regarding the

origin of the additional mass. Well, the resolution to these problems is that

the kinetic energy of the particles is converted into their internal energy

due to the heat released during the collision. Hence, the total energy, which

includes the internal energy of the particles, of the system is still conserved.

Furthermore, this additional internal energy also “shows up” as the addi-

tional mass of the resultant particle. In this particular sense, relativistic

dynamics may actually be simpler than its classical counterpart, as the total

energy of an isolated system is always conserved. In real life, you would

expect the total energy of the resultant particle to be less than the sum of

the original two. However, this deviation is due to heat transfer with the sur-

roundings which means that the system of particles is no longer isolated and

that the conservation of energy is inapplicable (but not violated). Lastly, be

cautious that though the total energy of an isolated system is definitely con-

served, the total kinetic energy may not necessarily be conserved — evident

from the situation above.

The conservation of energy and momentum can be directly applied to

solve many problems in a manner similar to the classical situation.

Problem: In Fig. 12.3, a particle of rest massM initially travels at a velocity

u in the x-direction in inertial frame S. It then decays into two identical

particles of rest mass m that travel at a certain velocity v that makes a

certain angle θ with the x-axis. Determine v and θ.
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Figure 12.3: Decay

The conservation of momentum in the x-direction implies

γuMu = 2γvmvx,

where vx is the component of the resultant particles’ velocities in the

x-direction. By the conservation of energy,

γuMc2 = 2γvmc
2.

Dividing the two equations above and simplifying,

vx = u.

Substituting this into the first equation,

γv =
M

2m
γu

1√
1− v2

c2

=
M

2m
γu

v = c

√
1− 4m2

M2γ2u

θ = cos−1 vx
v

= cos−1 u

c
√

1− 4m2

M2γ2u

.

Useful Identities

In light of how the velocity u is horrendously coupled in the γ factors in the

definitions of momentum and energy, there are a few neat identities that are
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commonly exploited in problem-solving. Firstly, consider the expression

E2 − (p · p)c2 = E2 − p2c2

=
1

1− u2

c2

m2c4 − 1

1− u2

c2

m2u2c2

=
1

1− u2

c2

m2c4
(
1− u2

c2

)

= m2c4

E2 − p2c2 = m2c4. (12.8)

This is a convenient identity that can be used to relate the energy of a

particle to its momentum. Furthermore, it can be used to isolate and elimi-

nate the dynamical properties of a particle (energy or momentum) which is

not of concern. This will be illustrated in the next example. What’s more,

notice that the right-hand side of the equation is frame-independent! That

is, regardless of the inertial frame in which the energy E and momentum p

of the particle are measured, substituting them into the equation above will

always produce m2c4 where m is the rest or invariant mass of the particle!

Perhaps, the deeper reason behind this invariance can be understood once

the method of four-vectors is introduced.

The next useful identity is obtained by dividing p by E.

p

E
=

u

c2
. (12.9)

The equation above is especially helpful in determining the speed of a particle

in a certain inertial frame given its momentum and energy in that frame.

Note that in general, we do not wish to work in terms of u as it is usually

entangled with annoying surds that are cumbersome to isolate. Hence, the

momenta and energies will be the main avenues through which a dynamical

problem can be solved.

Next, Eqs. (12.8) and (12.9) are particularly enlightening in the case of

massless particles such as photons, which are inherently relativistic. Equa-

tions (12.5) and (12.6) are less so as γu tends to infinity whilem tends to zero

in the case of such massless particles which travel at the speed of light (we

will soon see that all massless particles must travel at c) — leaving the values

of those expressions indeterminate. Substituting m = 0 into Eq. (12.8),

E = pc. (12.10)
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Applying Eq. (12.9) with this relationship would show that u = c in the case

of massless particles. Similarly, it is not difficult to show that the speed of a

massive particle must be less than c in any given inertial frame. Moving on,

from quantum mechanics, the energy of a photon in an inertial frame S is

E = hf =
hc

λ
, (12.11)

where f and λ are its frequency and wavelength in frame S, related by c = fλ.

Correspondingly, the momentum of a photon in frame S is

p =
E

c
=
h

λ
, (12.12)

which is just the de Broglie relationship.

Problem: In inertial frame S, a photon of wavelength λ, that is initially

traveling the x-direction, collides with a stationary electron with rest massm.

If the photon scatters at an angle θ from the x-axis, determine the resultant

wavelength of the photon. This effect is known as Compton scattering.

Figure 12.4: Compton scattering

Referring to Fig. 12.4, let u be the resultant speed of the electron and

let ux and uy be its components in the horizontal and vertical directions,

positive rightwards and downwards. By the conservation of momentum and

energy,

h

λ
=
h

λ′
cos θ + γumux,

h

λ′
sin θ = γumuy,

hc

λ
+mc2 =

hc

λ′
+ γumc

2.

These equations appear tricky to solve because of ux and uy which are cou-

pled in γu. However, notice that the resultant momentum and energy of the

electron are not germane. Hence, we can eliminate them by using Eq. (12.8)
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astutely. Rewriting the equations in terms of the components of the momen-

tum and the energy of the electron (via px = γumux, py = γumuy and

E = γumc
2),

px =
h

λ
− h

λ′
cos θ,

py =
h

λ′
sin θ,

E =
hc

λ
+mc2 − hc

λ′
.

Applying E2 − p2c2 = m2c4 by taking the square of the last equation and

subtracting it by the first and second equations squared and multiplied by c2,(
hc

λ
+mc2 − hc

λ′

)2
−c2

(
h

λ
− h

λ′
cos θ

)2
− c2h2

λ′2
sin2 θ = E−p2x−p2y = m2c4.

Simplifying,

2h2c2 cos θ

λλ′
+

2hmc3

λ
− 2hmc3

λ′
− 2h2c2

λλ′
= 0

(
hmc3 +

h2c2

λ
− h2c2

λ
cos θ

)
1

λ′
=
hmc3

λ
.

Multiplying both sides of the equation by λλ′
hmc3

,

λ′ = λ+
h

mc
(1− cos θ).

Rest Energy and Mass of a System

The rest or invariant mass of a system msys is related to the total energy of

the particles, combined with the potential energy due to internal interactions

between the constituent particles (this component was excluded from the

definition of the energy of a particle), denoted as Etot,CM , in the inertial

frame in which the total momentum of the system is zero — this frame is

known as the center-of-momentum frame. By definition,

Etot,CM = msysc
2. (12.13)

Evidently, there are two factors that can affect the invariant mass of a system.

Firstly, the total energy of each particle in the center-of-momentum frame

may increase in a non-isolated system. In the case of an ideal gas whose

particles lack potential energy, heating the gas causes the rest mass of the

system to increase as the kinetic energy of the particles increases.
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Another factor that affects the internal energy and thus the rest mass

of the system would be the microscopic potential energy of its constituents

due to their interactions (this was excluded from the total energy of each

particle). This is the reason behind the large discrepancy between the mass

of a proton and the sum of the individual rest masses of the component

quarks.

As the rest mass of a system is dependent on both microscopic kinetic

and potential energy, it is generally not equal to the sum of the rest masses

of its constituents. In the case of non-interacting particles (collisions and

decays are not counted here), the potential energy of the constituents is zero

and the left-hand side of Eq. (12.13) is simply the sum of the energies of the

constituent particles in the center-of-momentum (CoM) frame, ECM .

ECM = msysc
2. (12.14)

Furthermore, we claim that ECM can be expressed in terms of the dynamical

properties observed in a general inertial frame in the following manner.

E2
CM = E2

tot − p2totc
2,

where Etot and ptot are the total energy and momentum of the system of

particles in an arbitrary inertial frame S. This leap is not obvious now

as we have yet to discuss how energy and momentum transform between

inertial frames. However, the reader should just accept this for now. We

will deduce this result and examine why the “invariant mass of a system” is

indeed invariant later. Then,

E2
CM = E2

tot − p2totc
2 = m2

sysc
4. (12.15)

Let us consider the example in Fig. 12.5 to convince ourselves that the rest

mass of a system indeed deviates from the sum of the rest masses of its

constituents. In inertial frame S, a particle of mass 2m travels at a speed

u in the positive x-direction while another particle of mass m travels at a

speed u in the negative x-direction.

Figure 12.5: Two particles
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Then the rest mass of the system comprising the two particles is given

by Eq. (12.15).

9γ2um
2c4 − γ2um

2u2c2 = m2
sysc

4

msys = γum

√
9− u2

c2

=

√
9c2 − u2

c2 − u2
m

which differs from the sum of the individual rest masses, 3m. In general,

since the total energy and momentum is conserved in an isolated system,

the rest mass of an isolated system remains unchanged too by Eq. (12.15).

This is the conservation rule that replaces the classical conservation of mass.

However, this is merely tautology as we have only created a new definition

for E2
tot − p2totc

2. The important part lies in the fact that this quantity is in

fact invariant across all inertial frames (and hence we term it the “invariant

mass of a system”), as we shall prove. In practice, the rest mass of a system

is not particularly useful as it is easily superseded by the formulation of

four-vectors (as we shall see).

12.3 Force and Coordinate Acceleration

In the relativistic case, a net force on a system still leads to a rate of change of

relativistic momentum. The forces are still of the same form as their classical

counterparts (e.g. the elecromagnetic force is given by the Lorentz force law).

However, the rate of change of relativistic momentum of a massive particle

is no longer ma where a is its acceleration. The net external force f on a

particle, as observed in an inertial frame S, engenders a rate of change of

relativistic momentum.

f =
dp

dt
=
d(γumu)

dt
, (12.16)

where u and t are the coordinate velocity of the particle and coordinate time

as observed in frame S. The lower-case letter shall be used to avoid confusion

with the four-force four-vector which will later be defined with the upper-

case letter. Note that there are two time-dependent terms in the expression

above, γu and u. The time derivative of γu shall be evaluated first.

dγu
dt

=
d

dt

1√
1− u2x+u

2
y+u

2
z

c2
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= − 1

2
(
1− u2

c2

) 3
2

· −2(uxu̇x + uyu̇y + uzu̇z)

c2

=
γ3u
c2

(uxu̇x + uyu̇y + uzu̇z),

where a dot is used to denote a derivative with respect to coordinate time.

The coordinate acceleration a of a particle is the derivative of its coordinate

velocity u with respect to coordinate time t.

a =
du

dt
.

Hence, the expression above can be rewritten as

dγu
dt

=
γ3u
c2

(a · u).
If the x-axis of the Cartesian coordinate system in frame S is defined to be

along the direction of the particle’s instantaneous coordinate velocity u,

dγu
dt

=
γ3uuax
c2

.

Now, the chain rule can be applied to Eq. (12.16) to obtain a simpler expres-

sion for f . Assuming that the rest mass of the particle remains constant,

f =
dγu
dt

mu+ γum
du

dt

=

⎛
⎜⎝
γ3umu

2ax
c2

+ γumax
γumay
γumaz

⎞
⎟⎠

=

⎛
⎜⎝γ

3
umax

(
u2

c2 + 1− u2

c2

)
γumay
γumaz

⎞
⎟⎠

f =

⎛
⎝fxfy
fz

⎞
⎠ =

⎛
⎝γ3umaxγumay
γumaz

⎞
⎠, (12.17)

it can be seen that the force on a particle f in an inertial frame S is not

proportional to the coordinate acceleration of the particle a in the same

inertial frame S. It is in fact easier to accelerate a particle in the transverse

direction rather than the longitudinal direction! As a result, the force vector

f is no longer necessarily parallel to the coordinate acceleration a.
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Figure 12.6: Force and acceleration vectors

In Fig. 12.6, a force of magnitude f is exerted on a particle traveling

at speed u in the x-direction, at an angle θ anti-clockwise relative to the

positive x-axis in the lab frame S. Then, the angle θ′ that the coordinate

acceleration makes with the x-axis in S is given by

tan θ′ =
ay
ax

= γ2u
fy
fx

= γ2u tan θ.

Furthermore, not only does the force not point along the direction of coordi-

nate acceleration in most cases, the force vector varies across inertial frames

as the coordinate velocity u in Eq. (12.16) changes in a way that affects its

coordinate time derivative — contrary to the case in Galilean relativity. The

transformation rules for force and coordinate acceleration will be derived in

a later section.

Moving on, the confluence of the conservation of momentum and the

definition of force implies a relativistic analog of Newton’s third law. If a

particle A exerts a force on another particle B, A also experiences an equal

and opposite force such that the total momentum of the two particles is

conserved.

Another fact that one needs to get used to would be that the velocities

of a particle in different directions are no longer independent. If a particle is

initially traveling in the positive x-direction and a constant force is exerted

on it in the y-direction, the x component of the velocity of the particle must

decrease — without which, γu will increase as uy increases, leading to a

violation of the conservation of momentum in the x-direction. However, the

momentum of the particle in the x-direction in this case will still remain the

same. The key takeaway from this is that one should focus on dynamical

properties such as momentum and energy which often describe a system in

a fashion that is more elegant than kinematic quantities such as coordinate

velocities and accelerations directly.
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Impulse-Momentum Theorem

Considering the definition of force, the impulse-momentum theorem can be

expressed as ˆ
fdt = Δp = Δ(γumu). (12.18)

Power

Taking the derivative of E2 = p2c2 +m2c4 = (p · p)c2 +m2c4 with respect

to coordinate time and assuming that the rest mass m remains constant,

2E
dE

dt
= 2

dp

dt
· pc2.

Since the force f = dp
dt and pc2

E = u, where u is the coordinate velocity of

the particle,

dE

dt
= f · u. (12.19)

It can be observed that the dot product of force and the particle’s coordinate

velocity in frame S is equal to the power delivered by the net force in S,

analogous to the classical scenario.

Work-Energy Theorem

If the dt in the denominator of Eq. (12.19) is shifted to the other side and

the entire equation is integrated, the work-energy theorem is obtained.ˆ
f · udt =

ˆ
f · dr = ΔE = ΔKE (12.20)

where dr is an infinitesimal displacement of the particle in frame S. Again,

this equation is built on the assumption that the rest mass of the parti-

cle remains constant. Lastly, if the instantaneous velocity of the particle is

defined to be in the x-direction, Eq. (12.19) becomes

dE

dt
= fxu = fx

dx

dt
.

Hence,

fx =
dE

dx
. (12.21)

At a certain instant in frame S, the force exerted on the particle in the

direction of its instantaneous velocity is the change in the energy of particle
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due to an infinitesimal displacement, which must be along the direction of

its instantaneous velocity.

Problem: In inertial frame S, a constant force f is exerted on an initially

stationary particle of rest mass m. Find the time required for the particle to

travel a distance s.

Well, this looks like an innocuous and typical kinematics question about

a particle undergoing a one-dimensional acceleration. However, solving this

problem by analyzing the equations of motion is incredibly tedious due to

the γu terms. Instead, the dynamical equations should be used in an elegant

manner. By the work-energy theorem, the final energy E of the particle is

related to its initial energy (the rest energy) by

f · s = ΔE = E −mc2

E = mc2 + fs.

By the impulse-momentum theorem, the final momentum of the particle

when it has traveled a distance s is

p = f · t,
where t is the time interval between the start of the particle’s motion and the

juncture at which it has traveled a distance s. Lastly, as p =
√
E2 −m2c4,

ft =
√

(mc2 + fs)2 −m2c4

t =

√
2mc2s

f
+ s2.

By now, you may have realized that the additional c’s popping up everywhere

are extremely frustrating. Hence, we shall adopt the units c = 1 for the rest

of the chapter to maintain our sanity and to simplify the equations. The c’s

can always be added back to the expressions via dimensional analysis. So far,

we have endured with the c’s to present a more “formal” formulation of the

various dynamical properties of a particle so that one can clearly distinguish

the relationship between these and the speed of light.

In the sections above, the definitions of various dynamical properties of

a particle in a certain inertial frame S have been covered. However, since

the chapter is on relativity after all, it is interesting to determine how these

properties transform between inertial frames. The formulation of four-vectors

encapsulates these transformations in a terse manner while also keeping the

quintessential conservation laws. As such, the next few sections will elaborate

on four-vectors and how these properties vary across inertial frames.
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12.4 Four-Vectors

A four-vector is a matrix consisting of four entries that transforms between

inertial frames according to the Lorentz transformations, in a manner similar

to (ct, x, y, z). Four-vectors will be denoted by capital letters and units of

c = 1 will be adopted henceforth. Consider a four-vector A, of the form:

A =

⎛
⎜⎜⎝
A0

A1

A2

A3

⎞
⎟⎟⎠.

A0 is known as the time-like component and is similar to t in the four-vector

(t, x, y, z) while A1, A2 and A3 are known as the space-like components that

correspond to x, y and z respectively. In an inertial frame S, the entries of A

are shown above. The corresponding values as observed in an inertial frame

S’ that travels at a velocity v in the positive x-direction relative to S are

obtained by the Lorentz transformations.

A′
0 = γv(A0 − βA1),

A′
1 = γv(A1 − βA0),

A′
2 = A2,

A′
3 = A3,

where β = v in units of c. The above expressions can be represented more

compactly via a matrix equation.

A′ =

⎛
⎜⎜⎝

γv −γvβ 0 0

−γvβ γv 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠A.

The matrix above will be referred to as the Lorentz transformation matrix L.
The inverse transformation matrix L−1 can be obtained by adding a negative

sign in front of the β’s while retaining the magnitude of v, which is equivalent

to substituting v for −v.
Property 1: Multiplying a four-vector by a constant or Lorentz scalar pro-

duces another four-vector. A Lorentz scalar is a quantity that has the same

value in all inertial frames (e.g. the invariant interval (Δs)2).
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Proof: Consider X = cA where A is a four-vector and c is a constant or

Lorentz scalar. Then, X ′ in another inertial frame obeys

X ′ = c′A′

= cLA
= L(cA)
= LX,

where we have used the fact that c′ = c. This shows that X is a four-

vector as it transforms according to the Lorentz transformations. Now, it is

tempting to exploit the seemingly distributive nature of the Lorentz trans-

formations and claim that any linear combination of four-vectors produces

another four-vector. However, we have to understand that four-vectors are

generally associated with physical properties of particles. A linear combina-

tion of four-vectors may be the sum of four-vectors (multiplied by constants

or scalars) evaluated at the same time in a frame S but applying a Lorentz

transformation to it and using the distributive rule would result in a linear

combination of four-vectors evaluated at different times! This is the result

of the loss of simultaneity between events that are spatially separated (this

occurs as the four-vectors usually correspond to properties of different par-

ticles). Therefore, the linear combination of four-vectors is, foremost, mean-

ingless. Its value at a certain instance in another inertial frame (i.e. all of

its component four-vectors are determined simultaneously) most definitely

cannot be computed via a Lorentz transformation of its value at a certain

instance in a precedent inertial frame.

Definition: The inner product of two four-vectors A and B is defined as

A ·B = A0 ·B0 −A1 ·B1 −A2 · B2 −A3 · B3.

Note that the inner product is commutative and distributive. In other words,

A ·B = B ·A

and

A · (B + C) = A ·B +A · C,

where A, B and C are four-vectors.

Property 2: The inner product of any two four-vectors is Lorentz invariant

(i.e. a scalar).
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Proof: Consider a Lorentz transformation in the x-direction.

A′ · B′ = γv(A0 − βA1) · γv(B0 − βB1)− γv(A1 − βA0)

· γv(B1 − βB0)−A2 · B2 −A3 ·B3

= γ2v (1− β2)A0 · B0 − γ2v (1− β2)A1 ·B1 −A2 · B2 −A3 · B3

= A · B.
A similar statement can be made for Lorentz transformations in the other

spatial directions.

Corollary: The inner product of a four-vector with itself, |A|2, is Lorentz-
invariant and is defined as its squared norm. This immediately follows from

above.

A′ ·A′ = A · A = |A|2.
An apt illustration of this invariance would be the invariant interval

(Δs)2 introduced in the previous chapter which is basically the norm of

(Δt,Δx,Δy,Δz).

Property 3: If the inner product of A and B produces the same scalar in all

inertial frames while A is a four-vector, then B must also be a four-vector.

The premise is basically stating that

A · B = A′ · B′

for all pairs of frames. Now, we know from the proof in Property 2 that

A · B = (LA) · (LB) = A′ · (LB).

Therefore,

A′ ·B′ = A′ · (LB).

Now, we can prove that B′ = LB by astutely substituting appropriate values

for A′ (since it can be tweaked). Substituting A′ = (1, 0, 0, 0) would show

that the first entries of B′ and LB are equal. Repeating this for similar “unit

vectors” would prove that

B′ = LB.
Therefore, B must be a four-vector.

Leveraging Properties 1 and 3, we can develop a repository of four-vectors

that will be immensely expeditious in the problems that we will encounter.
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12.4.1 Four-Coordinate

The four-coordinate vector is defined as

X =

⎛
⎜⎜⎝
t

x

y

z

⎞
⎟⎟⎠

where t, x, y and z are the temporal and spatial coordinates of an event in

an arbitrary inertial frame S. Its squared norm guarantees the invariance of

s2 = t2 − x2 − y2 − z2.

If the coordinates describe the world line of a particle, then the invariant

interval must be time-like (i.e. (Δs)2 > 0). Now, recall that the infinitesimal

proper time interval between two events separated by an infinitesimal seg-

ment along the world line of a particle is defined as the infinitesimal time

between them as measured in the frame of the particle. Since the particle

remains still in its own rest frame, ds2 = dτ2. Expressing this in terms of

the coordinates observed in a general inertial frame S,

dτ =
√
dt2 − dx2 − dy2 − dz2 =

dt

γu
.

Note that the infinitesimal proper time interval dτ is measured in the frame

of the particle while the infinitesimal coordinate time interval dt is measured

in the current inertial frame S. The last equality is obtained from extracting

dt from the brackets in the second last expression (γu is associated with the

velocity of the particle in frame S, u). The proper time elapsed between two

events is then obtained from integrating the above expression.

The concept of proper time is particularly useful in two areas. Firstly,

it presents another way to describe the motion of a particle by considering

the proper coordinates, which are coordinates as measured in its own rest

frame. Then, the corresponding coordinates in a general inertial frame can be

obtained via the Lorentz transformations. Secondly and more importantly,

the proper time interval is a Lorentz scalar — evident from the fact that it is

directly related to the invariant interval. Invariant quantities are sacrosanct

in the context of special relativity. Utilising the invariance of proper time,

many other four-vectors can be formulated via the following procedure.

Property 4: If A(t) is a four-vector ascribed to a particle where t is the

coordinate time in the current inertial frame, X(t) = dA
dτ (t) — where τ is

the proper time elapsed in the particle’s rest frame — is a four-vector.
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Proof: From the first principles of calculus,

X(t) = lim
dτ→0

A(t+ dt)−A(t)

dτ

where the coordinate time t(τ) is a function of proper time τ such that

dt = dt
dτ dτ . We can deem the above as dividing A(t + dt) − A(t) by dτ .

Since dτ has been shown to be Lorentz invariant, we just have to show that

A(t + dt) − A(t) is a valid four-vector to prove that X is a four-vector (as

we can subsequently apply Property 1).

Now, even though A(t+dt)−A(t) is a linear combination of four-vectors,

the issue highlighted in the comments of Property 1 does not crop up here

because A(t+ dt) and A(t) describe the same particle, and the time interval

dt between them is infinitesimal such that the loss of simultaneity (due to

the particle being at possibly different locations at t and t + dt) in a new

inertial frame S’ is infinitesimal2 and can be absorbed into the infinitesimal

time interval dt′ in S’. With this clarification, it is easy to prove that A(t+

dt) − A(t) is a four-vector. A′(t′ + dt′) − A(t′) in another inertial frame S’

obeys

A′(t′ + dt′)−A′(t′) = LA(t+ dt)−LA(t) = L[A(t+ dt)−A(t)].

Thus, X(t) = dA
dτ is a valid four-vector.

12.4.2 Four-Velocity

By Property 4, taking the derivative of the four-coordinate of a particle in

an arbitrary inertial frame S with respect to its proper time produces a new

four-vector, known as the four-velocity U of the particle. Since 1
dτ = γu

1
dt ,

U =
1

dτ

⎛
⎜⎜⎝
dt

dx

dy

dz

⎞
⎟⎟⎠ = γu

⎛
⎜⎜⎜⎜⎜⎝

dt
dt

dx
dt

dy
dt

dz
dt

⎞
⎟⎟⎟⎟⎟⎠ =

(
γu
γuu

)
,

where u is the velocity of the particle in frame S. Notice that the spatial com-

ponent of the four-velocity does not describe the velocity of the particle in

frame S directly. It is the derivative of spatial coordinates observed in frame

S with respect to the proper time interval which is observed in the frame of

2This is also partly due to the finite speed of the particle which causes the separation
between its positions at t+ dt and t to be infinitesimal.
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the particle. Hence, the four-vector itself lacks physical meaning. However,

it is indirectly related to the coordinate velocity u. The sole purpose of such

a definition is its utility as a four-vector — namely, its transformations and

inner product invariance. This will be a recurring theme for many of the

other four-vectors in the following sections.

An example of the utility of the four-velocity would pertain to the deriva-

tion of the velocity-addition formulae. Let u and u′ be the three-velocities

in inertial frames S and S’ respectively. Then, the four-velocity in S’ can be

obtained from that in S via a Lorentz transformation.

U ′ = LU⎛
⎜⎜⎝

γu′

γu′u
′
x

γu′u
′
y

γu′u
′
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γv −γvβ 0 0

−γvβ γv 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

γu
γuux
γuuy
γuuz

⎞
⎟⎟⎠.

Comparing first entries, we obtain the relationship between the gamma fac-

tors in both frames.

γu′ = γv(γu − βγuux) = γvγu(1− βux). (12.22)

Comparing the second entries, the longitudinal velocity addition formula can

be obtained.

u′x =
γvγu(ux − β)

γu′
=

ux − v

1− vux

where we have used the previous result. Comparing the third entries, the

transverse velocity addition formula can be obtained.

uy′ =
γuuy
γu′

=
uy

γv(1− vux)
.

A similar statement can be made for uz′ .

Next, the squared norm of the four-velocity can be easily computed by

considering the rest frame of the particle as the squared norm is Lorentz

invariant. In the rest frame of the particle,

U =

⎛
⎜⎜⎝
1

0

0

0

⎞
⎟⎟⎠,
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as the velocity of the particle in its own frame is zero. Hence, the squared

norm of the four-velocity is

|U |2 = 1.

Another important property is the inner product of the four-velocities of two

different particles, U1 and U2. This can be evaluated in the rest frame of one

of the particles. Then, let urel denote the velocity of the other particle in

this rest frame. The inner product of the two four-velocities in this frame is

then

U1 · U2 =

(
1

0

)
·
(

γurel
γurelurel

)
= γurel . (12.23)

It can be observed that this inner product is minimized when the relative

velocity urel is zero (i.e. the two particles travel at the same velocity in any

arbitrary inertial frame). When considering the rest frame of a particle, it

was implicitly assumed that the particle traveled at a subluminal speed. If

not, there would not have been a rest frame for that particle. However, this

is perfectly fine as the four-velocity is ill-defined for massless particles which

travel at the speed of light.

Next, the consideration of the rest frame of the particle in computing the

inner product of its four-velocity with another four-vector enables the isola-

tion of the first entry of the other four-vector, as the first entry of the four-

velocity is one while the others are all zero in the rest frame of the particle.

The utility of this will be illustrated in a later section.

12.4.3 Four-Acceleration

Once again, the four-velocity can be differentiated with respect to the proper

time τ to produce yet another four-vector which is termed as the four-

acceleration. The four-acceleration in an arbitrary inertial frame S is

A =
d

dτ

(
γu
γuu

)
= γu

(
dγu
dt

dγu
dt u+ γu

du
dt

)
.

It has been shown that

dγu
dt

= γ3u(a · u)

where a is the coordinate acceleration, a = du
dt . Hence, the four-acceleration

can be expressed as

A = γu

(
γ3u(a · u)

γ3u(a · u)u+ γua

)
.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 875

Relativistic Dynamics 875

If the x-axis of frame S is chosen such that it is aligned with the instantaneous

coordinate velocity of the particle u, the four-acceleration becomes

A =

⎛
⎜⎜⎝
γ4uuax
γ4uax
γ2uay
γ2uaz

⎞
⎟⎟⎠,

where we have used the fact that

A1 = γ4uu
2ax + γ2uax = γ4uax

(
u2 +

1

γ2u

)
= γ4uax.

Once again, individual entries of the four-acceleration do not have obvi-

ous physical meanings. However, the four-acceleration provides a conve-

nient pathway to derive how different components of acceleration transform

between inertial frames.

Sometimes, a need to relate the coordinate acceleration in an inertial

frame S to the proper acceleration in the rest frame of the particle may

arise. Let the four-accelerations in frame S and the rest frame of the particle

be A and A’ respectively. Assuming that the particle travels at a speed u in

the positive x-direction in frame S,

A = L−1A′⎛
⎜⎜⎝
γ4uuax
γ4uax
γ2uay
γ2uaz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
γu γuβ 0 0

γuβ γu 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0

αx
αy
αz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
γuβαx
γuαx
αy
αz

⎞
⎟⎟⎠,

where we have substituted v = u to switch between S and the rest frame of

the particle. Comparing the corresponding terms, the proper accelerations,

which are denoted by the symbol α, are given by

αx = γ3uax,

αy = γ2uay,

αz = γ2uaz.

12.4.4 Four-Momentum

Multiplying the four-velocity of a particle by its rest mass produces the

four-momentum of the particle in an arbitrary inertial frame S.

P = mU = m

(
γu
γuu

)
=

(
γum

γumu

)
.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 876

876 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Observe that the first entry is simply the energy of the particle in frame S

while the three-vector below corresponds to the momentum of the particle

in frame S. Hence,

P =

(
E

p

)
.

Note that even though the four-velocity is ill-defined for massless particles,

the four-momentum remains well-defined. Since the total energy and momen-

tum in an isolated system is conserved, the sum of all relevant four-momenta

should be equal at two different instances in the same frame — encapsulating

the two conservation laws into a single four-vector equation. This combined

with the squared norm of a four-momentum can greatly simplify calcula-

tions. The squared norm of a four-momentum can be computed in the rest

frame of the particle (if it is massive). In this frame,

P =

(
m

0

)
.

Hence, the squared norm of the four-momentum of a massive particle is

|P |2 = E2 − p2 = m2,

which is basically Eq. (12.8). Actually, the above equation is also valid for

massless particles (m = 0) for which E = p such that E2 − p2 = 0 — it

is therefore entirely general. Next, we make a rather bold claim that the

sum of four-momenta in a system undergoing purely local interactions is

another four-vector. This seemingly contradicts what we have said in the

comments of Property 1 of four-vectors but we are saved by the conservation

of momentum and energy here. Let the total four-momentum of a system be

Ptot =

N∑
i=1

Pi.

When evaluating Ptot at a certain time t = t0 in a certain frame S, we

mean to sum up all Pi’s evaluated at time t = t0. However, note that the

actual value of Ptot should be irrespective of time t, as it is conserved. Now,

consider another inertial frame S’ with the conventional definition. When

calculating P ′
tot at a certain time t′ = t′0, we similarly add all P ′

i ’s evalu-

ated at time t′ = t′0 but these cannot possibly correspond to events that are

simultaneous in frame S, due to the spatial separations of particles. Then,

the constituent P ′
i ’s cannot simply be obtained from the Lorentz transforma-

tions, P ′
i (t

′ = t′0) �= LPi(t = t0) in general. However, by asserting that Ptot is
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a four-vector, we are claiming that

P ′
tot = LPtot

as a whole. Again, P ′
tot should be independent of time, as energy and momen-

tum are also conserved in S’ by the principle of relativity.

Figure 12.7: World lines of particles and lines of simultaneity

If a system of particles only undergoes short-range interactions, the ener-

gies and momenta of individual particles (and possibly new particles formed)

can only change when they come into the immediate vicinity of one another

(i.e. when their world lines intersect in Fig. 12.7). Then, when evaluating

Ptot, we can deliberately choose to evaluate Pi at non-simultaneous times in

S but simultaneous times in S’ while capitalizing on the fact that the individ-

ual energies and momenta of particles can only vary at space-time junctions

and will remain constant at other times. The existence of a valid set of times

that should be chosen is best visualized by the Minkowski diagram depicting

the world lines of various particles in frame S in Fig. 12.7. A line of simul-

taneity in frame S’ superimposed on the diagram is a line that subtends an

angle smaller than 45◦ from the horizontal. Since the slope of a world line

must be larger than or equal to 45◦, it is impossible for a line of simultaneity

to cut across the world lines of interacting particles and divide the inter-

sected events into two groups — those before their interaction and those

after their interaction. The times of the intersected events must always lie

on one temporal side, with respect to the time of interaction of the particles.

Therefore, it is always possible to choose a set of events that both correctly

represent Ptot collectively and are simultaneous in S’. For the diagram in

Fig. 12.7, three possible lines of simultaneity are drawn and the intersec-

tions along a single line form a possible set of events at which the individual

Pi’s can be evaluated. Then, applying a Lorentz transformation to each of
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these distinct four-momenta would yield four-momenta evaluated concur-

rently in S’, after which they can be summed to determine P ′
tot. Therefore,

P ′
tot is simply obtained from the Lorentz transformation of Ptot.

P ′
tot = LPtot.

This proves that Ptot is a valid four-vector for collisions (and decays).

Another perspective to this is that we can gradually rotate a horizontal

line — anchored about a certain point — into the final line of simultaneity

(akin to considering the lines of simultaneity of a continuous set of frames).

The sum of the individual energies and momenta of the particles along an

intermediate line of simultaneity during this rotation cannot change. This is

because the individual energy and momentum of a particle recorded during

this rotation will only change during an interaction. However, even during

such interactions which occur at space-time intersections between particles,

the total energy and momentum of the system of particles do not change by

the conservation laws.

Armed with this machinery, the square of the total energy of the particles

in the center-of-momentum frame of a system E2
CM , can be proven to be

E2
tot − p2tot where Etot and ptot are the total energy and momentum of the

system of particles in an arbitrary inertial frame S; this was used to derive

Eq. (12.15). Let the sum of all four-momenta of the particles in the system

in frame S and the center-of-momentum frame be Ptot and P
′
tot respectively.

Then,

Ptot =

(
Etot
ptot

)
P ′
tot =

(
ECM
0

)
.

The squared norm of the two matrices above should be equal as they are the

same four-vector observed in different inertial frames. Thus,

E2
CM = E2

tot − p2tot = m2
sys.

The last equality stems from the fact that the total mass of a system msys of

non-interacting particles is, by definition, given by E2
CM = m2

sysc
4. This rela-

tionship also proves the invariant nature of the invariant mass of a system,

msys.

Problem: A particle of rest mass m1 and initial momentum p1 collides

with another stationary particle of rest mass m2. It is known that the final

velocities of these particles are perpendicular to each other and non-zero. If

the rest masses of the particles remain constant, determine the magnitudes

of the resultant momenta of the two particles.
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Figure 12.8: Collision with perpendicular final velocities

Define the coordinate axes to be parallel to the final velocities and define

angle θ as shown in Fig. 12.8. Then, let the four-momenta of particles m1

and m2, before and after collision, be

P1 =

⎛
⎜⎜⎝

E1

p1 sin θ

p1 cos θ

0

⎞
⎟⎟⎠, P2 =

⎛
⎜⎜⎝
m2

0

0

0

⎞
⎟⎟⎠, P ′

1 =

⎛
⎜⎜⎝

E′
1

0

p1 cos θ

0

⎞
⎟⎟⎠, P ′

2 =

⎛
⎜⎜⎝

E′
2

p1 sin θ

0

0

⎞
⎟⎟⎠.

By the conservation of energy and momentum,

P1 + P2 = P ′
1 + P ′

2.

Now, we may be tempted to equate each of the rows of the four-vectors and

solve for the required expressions. However, this will be extremely tedious

due to the energies E1, E
′
1 and E

′
2 being surds in terms of their corresponding

momenta. A better method would entail taking the squared norm of both

sides of the equations.

(P1 + P2) · (P1 + P2) = (P ′
1 + P ′

2) · (P ′
1 + P ′

2)

P1 · P1 + 2P1 · P2 + P2 · P2 = P ′
1 · P ′

1 + 2P ′
1 · P ′

2 + P ′
2 · P ′

2.

Since the rest masses of the particles remain unchanged after the collision,

P1 · P1 = P ′
1 · P ′

1 = m2
1,

P2 · P2 = P ′
2 · P ′

2 = m2
2.

The equation above then becomes

P1 · P2 = P ′
1 · P ′

2.

Up till now, we have not assumed anything about the exact expression of

any of the four-momenta in the equation above. Hence, this equation is valid
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for all collisions between two particles that are rest-mass preserving — such

collisions are known as elastic collisions in the context of special relativity.

The reason behind this terminology will be explicated immediately after

this problem. Substituting the expressions for the four-momenta into the

equation above,

E1m2 = E′
1E

′
2,

where we have deliberately tweaked the coordinate axes to elucidate the

orthogonality of the three-momenta of P ′
1 and P ′

2. Using the fact that

E2 = p2 +m2 for a particle,

m2

√
p21 +m2

1 =
√
p21 cos

2 θ +m2
1 ·
√
p21 sin

2 θ +m2
2.

Squaring and simplifying,

p21 sin
2 θ
(
p21 cos

2 θ −m2
2 +m2

1

)
= 0.

Since the final momentum of the second particle must be non-zero, sin θ �= 0.

p21 cos
2 θ = m2

2 −m2
1

|p1 cos θ| =
√
m2

2 −m2
1

|p1 sin θ| =
√
p21 +m2

1 −m2
2.

Notice that the condition for the resultant configuration of velocities after

the collision to be possible is m2
1 ≤ m2

2 ≤ p21 +m2
1.

Inner Product of Two Four-Momenta

The inner product of the four-momenta of two different particles of rest

masses m1 > 0 and m2 > 0 can be evaluated in the rest frame of one

particle as

P1 · P2 = m1m2U1 · U2 = m1m2γurel , (12.24)

where urel is the speed of one particle in the rest frame of the other particle.

The second equality is obtained from applying Eq. (12.23). Hence in the

case of a rest-mass preserving collision described in the previous example,

the speed of one particle in the rest frame of the other particle must be

the same before and after the collision (note that these are two different

rest frames as the particle’s velocity may have changed). Since this “relative

speed” remains unchanged, such a collision is known as an elastic collision.
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When m1 > 0 and m2 ≥ 0, we can evaluate the inner product in the rest

frame of the first particle. In this frame, P1 = (m1,0) and P2 = (Erel,prel),

where Erel and prel are the energy and momentum of the second particle.

P1 · P2 = m1Erel. (12.25)

Moving on, Eq. (12.24) implies that two massive particles should have

zero relative velocity to minimize the inner product of their four-momenta.

On another note, it can be easily shown, by using the fact that E = pc for

a massless particle, that the inner product of the four-momenta of a mass-

less particle and a massive particle or of two massless particles, is similarly

minimized when both particles move in the same direction in an inertial

frame.

Threshold Energy

Often, reactions are initiated by bombarding a stationary particle with

another particle, producing new particles of various rest masses. The prob-

lem of finding the threshold energy entails determining the minimum amount

of energy that the incoming particle must possess to spark off the reaction.

Note that the required condition in such situations is not that the kinetic

energy of the incoming particle must be equal to the sum of the additional

rest masses of the final configuration as the product particles must still pos-

sess a certain amount of kinetic energy by the conservation of momentum.

Let us derive a general formula for the threshold energy of a reaction that

produces only massive products. Let the four-momenta of the incident and

stationary particles be Pa and Pb respectively, and let there be k final par-

ticles with the ith particle having a four-momentum Pi and mass mi > 0.

The incident particle is possibly massless (but if it is, it must be absorbed

as all products are massive) while the receiving particle is massive. By the

conservation of momentum and energy,

Pa + Pb =

k∑
i=1

Pi.

Taking the inner product of both sides of the equation,

Pa · Pa + 2Pa · Pb + Pb · Pb =
k∑
i=1

Pi · Pi + 2
∑
i<j

Pi · Pj

m2
a +m2

b + 2Erelmb =

k∑
i=1

m2
i + 2

∑
i<j

mimjγuij ,
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where Erel is the energy of the incident particle in the rest frame of the

receiving particle — it is simply the energy Ea of the incident particle in

the current inertial frame, since the receiving particle is stationary in this

frame! Meanwhile, uij is the relative speed between the ith and jth particle

in one of their rest frames. Using Erel = Ea and rearranging,

Ea =

(∑k
i=1m

2
i

)
+ 2

(∑
i<jmimjγuij

)
−m2

a −m2
b

2mb
.

Note that all quantities are predetermined except γuij . To minimize Ea, γuij
must attain its minimum value of unity, which occurs when uij = 0, for all

i and j. This implies that all resultant particles travel together in a “blob”

after the process, akin to a perfectly inelastic collision in classical mechanics.

Then, the threshold energy is

Ea =

(∑k
i=1mi

)2 −m2
a −m2

b

2mb
. (12.26)

Transformations of Energy and Momentum

The combination of the three-momentum and energy of a particle as a four-

vector elucidates their transformations across inertial frames. If the compo-

nents of the momentum of a particle in the x, y and z-directions are px, py
and pz respectively and if its energy is E in an inertial frame S, the corre-

sponding quantities, denoted by appending a prime, in an inertial frame S’

that travels at a velocity v in the x-direction are obtained from the Lorentz

transformations.

E′ = γ(E − βpx),

p′x = γ(px − βE),

p′y = py,

p′z = pz.

Four-Frequency

As illustrated previously, the energy and momentum of a photon in an

inertial frame are E = hf and p = h
λ = hf

c respectively. Hence the four-

momentum of a photon in an inertial frame S is

P = h

(
f

f k̂

)
,
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where f is the frequency of the photon as observed in frame S. k̂ is a unit vec-

tor along the velocity of the photon in frame S. For the sake of convenience,

we define a new four-frequency four-vector as

F =
P

h
=

(
f

f k̂

)
,

since multiplying a four-vector by a constant generates another four-vector.

Notably, the squared norms of the four-momentum of a photon and the

four-frequency are zero.

Surprisingly, the particulate nature of light allows us to deduce many rel-

ativistic effects pertaining to the wave nature3 of light via the four-frequency

vector. Consider a photon, of frequency f , that is traveling at an angle θ rel-

ative to the x-axis in an inertial frame S. We define the y-axis such that the

motion of the particle is solely confined to the xy-plane.

We would like to determine the frequency f ′ of this photon and the

angle θ′ it makes with the x’-axis in an inertial frame S’ that is traveling

at a velocity u in the positive x-direction with respect to frame S. Let the

four-frequencies of the photon in S and S’ be

F =

⎛
⎜⎜⎝

f

f cos θ

f sin θ

0

⎞
⎟⎟⎠, F ′ =

⎛
⎜⎜⎝

f ′

f ′ cos θ′

f ′ sin θ′

0

⎞
⎟⎟⎠.

F ′ can be obtained from F via a Lorentz transformation.

F ′ =

⎛
⎜⎜⎝

γu −γuβ 0 0

−γuβ γu 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

f

f cos θ

f sin θ

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
γuf(1− β cos θ)

γuf(cos θ − β)

f sin θ

0

⎞
⎟⎟⎠.

Comparing the first entries,

f ′ = γuf(1− β cos θ).

This is the formula for the relativistic Doppler effect! Consider Fig. 12.9, in

which a photon emanates from a source and reaches the eye of an observer.

The left diagram shows frame S, which is the rest frame of the source. In

this frame, the observer is traveling at a speed u in the positive x-direction

3The proofs of these effects begin from different premises but are coherent. Hence, the
four-frequency is a useful way to recall wave-like effects of light by considering its partic-
ulate nature.
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and f is the frequency of the photon. On the other hand, the right diagram

depicts the rest frame of the observer, S’. The source now travels at the same

speed in the opposite direction while the frequency of the photon is now f ′.

Figure 12.9: Source emitting photons in different frames

The longitudinal case can be easily derived by setting θ = 0.

f ′ = γuf(1− u) =

√
1− u

1 + u
f.

Similar to Problem 12 in the previous chapter, there are two cases to consider

in the transverse situation — namely, the frequencies of the received photons,

observed by the observer, emitted as the source crosses the line of sight of

the observer and that of photons reaching the eyes of the observer when the

source crosses the vertical line of sight of the observer. In the second case,

θ = π
2 , as the photon reaching the observer’s eyes would have taken a vertical

path in frame S (i.e. the photons were already emitted before the observer

and the source formed a vertical line). Then,

f ′ = γuf.

In the first case, the photons are emitted when the observer crosses the

vertical line in frame S (see Fig. 12.10) and thus reach the observer after the

observer crosses the vertical line.

In this case, cos θ will be u. Substituting this back into the equation,

f ′ = γuf(1− u2) =
f

γu
.

The four-frequency can also be used to derive the aberration formula (Prob-

lem 6 in Chapter 11). Comparing the second entries,

cos′ θ =
γuf(cos θ − β)

f ′
=

cos θ − β

1− β cos θ
.
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Figure 12.10: Emission of photon when observer crosses line of sight

Problem: A photon of frequency f is normally incident on an infinitely

massive and perfectly reflective mirror that is retracting at a velocity u in

inertial frame S. Determine the frequency f ′ of the photon after the reflection

in frame S.

The initial four-frequency of the photon in frame S is

F1 =

(
f

f

)
.

Let S’ be the frame that travels at a velocity u relative to S (i.e. the mirror

is initially at rest in this frame). The initial four-frequency in S’ is obtained

from the Lorentz transformations.

F ′
1 =

(
γu −γuβ

−γuβ γu

)(
f

f

)
=

(
γuf(1− β)

γuf(1− β)

)

where β = u. After the reflection, the four-frequency in frame S’ is

F ′
2 =

(
γuf(1− β)

γuf(β − 1)

)
,

as the photon just reverses its momentum after its collision with the station-

ary massive mirror (for energy to be conserved, since the infinitely massive

mirror gains negligible kinetic energy). Lastly, an inverse Lorentz transfor-

mation can be applied to return to the original frame S.

F2 =

(
f ′

−f ′
)

=

(
γu γuβ

γuβ γu

)(
γuf(1− β)

γuf(β − 1)

)

=

(
γ2uf(1− β) + γ2uβf(β − 1)

γ2uβf(1− β) + γ2uf(β − 1)

)
=

⎛
⎝1−u

1+uf

u−1
1+uf

⎞
⎠.
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Comparing the terms,

f ′ =
1− u

1 + u
f.

12.4.5 Four-Force

The four-force is obtained by differentiating the four-momentum with respect

to proper time.

F =
d

dτ

(
E

p

)
= γu

(
dE
dt

f

)
,

as the definition of the three-force is f = dp
dt . To simplify the first entry,

consider the inner product of the four-force with the four-velocity in the

rest frame of the particle (which exists because the four-force is usually only

defined for massive particles).

F · U =

(
dE
dτ

f ′

)
·
(
1

0

)
=
dE

dτ
=
dm

dτ
.

It can be seen that F · U is just the rate at which the internal energy of the

particle changes in its rest frame, which is also equal to the rate of change

of its rest mass in its rest frame. This expression is Lorentz invariant as it

is an inner product of two four-vectors. Evaluating this in a general inertial

frame S, in which the velocity of the particle is u,

F · U = γu

(
dE
dt

f

)
· γu

(
1

u

)

= γ2u

(
dE

dt
− f · u

)

=
dm

dτ
.

Usually, the problems that we will encounter do not involve a change in the

rest mass of the particle. In such cases, dmdτ = 0 and

dE

dt
= f · u,

as expected from the previous discussion on the three-force. The four-force

can then be rewritten as

F = γu

(
f · u
f

)
.
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Furthermore, observe that when the rest mass of the particle remains con-

stant,

F = m
d

dτ

(
γu
γuu

)
= mA

where A is the four-acceleration. This is the relativistic counterpart of the

F = ma equation in classical mechanics, except that the respective terms

are now four-vectors instead of three-vectors.

Force Transformations

Equipped with the four-force, the transformation of forces between a lab

frame S and a particle’s rest frame S’ can be derived. It is assumed that the

particle travels at a velocity u in the positive x-direction in frame S and that

the rest mass of the particle remains unchanged. The four-force in S’ is

F ′ =

⎛
⎜⎜⎝

0

f ′x
f ′y
f ′z

⎞
⎟⎟⎠.

The first entry is zero as the velocity of the particle is zero in its own rest

frame. The four-force in S is related to that in S’ by a Lorentz transformation.

F = L−1F ′ =

⎛
⎜⎜⎝
γuf

′
xβ

γuf
′
x

f ′y
f ′z

⎞
⎟⎟⎠ = γu

⎛
⎜⎜⎝
fxu

fx
fy
fz

⎞
⎟⎟⎠.

Comparing the terms,

f ′x = fx,

f ′y = γufy,

f ′z = γufz.

These are the transformation rules for forces in an arbitrary frame S and the

rest frame of the particle.

12.4.6 Four-Wave Vector

In general, a traveling plane wave can be described by the equation

ψ(r, t) = A(r) cos(k · r − ωt+ φ0).

Setting the source of the wave as the origin, ψ is the displacement at a point

whose position vector is r, at time t in frame S. k is the wave-vector and
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ω is the angular frequency. A is the amplitude of the wave which varies as

some function of r while φ0 is the constant phase offset of the source. The

phase of the wave, which is enclosed in the brackets, is

φ = k · r − ω

c
· ct+ φ0

=⇒

⎛
⎜⎜⎝

ω
c

kx
ky
kx

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
ct

x

y

z

⎞
⎟⎟⎠ = φ0 − φ.

The important observation here is that the phase of a wave at a particular

point in time and space in an inertial frame S should be the same as that at

the corresponding time and space, after a Lorentz transformation, in another

inertial frame S’, as the phase corresponds to a physical event. It measures

the state of the displacement at a certain point in space, relative to all other

points, at a given time. If an event is a peak in frame S, the corresponding

event will still be a peak in frame S’. Hence, the phase must be a Lorentz

scalar. Then, as the second vector is a four-vector and the right-hand side is

a Lorentz scalar,

K =

(
ω

k

)

is a four-vector in units of c by Property 3 — referred to as the four-wave

vector. Note that the relationship

ω

k
= u

still holds in any inertial frame S where u is the phase velocity of the wave.

The fact that the angular frequency and the wave numbers of a plane wave

form a four-vector is extremely convenient in determining the transformation

of properties related to waves.

For example, the longitudinal Doppler effect for a wave with a frequency

f and speed u in an inertial frame S can be computed relatively easily. Let f ′

be the frequency of the wave as observed in the frame S’ that is traveling at

a velocity v longitudinally relative to frame S. Then, the four-wave vectors

in S and S’ are

K =

⎛
⎜⎜⎝
ω

k

0

0

⎞
⎟⎟⎠ K ′ =

⎛
⎜⎜⎝
ω′

k′x
k′y
k′z

⎞
⎟⎟⎠
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respectively. From the Lorentz transformations,

K ′ =

⎛
⎜⎜⎝
γv(ω − βk)

γv(k − βω)

0

0

⎞
⎟⎟⎠.

Hence,

ω′ = γv(ω − βk),

f ′ = γv

(
f − β

λ

)
.

Since u = fλ,

f ′ = γv

(
1− β

u

)
f = γv

(
1− v

u

)
f.

12.5 Transformation of Electric and Magnetic Fields

One of Einstein’s motivations behind special relativity was how similar

effects in electromagnetism were attributed to the different entities — elec-

tric and magnetic fields. Consider a charged particle and a stationary magnet

in frame S. The moving charge experiences a magnetic force due to the mag-

netic field but no electric force due to the absence of an external electric

field. Now consider the instantaneous rest frame of the particle S’, in which

the magnet is now moving. Though there is still a magnetic field, there is

no magnetic force on the particle as it remains stationary. However, there is

now a non-conservative electric field induced by the time-varying magnetic

field which causes the charge to experience an electric force. Einstein firmly

believed that these seemingly disparate effects were linked by a more general

theory.

It turns out that electric and magnetic fields are essentially the same

entity, as observed in different frames. The electric and magnetic fields at

corresponding points in space and time in inertial frames S and S’ (which

travels at v relative to S) are related by

E′
‖ = E‖, B′

‖ = B‖,

E′
⊥ = γv(E⊥ + v ×B), B′

⊥ = γv

(
B⊥ − v

c2
×E

)
,

where ‖ and ⊥ denote directions parallel and perpendicular to the velocity

v, respectively. Note that the equations on the second row are vectors. It can
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be seen that the perpendicular components of the electric and magnetic field

in frame S’ need not lie along the same direction as their counterparts in

frame S. If frame S’ travels at a speed v in the positive x-direction relative to

frame S, the transformations can be expressed in Cartesian coordinates as

E′
x = Ex, B′

x = Bx,

E′
y = γv(Ey − vBz), B′

y = γv

(
By +

v

c2
Ez

)
,

E′
z = γv(Ez + vBy), B′

z = γv

(
Bz − v

c2
Ey

)
.

Proof: The transformations above can be deduced from the four-force vector

corresponding to the Lorentz force on a charged particle in an electromag-

netic region. Note that the transformations should actually be independent

of the physical existence of such a particle as the external fields4 themselves

are physical entities which persist without regard of anything besides their

sources. The charged particle is merely a construct — a stepping stone —

in identifying these transformations.

The Lorentz force law exerts that the force on a charge q in frame S is

f = q(E + u×B),

where u is the velocity of the particle in S. The idea here is to relate the

forces (and power) in two inertial frames to deduce the electromagnetic field

transformations.

Firstly, consider a charged particle, with unit charge5 for the sake of

convenience, and velocity u = (u, 0, 0) in frame S. The Lorentz force on the

particle is

f =

⎛
⎝ Ex
Ey − uBz
Ez + uBy

⎞
⎠.

The four-force vector in frame S is then

F =

(
γuf · u
γuf

)
=

⎛
⎜⎜⎝

γuExu

γuEx
γu(Ey − uBz)

γu(Ez + uBy)

⎞
⎟⎟⎠.

4We are only considering the external fields and are ignoring the fields generated by the
hypothetical charged particle.

5Note that charge is presumed to be invariant across inertial frames. Therefore, the
particle possesses unit charge in all inertial frames.
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Now, we proceed to an inertial frame S’ which travels at velocity u in the

x-direction relative to S such that the charge is stationary in this frame. The

force on the charge in S’ is then

f ′ = E′,

where E′ is the electric field in frame S’. The four-force vector in S’ is thus

F ′ =

⎛
⎜⎜⎝

0

E′
x

E′
y

E′
z

⎞
⎟⎟⎠.

Furthermore, we know that F ′ and F are related by the Lorentz transfor-

mations.

F ′ = LF =

⎛
⎜⎜⎝

γu −γuβ 0 0

−γuβ γu 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

γuExu

γuEx
γu(Ey − uBz)

γu(Ez + uBy)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0

Ex
γu(Ey − uBz)

γu(Ez + uBy)

⎞
⎟⎟⎠

with β = u. Comparing the two expressions for F ′,

E′
x = Ex,

E′
y = γv(Ey − vBz),

E′
z = γv(Ez + vBy),

where we have substituted v for u as we have the prerogative to choose u

(i.e. because u is arbitrary). The transformations for the magnetic field can

in fact be obtained from the above via some astute manipulations. Firstly,

the above implies that the inverse transformations are

Ex = E′
x,

Ey = γv(E
′
y + vB′

z),

Ez = γv(E
′
z − vB′

y).

From the second equation,

B′
z =

Ey

γv
− E′

y

v
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=

Ey

γv
− γv(Ey − vBx)

v

= γv

(
Bz − v

c2
Ey

)
.

Similarly, from the third equation,

B′
y = γv

(
By +

v

c2
Ez

)
.

Now, we need to consider a separate charged particle to determine B′
x as the

force on a charged particle that is traveling solely along the x-direction will

be independent of the x-component of the magnetic field. Consider a unit

charge which travels at u = (0, 0, u) in S. The four-force in S is

F =

⎛
⎜⎜⎝

γuEzu

γu(Ex − uBy)

γu(Ey + uBx)

γuEz

⎞
⎟⎟⎠.

In frame S’ which travels at velocity v relative to S, in the x-direction, the

velocity of the particle is u′ = (−v, 0, uγv ) by the velocity addition formula.

The y-component of the four-force F ′ in S’ is thus

F ′
2 = γu′

(
E′
y +

uB′
x

γv
+ vB′

z

)
.

Another expression for F ′
2 can be obtained from applying a Lorentz trans-

formation to the four-force F .

F ′
2 = γu(Ey + uBx).

Since γu′ = γvγu by Eq. (12.22) with ux = 0,

γvE
′
y + uB′

x + γvvB
′
z = Ey + uBx.

Since Ey = γv(E
′
y + vB′

z),

B′
x = Bx.

We have hence completed the derivation of the field transformations.

Finally, note that the laws of electromagnetism (Maxwell’s equations)

are still valid in the relativistic case. Meanwhile, the Lorentz force law now

engenders a rate of change of relativistic momentum. Moreover, a crucial

property when switching between inertial frames is that the quantity of

electric charge is invariant, though charge densities may differ due to length

contraction.
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Let us verify the transformation rules using the following example.

Consider a standard parallel plate capacitor that consists of two large plates

with width w and length l, separated by a distance d (d 
 w and d 
 l).

Each plate carries a charge Q. In inertial frame S, the plates are stationary

at the coordinates depicted in Fig. 12.11.

Figure 12.11: Capacitor plates in frame S

In this frame, there is an electric field (by Gauss’ law) between the plates

with components:

Ex = 0,

Ey = 0,

Ez =
σ

ε0
,

where σ = Q
wl is the surface charge density of the positive plate. The magnetic

field in frame S is zero everywhere due to the absence of moving charge. Now,

consider a frame S’ that travels at a velocity v in the x-direction relative to

frame S. The configuration of the plates as observed in S’ is depicted in

Fig. 12.12.

Firstly, the new surface charge density σ′ is larger than that in S by a

factor of γv due to length contraction.

σ′ = γvσ.

The electric field between the capacitor plates in this frame at any instant

is then

E′
x = 0,
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Figure 12.12: Capacitor plates in frame S’

E′
y = 0,

E′
z =

γvσ

ε0
,

in correspondence with the electric field transformations stated at the start

of this section. However, we are not done here. The charged plates are now

traveling at a speed v in the negative x’-direction. Hence, they constitute

a current similar to an infinite current sheet (the y’z’-plane is akin to the

cross section). Drawing an Amperian loop, with edges parallel to the y’ and

z’ axes, that cuts only one plate and extends to infinity, we obtain

B′
y · w = μ0Ienc.

The magnetic field in the region between the plates is taken to be uniform,

as the plates are large. The total enclosed current in this case is the charge

crossing the loop per unit time and is given by

Ienc = σ′wv = γvσwv.

Hence,

B′
y = γvμ0σv.

Let us verify that this is consistent with the purported electric and magnetic

field transformations.

B′
y = γv

(
By +

v

c2
Ez

)
=
γσv

ε0c2
.

Next, by using the fact that c2 = 1
μ0ε0

,

B′
y = γvμ0σv,
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which is the answer that we had obtained from applying Ampere’s law in

frame S’. One can also check that the transformations imply that there is

no component of the magnetic field in the x’ and z’-directions.

12.5.1 Fields of a Moving Charge

In this section, the electric and magnetic fields due to a point charge traveling

at a constant velocity v in frame S will be determined by considering the

corresponding quantities in the rest frame S’ of the charge; this is a very

important result. We define the vectors shown in Fig. 12.13 (the diagrams

are drawn in 2-D and the velocity v is depicted to be along the x-axis for

convenience).

Figure 12.13: Frame S and rest frame S’

The charge lies at the origin O in frame S at t = 0. Hence, the position

vector of the charge q at time t in frame S is given by vt. r and r′ are

the position vectors of point P, the location at which the electromagnetic

field is of interest, with respect to the origins of S and S’ respectively. R is

the vector pointing from the instantaneous position of the charge to point

P in frame S. The components of the electric field in frame S’ are given by

Coulomb’s law as

E′
‖ =

kq

r′3
r′‖,

E′
⊥ =

kq

r′3
r′⊥,

where k = 1
4πε0

. The magnetic field due to the charge is zero everywhere in

frame S’. Hence, the transformations of the electric fields give

E‖ =
kq

r′3
r′‖,

E⊥ = γvE
′
⊥ =

γvkq

r′3
r′⊥.
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Therefore,

E =
kq

r′3
(r′‖ + γvr

′
⊥).

Ideally, we wish to express this in terms of the quantities in frame S. From

the Lorentz transformations,

r′‖ = γv(r‖ − vt) = γvR‖,

r′⊥ = r⊥ = R⊥,

as R‖ = r‖ − vt and R⊥ = r⊥, as illustrated in Fig. 12.13. Then,

r′‖ + γvr
′
⊥ = γv

(
r′‖
γv

+ r′⊥

)
= γvR

r′2 = r′‖ · r′‖ + r′⊥ · r′⊥
= γ2vR

2
‖ +R2

⊥.

The electric field in frame S can then be expressed as

E =
γvkqR

(γ2vR
2
‖ +R2

⊥)
3
2

=
γvkqR

γ3v(R
2
‖ + (1− β2)R2

⊥)
3
2

=
kqR

γ2v(R
2 − β2R2

⊥)
3
2

.

If we define θ to be the angle subtended by the vectors vt and R when they

are placed tail to tail,

R⊥ = R sin θ,

E =
kqR

γ2vR
3(1− β2 sin2 θ)

3
2

=
qR

4πε0γ2vR
3(1− β2 sin2 θ)

3
2

,

with k = 1
4πε0

. In the non-relativistic limit β → 0, this expression reduces to

the familiar Coulomb’s law.

E =
qR

4πε0R3
.
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Now, the magnetic field can similarly be obtained from the transformations.

B‖ = B′
‖ = 0,

B⊥ = γv

(
B′

⊥ +
v

c2
×E′

)
=

v

c2
× γvE

′

=
v

c2
× γvE

′
⊥,

as E′
‖ is defined to be in the direction of v, causing v ×E′

‖ = 0. Then,

B = B‖ +B⊥

= 0+
v

c2
× γvE

′
⊥

=
v

c2
×E‖ +

v

c2
×E⊥

=
v

c2
×E.

Therefore, the magnetic field at point P in frame S is simply

B =
kqv ×R

c2γ2vR
3(1− β2 sin2 θ)

3
2

=
μ0qv ×R

4πγ2vR
3(1− β2 sin2 θ)

3
2

as k = 1
4πε0

and 1
c2

= μ0ε0. In the non-relativistic limit, β → 0,

B =
μ0qv ×R

4πR3
.

This expression is similar to substituting qv for
´
Ids in the Biot-Savart law.

However, they arise from different premises. The Biot-Savart law is only

valid for steady currents and a single moving charge most definitely does

not constitute a steady current (as the net charge at various positions varies

with time) and is an empirical law. The above derivation is a consequence

of Coulomb’s law, charge invariance and special relativity. It just happens

that in the non-relativistic limit, the above expression reduces to something

similar to the Biot-Savart law. The derivation of this result from purely

classical tools (specifically, the Ampere–Maxwell law) was the subject of

Problem 25 (Chapter 8).
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Problems

Problems without Four-Vectors

1. “Infinite” Energy Generator*

Tom proposes the following mechanism to generate “infinite” energy. Orient

two perfectly reflective mirrors (of arbitrary masses) such that they are mutu-

ally parallel and stationary initially. Now, place a photon between the two

mirrors such that it impinges the mirrors normally. As the photon bounces

back and forth between the two mirrors, it imparts momentum and thus

kinetic energy to the two mirrors. Furthermore, the photon can always catch

up with the mirrors, even if the mirrors begin to pick up speed so this pro-

cess will continue indefinitely — producing “infinite” kinetic energy. What

is wrong with Tom’s reasoning? Now, consider a new set-up where the two

mirrors are identical and initially stationary. Two photons, with initial veloc-

ities in opposite directions and initial frequency f each, impinge normally on

the two mirrors repeatedly. What is the final kinetic energy of each mirror

after a long time?

2. Exploding Particle*

A particle of rest mass m is traveling in the positive x-direction at velocity

u in the lab frame. It then disintegrates into two identical particles of rest

mass m√
6
each. Determine the velocities of the product particles in the lab

frame if they are aligned with the x-axis.

3. Available Energy*

A particle of rest mass m1 is bombarded at another stationary particle of

rest mass m2 at initial velocity u. If this collision triggers the production of

a third particle (while retaining the rest masses of the other two), determine

the maximum rest mass of the third particle.

4. Unknown Mass Decay*

A particle of unknown mass M decays into two particles of known masses

ma = 0.5GeV/c2 and mb = 1.0GeV/c2, whose momenta are measured to be

pa = 2.0GeV/c directed along the y-axis and pb = 1.5GeV/c directed along

the x-axis. Find the unknown mass M and its speed (in units of c).
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5. Positron-Electron Collision*

Consider the reaction

e+ + e− → e+ + e− + ψ.

Determine the minimum initial energy of the electron or positron for this

reaction to occur in the center-of-momentum (CoM) frame in terms of the

rest masses mψ and me. Hence, find the threshold energy of the positron

if the positron is bombarded at the stationary electron in the lab frame,

without the aid of Eq. (12.26).

6. Relativistic Photon Rocket*

A rocket is initially stationary with a rest mass Mi in the lab frame S. The

rocket then begins to convert mass into photons and ejects them from the

back. When the rest mass of the rocket isMf , prove that its speed u in frame

S fulfils

Mi

Mf
=

(
1 + u

1− u

) 1
2

.

7. Relativistic Mass Rocket**

In the lab frame S, a relativistic rocket of initial rest mass Mi is initially

stationary. The rocket then begins to eject mass continuously in minuscule

amounts at one instant, towards the back, at a velocity u relative to its

instantaneous rest frame. When the rest mass of the rocket is Mf , prove

that the velocity v of the rocket in frame S satisfies

Mi

Mf
=

(
1 + v

1− v

) 1
2u

.

Hint: Consider the conservation of energy and momentum in the instanta-

neous rest frame and their relationship to the rest mass of the object.

8. Bucket**

A bucket of initial rest massM0 has an initial velocity u0 in frame S. It begins

to collect sand aligned in a line with a linear mass density λ in S. Assuming

that the line of sand extends forever,

(a) Find the rate of rest mass increase of the bucket when the bucket has

speed u. Why is this greater than λu? Find the rest mass of the bucket,

M(t), as a function of time.
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(b) Find the energy and velocity of the bucket as functions of time, E(t)

and u(t).

(c) Find the energy and velocity of the bucket as functions of the displace-

ment of the bucket relative to the bucket’s initial position, E(x) and

u(x).

(Adapted from “Introduction to Mechanics”)

9. Leaking Bucket**

Referring to the previous scenario, the bucket-and-contained-sand system

now loses a fraction f of its remaining rest mass per unit distance traveled.

Find E(x), p(x) and t(x). (Adapted from “Introduction to Mechanics”)

Problems with Four-Vectors

A common trick in solving equations involving four-momenta involves iso-

lating a single four-momentum that is not of interest and then taking the

squared norm of both sides to eliminate the irrelevant four-momentum (as its

squared norm produces the mass of the particle). This will be a common

denominator in many problems.

10. Four-Vectors*

(a) Let A be a four-vector, and suppose that one component of A is found

to be zero in all inertial frames. Show that all four components of A are

zero in all frames. This is known as the zero-component theorem.

(b) The four-momentum of a particle in the lab frame S is P while the four-

velocity of an observer is U with respect to S. Show that the particle’s

energy in the rest frame of the observer is P · U .

(c) Prove that the inner product of the four-velocity U and the four-

acceleration A of a massive particle is zero.

(d) Show that the instantaneous charge density ρ and the instantaneous cur-

rent density j at a particular location forms a four-vector J = (ρc, j) in

an arbitrary inertial frame S. J is known as the four-current. Hint: con-

sider the four-velocity.

11. Chasing Particles*

A particlema with speed va is pursuing another particlemb with vb (vb < va)

along the x-axis of an inertial frame S. When particle a catches up with
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particle b, they collide and coalesce to form a single particle of mass m.

Show that

m2 = m2
a +m2

b + 2mambγvaγvb

(
1− vavb

c2

)
.

12. Disintegration*

A particle of rest mass m1 is initially stationary in the lab frame S. It then

disintegrates into a photon and another particle of rest mass m2 < m1. Find

the energies of the photon and the final particle.

13. Reflected Photon*

In an inertial frame S, a photon of frequency f is normally incident on a

perfect plane mirror, of mass m, retracting at a velocity u from the photon.

Find the frequency f ′ of the reflected photon in frame S.

14. Proton Collision*

A proton of energy E collides elastically with a second proton of rest energy

E0 that is initially stationary. Subsequently, the two protons are directed at

angles ±φ
2 relative to the initial velocity of the incident proton. Find cosφ.

15. Electron-Photon Collision*

A massive particle with energy E0 and speed β0c undergoes a head-on elastic

collision with a photon with energy Eγ0. Show that the final energy Eγ of

the photon is

Eγ = E0
1 + β0

2 + (1− β0)
E0
Eγ0

.

Show that Eγ < E0 but if β0 → 1,
Eγ

E0
→ 1. That is, a high-energy particle

loses most of its energy to the photon (in the ideal β0 → 1 limit, the particle

retains energy Eγ0 by the conservation of energy).

16. Emission by Excited Atom*

An excited atom A∗ at rest drops to its ground state A by emitting a pho-

ton. In atomic physics, it is usually assumed that the energy Eγ of the emit-

ted photon is equal to the difference in energies of the two atomic states,

ΔE = (M∗ −M)c2, whereM andM∗ are the rest masses of the ground and
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excited states of the atom. This cannot be exactly true, since the recoiling

atom X must carry away part of ΔE. Show that in fact

Eγ = ΔE

(
1− ΔE

2M∗c2

)
.

Given that ΔE is of order eV while the lightest atom hasM of order GeV/c2.

Discuss the validity of the approximation Eγ = ΔE.

17. Neutrino Beam*

High-energy neutrino beams are produced by allowing an excited pion π+

to decay into an excited muon μ+ and neutrino ν according to the equation

π+ → μ+ + ν.

The masses of a pion and muon are 140MeV/c2 and 106MeV/c2 . The mass

of a neutrino is negligible.

(a) Find the energy of the neutrino in the rest frame of the pion.

(b) In the lab frame, the pion has an energy of 200GeV. If the momentum of

the neutrino is aligned with the initial momentum of the pion, determine

the energy of the neutrino.

(c) Referring to (b), let θ be the angle between the momentum of the neu-

trino and the initial momentum of the pion. Find the value of θ for which

the neutrino’s energy is half of its maximum possible energy.

18. Mad Scientist*

A mad scientist asserts to have observed the decay of a particle of mass M

into two identical particles of mass m > 0, with M < 2m. He dismisses

objections about the violation of the conservation of energy by this process

with the claim that if M were traveling fast enough, its energy could easily

exceed 2mc2 and could hence decay into the two particles of mass m. Prove

that he is wrong and qualitatively describe the flaw in his rebuttal.

19. Photon Decay*

Show that a photon cannot spontaneously decay into a particle with a non-

zero rest mass, accompanied by an arbitrary number of other particles of

arbitrary masses, which may be zero.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 903

Relativistic Dynamics 903

20. Compton Scattering**

In frame S, a photon of frequency f is incident on an electron with momentum

p1 and energy E1. Determine the minimum frequency of the scattered photon

and the directions of the velocities of the incident photon and the scattered

photon in such a situation. The rest mass of the electron is constant.

21. Pion Photoproduction**

Consider the reaction

γ + p→ p+ π.

The rest energies of a proton and pion are 938 MeV and 135 MeV respec-

tively.

(a) If the proton is initially at rest in the laboratory, find the laboratory

threshold photon energy for this reaction to occur.

(b) If the photon’s energy is 10−3eV, find the minimum proton energy that

can spark off this reaction.

22. Energy Transfer**

In the lab frame S, particle 1 of rest mass m1 is traveling at velocity u in the

positive x-direction and subsequently collides with an initially stationary

particle 2 of rest mass m2. If the final velocities of the particles are still

aligned with the x-direction and their rest masses remain constant, find the

final energy of particle 2. Determine the fraction of the total energy in the

lab frame that is possessed by particle 2 in the limit where u tends to c.

Hint: Consider the center-of-momentum frame. You will discover the ratio

in fact tends to unity. Here’s another subtler way of proving this. Let P ′
1 and

P2 be the final four-momentum of particle 1 and the initial four-momentum

of particle 2 in the center-of-momentum frame. Firstly, show that the inner

product of P ′
1−P2 with itself is larger than zero in the center-of-momentum

frame (be wary that P ′
1−P2 is not a four-vector and its inner product is not

invariant). Armed with this inequality, show that the final energy of particle

1 must not exceed
m2

1+m
2
2

2m2
. This value is independent of u and hence shows

that particle 2 absorbs most of the energy if u is large.

23. Maximum Frequency**

In inertial frame S, a particle of rest mass m is incident at a speed u on a

nucleus of rest mass M . During the collision, a photon is emitted. The rest
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masses of the particle and the nucleus remain unchanged. Show that the

maximum energy of the photon in frame S is

hf =
Mm(γu − 1)

M + γum(1− u)
.

Show that this occurs when the direction of the photon is parallel to the

initial velocity of the particle u and when the nucleus and the particle “stick

together” after the collision in frame S. Hint: from the four-vector equation

P1 + P2 = P ′
1 + P ′

2 + Pp, where P1, P2, P
′
1, P

′
2 are the four-momenta of the

particle and the nucleus before and after the collision and Pp is the four-

momentum of the photon, obtain P1 + P2 − Pp = P ′
1 + P ′

2 and consider the

squared norm of both sides.

Force, Impulse-Momentum and Work-Energy

24. Two Particles Connected by String*

Two particles of rest masses m and M are connected by a flexible rope of

constant tension T . If the two particles are initially at rest and are separated

by an initial distance L in frame S, what is the distance x between the point

at which the particles meet and the initial position of the particle of rest

mass m? (“Introduction to Mechanics” by David Morin)

25. Projectile Motion**

A particle initially possesses an x-component of momentum p0 and energy

E0 in the lab frame. It is then acted upon by a constant −F force in the

y-direction. Determine the trajectory of the particle in the lab frame. Show

that the resultant expression reduces to the familiar parabolic path in the

non-relativistic limit.

26. Pulling a Leaking Bucket**

In frame S, there is an initially stationary bucket with zero initial rest mass

that is pulled along by a string of constant tension T . The bucket begins

to gather sand of linear mass density λ. Find the velocity u of the bucket.

(“Introduction to Mechanics”)
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Waves and Electromagnetism

27. Light in Moving Glass**

In the lab frame S, a source emits light of frequency f towards a glass block

of refractive index n that is retracting at velocity v. By considering the four-

wave vector and the rest frame of the block S’, determine the frequency and

wavelength of light inside the block in the lab frame S.

28. Crossed Fields**

In the lab frame S, there are uniform electric and magnetic fields E =

(0, E, 0) and B = (0, 0, B) where E < 0 and B > 0. A charged particle of

rest mass m and charge q initially possesses velocity v0 in the x-direction

when it is at the origin. Determine the maximum x-coordinate that the

particle attains in its subsequent motion. Hint: Consider another inertial

frame.

29. Magnetic Field***

In this problem, we shall see how the magnetic field is the manifestation of

the electric field in another frame. In frame S, an infinitely long wire carries

a current I in the positive x-direction. The current comprises electrons of

linear charge density −λ traveling at a velocity u in the negative x-direction

in frame S (I = λu). In frame S, there are also stationary positive ions of

linear charge density λ in the wire such that the wire is neutral. A point

charge q travels at a velocity v in the positive x-direction, at a distance r

from the wire. Without any knowledge of the existence of a magnetic field

and by considering the electric field in the rest frame of the charge S’, show

that the charge experiences a force of the form

f = qv ×A

in frame S where A is a certain vector. Now let A be defined as the magnetic

field B. Verify that the expression for the magnetic field is consistent with

that obtained from Ampere’s law in frame S. Do not use the transformations

for the electromagnetic fields in this problem.
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Solutions

1. “Infinite” Energy Generator*

Tom’s reasoning is fallacious because the frequency (and thus energy) of

the photon will decrease after reflection from a retracting mirror. Therefore,

the photon imparts less momentum with each reflection until it ultimately

disappears (or becomes insignificant) when it loses all of its initial energy.

The total kinetic energy imparted to the two mirrors will be equal to the

initial energy of the photon by the conservation of energy.

Because the second set-up is symmetrical, the final kinetic energies of the

mirrors are identical and are each equal to the initial energy of one photon

hf , by the conservation of energy.

2. Exploding Particle*

This problem is beckoning for us to consider it in the rest frame of the

initial particle, S’. In this frame, the initial energy of the system is m while

the initial momentum is zero. By symmetry, the final energy of each particle

in this rest frame is m
2 . Then, the magnitude of their momenta is

p =

√
m2

4
− m2

6
=

m

2
√
3
.

They are directed in opposite directions, parallel to the x’-axis. The magni-

tude of the velocities of the product particles in frame S’ is

uCM =
p

E
=

1√
3

and the velocities point in opposite directions. The velocities of these par-

ticles in the lab frame S can then be obtained from the velocity addition

formula.

u1 =
u− uCM
1 + uCMu

=

√
3u− 1√
3− u

,

u2 =
u+ uCM
1 + uCMu

=

√
3u+ 1√
3 + u

.

An equivalent method is to transform the individual four-momenta of the

particles and subsequently use the relationship u = p
E .
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3. Available Energy*

In the center-of-momentum frame S’, energy and momentum must also be

conserved. By definition, the total momentum in S’ should be zero. There-

fore, the most energy can be channeled into the creation of the new particle

if all particles possess zero final momentum in S’ (so that no energy is wasted

on kinetic energy). The maximum rest mass of the new particle m′ is thus

the total energy in the center of momentum frame ECM , minus m1 and m2.

m′ = ECM −m1 −m2.

Applying Eq. (12.15),

ECM =
√
E2
tot − p2tot

where Etot and ptot are the total energy and momentum in any arbitrary

inertial frame, as the above expression is a scalar. Substituting the corre-

sponding expressions in the lab frame,

ECM =
√

(γum1 +m2)2 − γ2um
2
1u

2 =
√
m2

1 +m2
2 + 2γum1m2.

Then,

m′ =
√
m2

1 +m2
2 + 2γum1m2 −m1 −m2.

4. Unknown Mass Decay*

Let the momentum of M be p. Since pa · pb = 0,

p2 = p2a + p2b .

Meanwhile, the energies of particles a and b are

Ea =
√
p2a +m2

a,

Eb =
√
p2b +m2

b .

The energy of M is thus

E = Ea + Eb =
√
p2a +m2

a +
√
p2b +m2

b ,

M =
√
E2 − p2
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=

√
m2
a +m2

b + 2
√

(p2a +m2
a)(p

2
b +m2

b)

=

√√√√m2
a +m2

b + 2

√(
p2a
c2

+m2
a

)(
p2b
c2

+m2
b

)

= 2.9GeV/c2 (2sf),

where the c’s have been added back in the second-last expression. The veloc-

ity of M is

u =
pc2

E
=

√
p2a + p2b√

p2a
c2

+m2
a +

√
p2b
c2

+m2
b

= 0.65c (2sf).

5. Positron-Electron Collision*

In the CoM frame, let the initial energies of the electron and positron be E.

The minimum final total energy occurs when all products are stationary and

is of value 2me +mψ. By the conservation of energy,

2Emin = 2me +mψ

Emin = me +
mψ

2
.

Next, suppose that the total energy in the CoM frame is Etot = 2E and

that the electron and positron travel towards each other at speed u. By the

energy-momentum transformations, the total energy in the rest frame of the

electron is

E′
tot = γuEtot = 2γuE.

Therefore, the initial energy of the positron in this frame is

E+ = E′
tot −me = 2γuE −me.

Observe that γu decreases as E decreases (since the electron and positron

possess less kinetic energy). Therefore, the minimum E+ (i.e. the threshold

energy) occurs when E = Emin.

Ethres = 2γuEmin −me.
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From the definition of the relativistic energy, we have

Emin = γume =⇒ γu =
Emin
me

= 1 +
mψ

2me
.

Thus,

Ethres = 2

(
1 +

mψ

2me

)(
me +

mψ

2

)
−me

= me + 2mψ +
m2
ψ

2me
.

6. Relativistic Photon Rocket*

The initial energy of the entire system is Mi. If we let the total energy of

the radiated photons in frame S be E,

Mi = γuMf + E.

Since the momentum of the photons differs from their energy only by a factor

of c, the conservation of momentum gives

γuMfu = E.

Hence,

γuMfu+ γuMf =Mi

Mi

Mf
= γu(1 + u) =

(
1 + u

1− u

) 1
2

.

7. Relativistic Mass Rocket**

Figure 12.14 depicts an ejection event in the instantaneous rest frame of the

rocket, S’. This rest frame travels at a velocity v relative to S.

Immediately after the ejection, let the velocity of the rocket be dv′ in S’

and let the rest mass of the rocket be m+ dm. The fuel travels at a velocity

−u in the new instantaneous rest frame of the rocket which travels at dv′

relative to the first instantaneous rest frame. Using the velocity addition

formula, the fuel travels at speed u−dv′
1−udv′ in the original instantaneous rest

frame S’.

u− dv′

1− udv′
≈ (u− dv′)(1 + udv′) ≈ u− dv′ + u2dv′.

Then, let γf and dmf denote the gamma factor associated with the velocity

of the fuel in S’ and the rest mass of the fuel. By the conservation of energy
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Figure 12.14: Ejection event in instantaneous rest frame

in frame S’, the total final energy of the system consisting of the ejected fuel

and the rocket must be equal to m which is the initial energy.

m =
1√

1− dv′2
(m+ dm) + γfdmf .

Ignoring second order terms,

γfdmf = −dm.

Furthermore, by the conservation of momentum,

1√
1− dv′2

(m+ dm)dv′ − γfdmf (u− dv′ + u2dv′) = 0.

Discarding the preponderance of second order terms,

mdv′ = γfdmfu = −dmu

−dm
m

=
1

u
dv′.

Now, we cannot directly integrate this expression in the current instanta-

neous rest frame as this expression for dv′ will no longer be valid as the

rocket begins to acquire a non-negligible velocity in this frame. Hence, there

is a need to transform back to frame S. Let the speed of the rocket in frame

S after the ejection event be v + dv. By the velocity addition formula,

v + dv =
dv′ + v

1 + dv′v
.
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Performing a binomial expansion dv′+v
1+dv′v ≈ (dv′ + v)(1 − dv′v),

dv′ =
dv

1− v2
.

Substituting this into the previous relevant equation,

−
ˆ Mf

Mi

dm

m
=

1

u

ˆ v

0

dv

1− v2
=

1

2u

ˆ v

0

(
1

1− v
+

1

1 + v

)
dv

ln

∣∣∣∣Mi

Mf

∣∣∣∣ = 1

2u
ln

1 + v

1− v

Mi

Mf
=

(
1 + v

1− v

) 1
2u

.

8. Bucket**

(a) Consider a collision event between the bucket, with an instantaneous

mass M and instantaneous velocity u, and an infinitesimal segment of sand

of rest mass dm. The total energy before and after the collision are γuM

and γuM + dm respectively. The total momenta before and after collision

are still γuMu. Hence, the new rest mass M + dM after the collision is

M + dM =
√

(γuM + dm)2 − (γuMu)2

=
√
M2 + 2γuMdm+ dm2.

Ignoring the second order infinitesimal terms,

M + dM =M

√
1 +

2γu
M

dm

≈M
(
1 +

γu
M
dm
)

=M + γudm

=⇒ dM = γudm = γuλdx

where dx is the length of an infinitesimal segment of sand swept by the

bucket in time dt in the lab frame. Since dx
dt = u,

dM

dt
= γuλu.

This is greater than λu due to the increase in internal energy of the combined

bucket-and-sand system during the inelastic collision, as part of the kinetic

energy of the bucket is converted into heat. Next, we can use the fact that
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the total momentum of the bucket always remains at p = γu0M0u0 to rewrite

the differential equation above as

dM

dt
=
pλ

Mˆ M

M0

MdM =

ˆ t

0
pλdt

M =
√

2pλt+M2
0

where p = γu0M0u0.

(b) The increase in the total energy of the bucket is due to the rest energy

of the additional sand collected. Hence,

dE

dt
= λu.

Next, since u = p
E ,

ˆ E

E0

EdE =

ˆ t

0
pλdt

E =

√
2pλt+

p2

u20

where the initial energy E0 has been expressed as p
u0
. Lastly,

u =
p

E

=
p√

2pλt+ p2

u20

=
u0√

1 +
2λu20
p t

where p = γu0M0u0.

(c) The energy of the bucket as a function of x can be computed via

dE

dx
= λ

E = λx+
p

v0
.
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Then,

u =
p

E
=

v0

1 + λv0x
p

where p = γu0M0u0.

9. Leaking Bucket**

This time, the change in the total energy per unit distance traveled is both

due to the absorption of the sand, which has a certain amount of rest energy,

and the amount of rest mass lost by the bucket-and-sand system. Since the

bucket losses rest mass (which is assumed to be homogeneous) at a fraction

per unit distance of f , its fractional rate of energy loss is also f . Hence,

dE

dx
= λ− fE

ˆ E

E0

1

E − λ
f

dE = −
ˆ x

0
fdx

ln

∣∣∣∣∣
E − λ

f

E0 − λ
f

∣∣∣∣∣ = −fx.

Note that E − λ
f (at all times) must have the same sign as E0 − λ

f . This is

evident from the dE
dx equation. E will always tend towards λ

f , after which it

stops changing. Therefore, the term in the absolute value brackets is defi-

nitely positive.

E =

(
E0 − λ

f

)
e−fx +

λ

f

where E0 is the initial energy of the bucket, E0 = γu0M0. On the other hand,

the change in momentum of the bucket per unit distance is similarly,

dp

dx
= −fp.

p is now the instantaneous momentum of the bucket-and-sand system. Solv-

ing this differential equation,

p = p0e
−fx

where p0 = γu0M0u0. Then, using u = p
E ,

u =
p0

E0 − λ
f + λ

f e
fx
.
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Using the fact that u = dx
dt and separating variables,

ˆ x

0

(
E0 − λ

f
+
λ

f
efx
)
dx =

ˆ t

0
p0dt

t =

(
E0 − λ

f

)
x+ λ

f2
efx − λ

f2

p0
.

10. Four-Vectors*

(a) Suppose that the ith component of A is found to be zero in all inertial

frames. Given Ai in frame S, we can compute A′
i in frame S’ in the following

manner, under a Lorentz transformation in an appropriate direction.

A′
i = γ(Ai − βAj)

where Aj is the time-like component if Ai is a space-like component and

vice-versa, Aj is a space-like component if Ai is the time-like component.

Evidently, for A′
i = 0, given Ai = 0, we must have Aj = 0. Since the

definition of the inertial frame S is arbitrary, the jth component of A must

be zero in all inertial frames. As such, if Ai is the time-like component, we

can perform Lorentz transformations along all three spatial directions to

deduce that all spatial components of A are zero in all inertial frames.

Otherwise, if Ai is a space-like component, we can first apply the same

argument to conclude that the time-like component A0 is zero in all inertial

frames. Then, by using the final result of the previous paragraph, we conclude

that all components of A are zero in all inertial frames.

(b) Let the four-momentum of the particle and the four-velocity of the

observer be P ′ and U ′ in the rest frame of the observer, S’, respectively.

P ′ =
(
E′

p′

)
U ′ =

(
1

0

)

where E′ and p′ are the energy and momentum of the particle in S’. Evi-

dently,

P ′ · U ′ = E′.

By the invariance of the inner product of two four-vectors across Lorentz

transformations,

P · U = P ′ · U ′ = E′

which is our desired result.
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(c) In the rest frame S’ of the particle (which exists because it is massive

and cannot travel at the speed of light in any inertial frame),

U ′ =
(
1

0

)
A′ =

(
0

α

)

where α is the proper acceleration of the particle. Observe that

U ′ ·A′ = 1 · 0− 0 ·α = 0.

Since the inner product of two four-vectors is Lorentz invariant,

U · A = U ′ ·A′ = 0

where U and A are the particle’s four-velocity and four-acceleration with

respect to an arbitrary inertial frame S.

(d) Suppose for now that the charges at the location P of interest all possess

the same velocity u in inertial frame S. Since the longitudinal length of the

moving charges are shrunk by a factor of 1
γu
, as compared to that in their

rest frame S’, due to length contraction and because the total amount of

charge in a given volume must be Lorentz invariant,

ρ = γuρ0

where ρ0 is the proper charge density at the corresponding location P’ in S’.

Next, the current density j in S is simply

j = ρu = γuρ0u.

Now, observe that the four-current in this case is merely the four-velocity U

of the charges multiplied by the constant ρ0!

J = ρ0

(
γuc

γuu

)
= ρ0U.

By Property 1 of four-vectors, J is hence a four-vector in this case. In the

more general case where there are a total of k classes of charge velocities

at P, with the ith class having a charge density ρi traveling at velocity ui
in S, we can consider the four-current Ji = (ρic, ρiui) associated with each

individual class. Since Ji is a four-vector for all 1 ≤ i ≤ k by the above proof,

J =

⎛
⎝
∑k

i=1 ρic∑k
i=1 ρiui

⎞
⎠ =

k∑
i=1

Ji
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is a valid four-vector because

J ′ =
k∑
i=1

J ′
i =

k∑
i=1

LJi = L
(

k∑
i=1

Ji

)
= LJ

in an arbitrary inertial frame S’, where L is the Lorentz transformation

matrix. Note that the addition of four-vectors to produce another four-vector

is valid in this case only because the addition is performed at the same loca-

tion and at the same time in every inertial frame — the loss of simultaneity

across inertial frames has been precluded.

11. Chasing Particles*

Let the initial four-momenta of the particles be Pa and Pb. Denote the four-

momentum of the final particle as P . The four-vector equation associated

with this process is

Pa + Pb = P.

Taking the inner product of both sides,

m2 = m2
a +m2

b + 2Pa · Pb
= m2

a +m2
b + 2(EaEb − papb)

= m2
a +m2

b + 2(γvaγvbmamb − γvaγvbmambvavb)

= m2
a +m2

b + 2mambγvaγvb

(
1− vavb

c2

)
,

where we have added back the c’s in the last equation.

12. Disintegration*

The conservation of energy and momentum implies:(
m1

0

)
=

(
γum2

γum2u

)
+

(
hf

hf k̂

)
(
m1

0

)
−
(
hf

hf k̂

)
=

(
γum2

γum2u

)
.

Taking the squared norm of both sides,

m2
1 − 2m1hf = m2

2
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hf =
m2

1 −m2
2

2m1

γum2 = m1 − hf =
m2

1 +m2
2

2m1
.

13. Reflected Photon*

Let the final four-momentum of the mirror be (E, p) where the only spa-

tial direction of concern has been defined to be along the x-axis. Then, the

conservation of energy and momentum entails(
hf

hf

)
+

(
γum

γumu

)
=

(
hf ′

−hf ′
)
+

(
E

p

)
.

This can be rewritten in terms of four-vectors.

P1 + P2 = P3 + P4.

Shifting P3 to the left-hand side and finding the squared norm of both sides,

(P1 + P2 − P3) · (P1 + P2 − P3) = P4 · P4

m2 − 2 · 2h2ff ′ − 2 · (γum+ γumu)hf
′ + 2 · (γum− γumu)hf = m2.

Simplifying,

f ′ =
(γum− γumu)hf

(γum+ γumu)h+ 2h2f

=

√
1−u
1+umf√

1+u
1−um+ 2hf

.

14. Proton Collision*

Let the initial four-momenta of the incident and stationary protons be P1

and P2 respectively. Denote their final four-momenta as P ′
1 and P ′

2.

P1 + P2 = P ′
1 + P ′

2.

Taking the inner product of both sides,

P1 · P1 + P2 · P2 + 2P1 · P2 = P ′
1 · P ′

1 + P ′
2 · P ′

2 + 2P ′
1 · P ′

2

=⇒ P1 · P2 = P ′
1 · P ′

2

since P1 · P1 = P ′
1 · P ′

1 and P2 · P2 = P ′
2 · P ′

2 (they are in fact, the squared

mass of a proton E2
0). P1 ·P2 can be easily computed as EE0 since the three-

momentum in P2 is the null vector. P ′
1 · P ′

2 requires more work, but observe
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that the two protons must possess identical final momentum and thus final

energy to fulfil the conservation of momentum in directions perpendicular to

the incident photon’s initial velocity. The final energy and squared momen-

tum of each proton is thus E+E0
2 and p′2 = (E+E0

2 )2−E2
0 = E2

4 + EE0
2 − 3E2

0
4 .

Since P ′
1 · P ′

2 = (E+E0
2 )2 − p′2 cosφ,

EE0 =

(
E + E0

2

)2

− p′2 cosφ

cosφ =

(
E+E0

2

)2 − EE0

p′2

=
E2

4 − EE0
2 +

E2
0
4

E2

4 + EE0
2 − 3E2

0
4

=
(E − E0)

2

(E −E0)(E + 3E0)

=
E − E0

E + 3E0

since E �= E0.

15. Electron-Photon Collision*

Let the initial and final four-momenta of the massive particle be P and P ′

and those of the photon be Pγ and P ′
γ . The germane four-vector equation is

P + Pγ = P ′ + P ′
γ .

Since the particle is irrelevant after the collision, we isolate P ′.

P + Pγ − P ′
γ = P ′.

Taking the inner product of both sides,

2P · Pγ − 2P · P ′
γ − 2Pγ · P ′

γ = 0

P · Pγ = P · P ′
γ + Pγ · P ′

γ

where we have canceled the squared rest mass of the particle on both sides.

Since this problem is solely one-dimensional, we have P = (E0, E0β0, 0, 0),
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Pγ = (Eγ0,−Eγ0, 0, 0) and P ′
γ = (Eγ , Eγ , 0, 0), where we note that the veloc-

ity of the photon must be reversed after the collision because it cannot pen-

etrate the particle.

E0Eγ0 + E0β0Eγ0 = Eγ(E0 −E0β0 + 2Eγ0)

Eγ =
E0Eγ0(1 + β0)

2Eγ0 + (1− β0)E0
= E0

1 + β0

2 + (1− β0)
E0
Eγ0

.

Since β0 < 1, 1 + β0 < 2 < 2 + (1 − β0)
E0
Eγ0

which implies that Eγ < E0.

When β0 → 1,
Eγ

E0
→ 1+1

2 = 1.

16. Emission by Excited Atom*

Let the four-momenta of the excited and ground states of the atom be P ∗

and P . Denote the four-momentum of the emitted photon as Pγ . The relevant

four-vector equation is

P ∗ = P + Pγ

P ∗ − Pγ = P.

Taking the inner product of both sides,

M∗2 − 2P ∗ · Pγ =M2.

Since P ∗ = (M∗,0) while Pγ = (Eγ , Eγ k̂),

M∗2 − 2M∗Eγ =M2

Eγ =
M∗2 −M2

2M∗

= (M∗ −M)

(
M∗ +M

2M∗

)

= ΔE

(
2M∗ −ΔE

2M∗

)

= ΔE

(
1− ΔE

2M∗c2

)
,

where we have added back the c’s in the last step. Evidently, the fractional

error in assuming Eγ = ΔE is maximum when M∗ → M . Even then, the

fractional error is
ΔE

2Mc2

1− ΔE
2Mc2

≈ 10−9

1−10−9 ≈ 10−9 for ΔE of order eV and the min-

imum M (and thus maximum error) of order GeV/c2. Therefore, Eγ = ΔE

is typically a good approximation.
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17. Neutrino Beam*

(a) Let the four-momenta of the pion, muon and neutrino be Pπ, Pμ and Pν
respectively. In the rest frame of the pion,

Pπ =

(
mπ

0

)
Pμ =

(
mπ − p

−p

)
Pν =

(
p

p

)

where p is the unknown momentum of the neutron. The four-vector equa-

tion is

Pπ = Pμ + Pν .

Since the muon is not of concern, it is customary to isolate Pμ even though

it is not really necessary here.

Pπ − Pν = Pμ.

Taking the inner product of each side with itself,

m2
π − 2Pπ · Pν = m2

μ

m2
π − 2mπp = m2

μ

p =
m2
π −m2

μ

2mπ
c

where we have added the c back. The energy of the neutrino is

Eν = pc =
m2
π −m2

μ

2mπ
c2 =

1402 − 1062

2× 140
= 29.9MeV (3sf).

(b) There are multiple ways of solving this. The direct method is to repeat

the process of (a) with

Pπ =

(
Eπ
pπ

)
, Pμ =

(
Eπ − p′

pπ − p′

)
, Pν =

(
p′

p′

)

Pπ − Pν = Pμ.

Since pπ · p′ = pπp
′, the inner products of both sides yield

m2
π − 2(Eπp

′ − pπp
′) = m2

μ

p′c =
(m2

π −m2
μ)c

4

2(Eπ − pπc)
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=
(m2

π −m2
μ)c

4

2(Eπ −
√
E2
π −m2

πc
4)

=
1402 − 1062

2(200 × 103 −√
2002 × 106 − 1402)

= 8.53 × 104MeV (3sf)

= 85.3GeV (3sf),

where we have added back the c’s. Alternatively, we can apply the energy-

momentum transformations to the momentum p computed in (a) to obtain

p′c = γπ(1 + βπ)pc

= γπ(1 + βπ)
m2
π −m2

μ

2mπ
c2

=

√
1 + βπ
1− βπ

m2
π −m2

μ

2mπ
c2

=
m2
π −m2

μ

2γπ(1− βπ)mπ
c2

=
m2
π −m2

μ

2(Eπ − pπc)
c4

= 85.3GeV (3sf).

(c) Denoting the momentum of the neutrino as pν and repeating the same

process in (b) with pπ · pν = pπpν cos θ, one would obtain

pν =
m2
π −m2

μ

2(Eπ − pπ cos θ)
.

Evidently, the maximum neutrino energy occurs when θ = 0.

Emax =
m2
π −m2

μ

2(Eπ − pπ)
.

For
m2

π−m2
μ

2(Eπ−pπ cos θ) =
1
2Emax,

cos θ = 2− Eπ
pπ

= 2− Eπ√
E2
π −m2

π
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=⇒ θ = cos−1

(
2− Eπ√

E2
π −m2

πc
4

)

= cos−1

(
2− 200 × 103√

2002 × 106 − 1402

)
= 0.0401◦ (3sf).

18. Mad Scientist*

A simple proof for M > 0 (such that its rest frame exists) is to observe the

situation in the rest frame of M . Presuming that such a reaction is possible,

the initial total energy is only Mc2 while the final total energy is at least

2mc2 > Mc2, contradicting the conservation of energy.

For a more general rebuttal which works even when M = 0, let the four-

momentum of M be P1 and the four-momenta of the products be P2 and

P3. The four-vector equation is

P1 = P2 + P3.

Taking the inner product of each side with itself,

M2 = 2m2 + 2γrelm
2,

where γrel is the gamma factor associated with the velocity of one particle

of mass m, as observed in the other. As γrel ≥ 1, the right-hand side obeys

the inequality

2m2 + 2γrelm
2 ≥ 4m2 > M2,

which establishes a contradiction. Therefore, the scientist is wrong. Qualita-

tively, his refutation of the violation of energy conservation is flawed because

when M has a certain velocity and thus momentum in the lab frame, the

products must possess some kinetic energy in addition to their rest ener-

gies, by the conservation of momentum. The total energy of the proposed

products is always larger than the energy of M .

19. Photon Decay*

Let Pp be the four-momentum of the photon and let the photon disintegrate

into k particles with the ith particle having a four-momentum Pi. Then,

Pp =
k∑
i=1

Pi.
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Taking the squared norm of both sides,

Pp · Pp =
(

k∑
i=1

Pi

)
·
(

k∑
i=1

Pi

)

0 =

k∑
i=1

m2
i + 2

⎛
⎝ ∑
i,j i 	=j

Pi · Pj
⎞
⎠.

One can show that Pi ·Pj ≥ 0 for all possible combinations of particles. If at

least one particle is massive (suppose that it is the ith particle without the

loss of generality), Pi ·Pj = miEjrev ≥ 0 (as both rest mass and energy must

be non-negative) where Ejrev is the energy of the jth particle as observed

in the rest frame of the ith particle. If both particles are massless, Pi · Pj =
pipj − pi · pj ≥ 0 as E = p for a massless particle. Since the left-hand

side of the previous equation is zero while the right-hand side is a sum of

non-negative numbers, all terms on the right-hand side must be zero —

implying that a particle with a non-zero rest mass cannot be produced.

20. Compton Scattering**

By the conservation of energy and momentum,

(
E1

p1

)
+

(
hf1
hf1k̂1

)
=

(
hf2
hf2k̂2

)
+

(
E3

p3

)
.

Shifting the first term on the right-hand side to the left-hand side and taking

the squared norm of both sides,

m2 + 2(E1hf1 − hf1p1 · k̂1)− 2h2f1f2(1− k̂1 · k̂2)

−2(E1hf2 − hf2p1 · k̂2) = m2

f2 =
E1f1 − f1p1 · k̂1

hf1(1− k̂1 · k̂2) + E1 − p1 · k̂2

.

Evidently, the minimum f2 occurs when p1 · k̂1 = p1, k̂1 · k̂2 = −1 and

p1 · k̂2 = −p1. That is, k̂1 is parallel to p1 while k̂2 is anti-parallel to p1.

Then,

f2 =
(E1 − p1)f1

2hf1 + E1 + p1
.
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21. Pion Photoproduction**

(a) Applying Eq. (12.26), the threshold photon energy is

Eγ =
(mp +mπ)

2 −m2
p

2mp
c2 = mπc

2 +
(mπc

2)2

2mpc2

= 135 +
1352

2× 938
= 145MeV (3sf).

(b) Let the initial four-momenta of the proton be Pp = (E,p) and the photon

be Pγ = (Eγ , Eγ k̂) where k̂ is the unit vector along the photon’s velocity.

The four-vector equation associated with the reaction is

Pγ + Pp = P ′
p + Pπ.

Taking the inner product of both sides with itself,

m2
p + 2Pγ · Pp = m2

p +m2
π + 2P ′

p · Pπ.
Noting that Pγ ·Pp = Eγ(E−p ·k) and P ′

p ·Pπ = 2γpπmpmπ where γpπ is the

gamma factor associated with the final velocity of the proton as observed in

the rest frame of the pion,

2Eγ(E − p · k) = m2
π + 2γpπmpmπ

E =
m2
π + 2γpπmpmπ

2Eγ
+ p · k̂.

Since γpπ ≥ 1, the minimum E occurs when γpπ = 1 and p · k̂ = −p. Then,
E − b = p

where b =
m2

π+2mpmπ

2Eγ
. Squaring both sides and using the identity

E2 = p2 +m2
p,

2bE = m2
p + b2.

E =
m2
p

2b
+
b

2

=
m2
pEγ

m2
π + 2mpmπ

+
m2
π + 2mpmπ

4Eγ

=
9382 · 10−9

1352 + 2 · 135 · 938 +
1352 + 2 · 135 · 938

4 · 10−9

= 6.79 × 1013MeV (3sf).



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 925

Relativistic Dynamics 925

22. Energy Transfer**

In the lab frame, the total energy and momentum are given by γum1 +m2

and γum1u. As the energy and momentum obey the Lorentz transformations,

the momentum in another inertial frame S’ is

p′ = γv(γum1u− (γum1 +m2)v).

Therefore, in order for p′ = 0, the center-of-momentum frame S’ must travel

at v = γum1u
γum1+m2

relative to S. v must also be the initial speed of particle 2

in S’. In the center-of-momentum frame, the momenta of the two particles

must simply reverse after the collision for both energy and momentum to

be conserved (if one momentum increases or decreases in magnitude, the

other must follow suit by the conservation of momentum, and hence lead

to a violation of the conservation of energy). Therefore, the final velocity

of particle 2 in S’ is v in the positive x’-direction. The final velocity of

particle 2 in the lab frame S is then u′ = 2v
1+v2 by the velocity addition

formula. The resultant energy of particle 2 in S is then

E = γu′m2

=
1 + v2

1− v2
m2

=

(
1 +

2γ2um
2
1u

2

m2
1 +m2

2 + 2γum1m2

)
m2.

The ratio of E to the total energy in S is

f =
E

γum1 +m2
=

(
1 +

2γ2um
2
1u

2

m2
1 +m2

2 + 2γum1m2

)
m2

γum1 +m2
.

As u → 1 and γu → ∞, m2
1 +m2

2 in the denominator m2
1 +m2

2 + 2γum1m2

and m2 in the denominator γum1+m2 become negligible comparatively. The

ratio then tends to

f → 2γ2um
2
1u

2m2

2γum1m2 · γum1
= 1.

Moving on to the more indirect approach, the three-momentum components

of P ′
1 and P2 are identical in the center-of-momentum frame. Therefore, the

inner product of P ′
1 − P2 with itself in the center-of-momentum frame must

be non-zero as it is simply the square of the difference of the two energies in
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the center-of-momentum frame. Then,

(P ′
1 − P2) · (P ′

1 − P2) ≥ 0

P ′
1 · P ′

1 + P ′
2 · P ′

2 ≥ 2P ′
1 · P2.

Substituting the squared norm of a four-momentum and Eq. (12.24),

m2
1 +m2

2 ≥ 2γurelm1m2,

where γurel is the γ factor associated with the final velocity of particle 1

in the frame that is at rest with the initial velocity of the particle 2, urel.

However, notice that the initial velocity of particle 2 is v in the negative

x’-direction in the center-of-momentum frame. Therefore, the final velocity

of particle 1 in the frame that is at rest with the initial velocity of the particle

2 effectively performs a −v velocity addition to the final velocity of particle 1

in the center-of-momentum frame — transforming it back to the final value

in the lab frame ulab. Since the final energy of particle 1 is Elab = γulabm1 in

the lab frame,

Elab = γulabm1 ≤ m2
1 +m2

2

2m2
,

which sets a fixed upper bound on the energy retained by particle 1.

23. Maximum Frequency**

By the conservation of energy and momentum,(
E1

p1

)
+

(
M

0

)
−
(
hf

hf k̂

)
=

(
E′

1

p′
1

)
+

(
E2

p′
2

)
,

where k̂ is a unit vector in the direction of the photon’s velocity. Taking the

squared norm of both sides,

m2 +M2 + 2E1M − 2hfM − 2(E1hf − k̂ · p1hf) = m2 +M2 + 2P ′
1 · P ′

2

where P ′
1 and P ′

2 are the final four-momenta of the particle and the nucleus

respectively. Solving for hf ,

hf =
E1M − P ′

1 · P ′
2

M + E1 − k̂ · p1

.

Evidently, hf is maximized when P ′
1 · P ′

2 is minimized and when k̂ · p1 is

maximized. The former expression is

P ′
1 · P ′

2 = γurelmM,
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where urel is the velocity of one particle in the rest frame of the other. This

quantity is minimized when there is no relative velocity between the nucleus

and the particle (i.e. γurel = 1). Next, k̂ · p1 is maximized when these two

vectors are parallel. In other words, the ejected photon travels in the same

direction as the initial velocity of the particle. Then the maximum energy of

the photon in frame S is

hf =
E1M −mM

M + E1 − p1
=

mM(γu − 1)

M + γum(1− u)
.

24. Two Particles Connected by String*

Let E1 and E2 be the final energies of the particles of rest masses m and M

respectively. Then, by the work-energy theorem,

E1 = m+ Tx,

E2 =M + T (L− x).

Let the magnitudes of the final momenta of the particles, which must be

equal by the conservation of momentum or by Newton’s third law, be p.

Then,

p =
√
E2

1 −m2 =
√
E2

2 −M2

√
T 2x2 + 2mTx =

√
T 2(L− x)2 + 2MT (L− x)

T 2x2 + 2mTx = T 2(L− x)2 + 2MT (L− x)

x =
TL2 + 2ML

2(m+M + TL)
.

25. Projectile Motion**

Let x, y and t denote the spatial and temporal coordinates of the particle in

the lab frame S. Define the origin at the initial position of the particle. The

x and y components of the particle’s momentum are

px = p0,

py = −Ft.
Furthermore, the work-energy theorem states that the energy of the particle

at (x, y) is

E = E0 − Fy.



November 13, 2018 7:8 Competitive Physics 9.61in x 6.69in b3255-ch12 page 928

928 Competitive Physics: Thermodynamics, Electromagnetism and Relativity

Then, y(t) can first be solved for

dy

dt
=
py
E

= − Ft

E0 − Fyˆ y

0

(
y − E0

F

)
dy =

ˆ t

0
tdt

y2 − 2E0

F
y − t2 = 0.

Solving for y,

y =
E0

F
±
√
E2

0

F 2
+ t2.

The y-coordinate must be negative for t > 0. Thus, we choose the negative

expression.

y =
E0

F
−
√
E2

0

F 2
+ t2.

Armed with y(t), x(t) can be determined.

dx

dt
=
px
E

=
p0

E0 − Fy
=

p0√
E2

0 + F 2t2
,

x =

ˆ t

0

p0

F

√
E2

0
F 2 + t2

dt

=

ˆ tan−1 Ft
E0

0

p0

F · E0
F sec θ

· E0

F
sec2 θdθ

=

ˆ tan−1 Ft
E0

0

p0
F

sec θdθ

=
[p0
F

ln |sec θ + tan θ|
]tan−1 Ft

E0

0

=
p0
F

ln

(√
1 +

t2F 2

E2
0

+
tF

E0

)
,

where we have adopted the trigonometric substitution t = E0
F tan θ along the

way. After some algebraic manipulation, we can show that√
1 +

t2F 2

E2
0

=
e

Fx
p0 + e

−Fx
p0

2
.
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For readers familiar with hyperbolic functions, we can instead adopt the

substitutions t = E0
F sinh θ, dt = E0

F cosh θdθ such that

x =

ˆ t

0

p0

F

√
E2

0
F 2 + t2

dt

=

ˆ sinh−1
(

Ft
E0

)

0

p0

F · E0
F cosh θ

· E0

F
cosh θdθ

=

ˆ sinh−1
(

Ft
E0

)

0

p0
F
dθ

=
p0
F

sinh−1

(
Ft

E0

)
,

where we have used the identity cosh2 θ = 1 + sinh2 θ.

=⇒ Ft

E0
= sinh

(
Fx

p0

)
√

1 +
F 2t2

E2
0

=

√
1 + sinh2

(
Fx

p0

)
= cosh

(
Fx

p0

)
=
e

Fx
p0 + e

−Fx
p0

2
.

Then,

y =
E0

F

(
1− e

Fx
p0c + e

− Fx
p0c

2

)
.

Note that in SI units, the exponents are actually Fx
p0c

. Therefore in the non-

relativistic limit where Fx
p0c


 1, we can perform a Maclaurin expansion for

the exponential functions.

ex ≈ 1 + x+
1

2
x2 + · · ·

y ≈ E0

F

(
1− 1

2
− Fx

2p0c
− F 2x2

4p20c
2
− 1

2
+

Fx

2p0c
− F 2x2

4p20c
2

)
= −E0Fx

2

2p20c
2

which is a parabola. What’s more, in the non-relativistic limit, E0 is domi-

nated by the rest energy (E0 ≈ mc2) wherem is the rest mass of the particle,
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while p0 ≈ mv0 where v0 is the initial velocity of the particle. Then,

y = − Fx2

2mv20
.

When F is of the form of gravity, F = mg classically.

y = −gx
2

2v20
,

which is the trajectory of a particle with initial x-velocity v0 under free fall.

The latter set-up is described by the equations

y = −1

2
gt2,

x = v0t =⇒ t =
x

v0
.

Hence,

y = −gx
2

2v20
.

26. Pulling a Leaking Bucket**

The only external force on the bucket is the tension in the string. Hence,

dp

dt
= T,

p = T t,

as the initial momentum of the bucket is zero. Next, the rate of increase of

the energy of the bucket is equal to the sum of the rate of the rest mass of

sand gathered by the bucket and the power delivered by the tension.

dE

dt
= (λ+ T )u.

Next, using the relationship u = p
E = Tt

E ,

dE

dt
= (λ+ T )

T t

Eˆ E

0
EdE =

ˆ t

0
(λ+ T )T tdt
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E =
√

(λ+ T )T t

u =
p

E
=

T t√
(λ+ T )T t

=

√
T

λ+ T
,

which is independent of time except for the discontinuity in velocity at t = 0.

27. Light in Moving Glass**

In the rest frame of the block S’, the block is stationary while the light

source emits light of Doppler-shifted frequency f ′ =
√

1−β
1+β f . The speed of

light inside the block is c′ = 1
n in units of c. Hence, the wavelength of light

inside the block in S’ is λ′ = c′
f ′ =

1

n
√

1−β
1+β

f
. Thus, the four-wave vector inside

the glass block in S’ is

K ′ =
(
2πf ′
2π
λ′

)
=

⎛
⎝ 2π

√
1−β
1+β f

2πn
√

1−β
1+β f

⎞
⎠.

The four-wave vector K inside the glass block in S can be obtained from

applying the inverse Lorentz transformation to K ′.

K =

(
2πflab

2π
λlab

)
=

(
γv γvβ

γvβ γv

)⎛⎝ 2π
√

1−β
1+β f

2πn
√

1−β
1+β f

⎞
⎠.

Equating the corresponding entries,

flab =
1 + βn

1 + β
f,

λlab =
c(1 + β)

(β + n)f
,

where we have added back the c’s.

28. Crossed Fields**

One can show that in an inertial frame S’ that travels at v = −E
B in the

negative x-direction relative to S (we define v this way such that v > 0), the

electric field is null while the magnetic field is B′ = (0, 0, Bγv ). In this frame

S’, the particle’s kinetic energy cannot change as the magnetic force does no

work. Furthermore, the magnetic force is perpetually perpendicular to the

particle’s velocity — implying that the particle undergoes circular motion

(this holds in the classical case as well). The initial speed of the particle in
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S’ is given by the velocity addition formula as u = v0+v
1+v0v

(directed initially

along the x’-axis), and remains constant afterwards. The magnetic force

quB′ provides the centripetal force. Since this force is perpendicular to the

instantaneous velocity of the particle,

quB′ = γumac

by Eq. (12.17) where ac = u2

R is the centripetal acceleration and R is the

radius of rotation. The radius of rotation can then be computed as

R =
γumu

qB′

while the angular velocity is

ω =
u

R
=

qB′

γum
.

Now, if we define the initial position of the particle in S’ to be at the origin

O’, the center of rotation must lie at x′ = 0 and y′ = −R. Therefore, the
x-coordinate of the particle as a function of time t′ in S’ is

x′ = R sinωt′.

The x-coordinate of the particle in S is then obtained from the Lorentz

transformations.

x = γv(x
′ − vt′) = γv(R sinωt′ − vt′).

The maximum value of x occurs when dx
dt′ = 0. This yields

dx

dt′
= γv(ωR cosωt′ − v) = 0

cosωt′ =
v

wR
=
v

u

t′ =
cos−1 v

u

ω
=
γum cos−1 v

u

qB′ .

Note that cos−1 v
u exists as v

u = v+v0v2

v0+v
< 1 when v0 < 1 and v < 1 (just

shift the terms around). When the above condition is satisfied,

sinωt′ =

√
1− v2

u2
.

We choose the positive value such that the second derivative d2x
dt′2 =

−γvω2R sinωt′ is negative at this stationary point — ensuring that it is
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a maximum point. Observe from x = γv(R sinωt′−vt′) that the global max-

ima evidently occurs for the smallest t′ that satisfies cosωt′ = v
u . Hence, our

choice of t′ = cos−1 v
u

ω above is justified. Then, the maximum x value is

x =
γvγum

qB′
(√

u2 − v2 − v cos−1 v

u

)

=
γ2vγum

qB

(√
u2 − v2 − v cos−1 v

u

)
,

where v = −E
B and u = v0+v

1+v0v
.

29. Magnetic Field***

The crux of this problem is to observe that the wire is no longer neutral in

frame S’ due to the different extents of length contraction of positive ions and

electrons (as they were moving at different speeds in S). Let us determine

the charge density of the electrons in frame S’, λ′e first. Let L be the proper

distance between adjacent electrons. Then, the distance between adjacent

electrons in frame S is given by the length contraction formula:

l =
L

γu
.

The distance between adjacent electrons as observed in frame S’ is

l′ =
L

γu′

where u′ is the velocity of the electrons in frame S’. Referring to Eq. (12.22),

γu′ = γvγu

(
1 +

β

c
u

)
,

where β = v
c and we have included the c’s for clarity. Then, the charge

density of the electrons in frame S’ is given by

λe′ = −λ · l
l′
= −λγv

(
1 +

β

c
u

)
.

A similar argument can be made to conclude that the charge density of the

positive ions in frame S’ is

λ′p = λ · γv.
Hence, the total linear charge density of the wire in frame S’ is

λ′ = λ′e + λ′p = −λγv βu
c
.
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A much more efficient alternative is to consider the four-current J = (ρc, j)

introduced in part (d) of Problem 10, where ρ is the charge density and j

is the current density. The four-current everywhere along the infinite wire

in S is J = (0, λu, 0, 0), for one-dimensional charge distributions. Mean-

while, the four-current in S’ is J ′ = (λ′c, I ′x, I ′y, I ′z), where I ′x, I ′y and I ′z are

the current components in S’. λ′ can then be computed from the Lorentz

transformations.

λ′c = γv(0− βλu)

=⇒ λ′ = −λγv βu
c

everywhere along the wire in S’. Applying Gauss’ law to the wire (by draw-

ing a cylindrical Gaussian surface whose axis coincides with the wire), the

electric field in frame S’ is

E′ =
λ′

2πr′ε0
r̂′ =

−λγvuv
2πr′c2ε0

r̂′

where r′ is the vector pointing perpendicularly outwards from the closest

point on the axis of the wire to the charge in frame S’. Hence, the force on

the charge in frame S’ (note that there is no velocity-dependent force, such

as the magnetic force, as the charge is stationary) is

f ′ = qE′ = − qλγvuv

2πr′c2ε0
r̂′.

Notice that the net force on the charge in frame S’ is purely radial and is

perpendicular to the velocity of frame S relative to frame S’. Hence, from

the force transformations, the net force on the charge in frame S is

f =
f ′

γv
= − qλuv

2πr′c2ε0
r̂′.

Furthermore, notice that since r′ is also perpendicular to the velocity v,

r′ = r where r is the radial vector from the wire to the charge in frame S.

Hence,

f = − qλuv

2πrc2ε0
r̂ = qv ×

(
λu

2πrc2ε0
r̂θ

)

where r̂θ is the azimuthal unit vector, whose positive direction is given by

the right-hand-grip rule (applied to the positive current). Hence, it can be
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seen that the force takes a form similar to the magnetic force. We can show

that the last term indeed gives the correct expression for the magnetic field.

λu is simply the current I and μ0 =
1

c2ε0
. Hence,

B =
μ0I

2πr
r̂θ,

which is consistent with Ampere’s law.
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Appendix

Michelson–Morley Experiment

In 1864, James Clerk Maxwell laid the foundations of electromagnetism

with his set of equations, known as Maxwell’s equations, which collectively

described all knowledge in that field. From his equations, it can be proven

that the speed of an electromagnetic wave is a certain value c. However,

there was no mention of which frame this speed was measured with respect

to, which raised suspicion as the speed of light was presumed to vary across

different inertial frames according to the widely-accepted Galilean transfor-

mations then. Furthermore, Maxwell’s equations looked neat in a particular

inertial frame but was convoluted in another inertial frame after a Galilean

transformation. Then, it was proposed that the frame in which the Maxwell’s

equations looked nice be called the frame of ether. Ether was hypothesized to

be the medium in which light propagates; it furnished an explanation for the

ability of light, as a wave,1 to seemingly propagate in a vacuum. After all, if

sound waves required compressible media such as air or water to propagate

in, why not electromagnetic waves too? It is then said light propagates at a

speed c in ether.

Afterwards, two experimentalists, Albert A. Michelson and Edward W.

Morley, set out to measure the relative speed of ether with respect to matter.

It was presumed that ether was a transparent medium that filled all space

then and was stationary with respect to absolute space. Michelson invented a

set-up, that vaunted unprecedented accuracy, to measure the speed of ether

with respect to the Earth by leveraging the different times taken by light to

travel in perpendicular directions in a moving medium. Luminiferous ether,

in this case, is hypothesized to move relative to the Earth as the Earth is

revolving about the Sun at roughly 30km/s. Figure A.1 is a rough depiction

of Michelson’s set-up.

1All waves were thought to require a medium to propagate in then.

937
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Figure A.1: Michelson’s Interferometer

Light from a single source is first divided into two rays by a partially-

silvered mirror (we shall call it a beam splitter to avoid confusion with the

other mirrors). The two rays then travel in perpendicular directions and are

reflected by mirrors that are placed a distance L from the beam splitter,

measured with respect to the frame of the earth. They are then recombined

and impinge on the screen. In this case, the velocity of ether is directed

purely in the horizontal direction. The velocity of “ether wind” will lead to

a discrepancy in the times traveled by the two beams.

Figure A.2: Vertical beam

In the frame of ether, the top mirror and the beam splitter both move

at a speed v towards the right. The initially vertical light ray now obtains

a component of velocity in the horizontal direction. Note that the speed of

light (the magnitude of the diagonal vector in Fig. A.2) is c in the frame

of ether by definition. Then, the total time taken for the light ray to travel
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back and forth is

tV =
2L√
c2 − v2

,

where we have used Pythagoras’ theorem to calculate the velocity of light in

the vertical direction,
√
c2 − v2.

Figure A.3: Horizontal beam

Similarly, we analyze the motion of the horizontal beam in the frame of

ether shown in Fig. A.3. In the case of the horizontal light beam, when it

propagates forward, it is chasing the mirror which is retracting at a speed

v. After its rebound, the beam then moves towards the beam splitter that is

approaching at a speed v. Thus, the relative speeds between the light beam

and the mirror and the light beam and the beam splitter are c− v and c+ v

in the frame of ether, respectively. Thus, the total duration of the horizontal

beam’s journey is

tH =
L

c− v
+

L

c+ v
=

2Lc

c2 − v2
.

As long as v �= 0, there is a non-zero difference in duration of the journeys

of the two beams, of

Δt =
2Lc

c2 − v2
− 2L√

c2 − v2
=

2L

c

⎛
⎝ 1

1− v2

c2

− 1√
1− v2

c2

⎞
⎠.

Though there can be multiple orientations of the set-up with respect to the

direction of “ether wind”, it can be proven that tV is the smallest possible

duration of the journey while tH is the largest. Thus, the set-up can be grad-

ually rotated until the time difference between the arrivals of the reflected

beams produces the most pronounced observable differences.

However, there is still a problem. The time difference between the two

beams is so minute that it severely impedes an accurate measurement by
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even the most precise timer. Michelson circumvented this limitation with his

ingenious idea. The wave nature of light engenders an interference pattern

due to the phase difference caused by the path difference between two inci-

dent light waves. Thus, if the set-up is first rotated into the above orientation

and then rotated another 90 degrees (such that the vertical mirror becomes

horizontal and vice versa), a fringe shift of the greatest magnitude should be

observed. The sensitivity of the equipment arises from the relatively short

wavelength of the light rays which causes a small change in the path differ-

ence to lead to a significant phase difference and thus, a conspicuous change

in the positions of the fringes. The path difference between the horizontal

and vertical light waves in the configuration above is

Δ1 = cΔt = 2L

⎛
⎝ 1

1− v2

c2

− 1√
1− v2

c2

⎞
⎠.

If the entire set-up (light source, mirrors and screen) is then rotated by

90 degrees (clockwise or anti-clockwise), the two mirrors exchange roles —

leading to a path difference that is negative of that before.

Δ2 = −cΔt = 2L

⎛
⎝ 1√

1− v2

c2

− 1

1− v2

c2

⎞
⎠.

As the set-up is gradually rotated in this process, the fringes on the inter-

ference pattern will shift as the phase difference between the projected light

beams changes. The fringe shift, which is the fraction of the distance between

adjacent bright fringes that the interference pattern has moved, can be cal-

culated as

n =
Δ1 −Δ2

λ
=

4L

λ

⎛
⎝ 1

1− v2

c2

− 1√
1− v2

c2

⎞
⎠

≈ 4L

λ

(
1 +

v2

c2
− 1− v2

2c2

)
=

2Lv2

λc2
,

where we have used the binomial expansion for (1 + x)n and neglected sec-

ond order and above terms. This is because a difference in path length by

λ causes the interference pattern to move into a configuration that is iden-

tical to its original one (i.e. an initially bright fringe will become a dark

fringe and return to a bright fringe). That is, the interference pattern must

have “traveled” a distance equal to that between adjacent bright fringes.

Michelson and Morley conducted their experiment with multiple reflections
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of the horizontal and vertical beams in order to extend the path of light and

thus reduce the percentage uncertainty of their measurements. During their

actual experiments, their physical parameters were

L ≈ 11m,

λ ≈ 532nm,

which would lead to an expected phase shift of 0.4 (note that v was presumed

to be 30 km/s). However, the measured fringe shift was in fact less than 0.005!

This suggested that if ether did exist, it had no velocity relative to the Earth.

However, when the experiment was repeated half a year later, during which

the Earth’s velocity in revolving around the Sun was in the opposite direc-

tion, the exact same results were obtained! Some scientists, who wanted to

cling onto the hitherto theory of ether, proposed that the Earth dragged

ether along with its motion — causing ether to constantly have zero rela-

tive velocity near the surface of the Earth. However, this notion was then

dismissed due to its inconsistency with other empirical observations.

Hendrik Antoon Lorentz, who firmly believed in the existence of ether,

proposed that in the frame of ether that was moving relative to the earth,

the distance between two points along ether’s velocity in the Earth’s frame is

contracted by a factor of 1√
1− v2

c2

. This is in fact the correct conclusion (length

contraction)! However, Lorentz’s hypothesis was deemed to be too ad-hoc

and thus was largely overlooked by the scientific committee. Lorentz, in fact,

discovered the FitzGerald–Lorentz transformations, a pivotal transformation

rule in special relativity, before Einstein formally formulated his theory of

special relativity in 1905.

In contrast to the rather haphazard hypothesis by Lorentz, Einstein pro-

posed a much simpler solution. Ether simply does not exist! Light does not

require a medium to propagate in but instead travels at a constant speed

in a vacuum with respect to observers in all inertial frames! This renowned

experiment is known as the Michelson–Morley experiment which con-

ferred Michelson his well-deserved Nobel Prize in 1907 and provided a solid

experimental basis for the second postulate of special relativity. Then, the

development of a revolutionary theory ensued.
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Index

apparent depth, 11

capacitors, 361
breakdown potential, 365
capacitance, 362

with dielectric, 390
examples

cylinder and plane, 399
parallel-plate, 362
spherical, 400
tilted plates, 400
two cylinders, 399

potential energy, 364
circuits

AC, 715
complex analysis, 717
impedance and admittance, 719
phasor diagram, 725
real analysis, 716
root-mean-square, 727

components, 616
current divider principle, 618
equipotential points, 633

cube, 637
dividing nodes, 640
Wheatstone bridge, 636

infinite networks, 659
mesh analysis, 617
nodal analysis, 623
Norton’s theorem, 649
RLC

mutual inductors, 711
RC, 706
RL, 707
RLC, 708
short and long-term effects, 699

source transformations, 648

superposition, 626
cube, 667
infinite resistor grid, 627
polyhedron, 632

Thevenin’s theorem, 642
voltage divider principle, 619
Y-Δ transformations, 650

conservation of mass, 852
current, 514

density, 516
microscopic perspective, 517
steady, 514

electric field
energy density, 297
examples

charge with constant velocity,
895

infinite line, 274
infinite sheet, 275
line charge, 265
square, 307
stationary point charge, 264
truncated cone, 304

Faraday’s law, 540, 553
field lines, 267
Gauss’ law, 542, 553

electrodynamics
Drude’s model, 518
emf, 527

induced, 539
motional, 530
universal flux rule, 542

Ohm’s law, 521
electrostatics

conductors, 337
shielding, 347
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Coulomb’s law, 262
dipole, 370

force in non-uniform field, 374
general dipole moment, 377
potential energy, 373
torque, 372

Earnshaw’s theorem, 278
Gauss’ law, 270
Green’s reciprocity theorem, 341
in matter

bound charges, 379
dielectrics, 378
electric displacement, 388
multipole expansion, 375
polarization, 379

nullity of line integral, 280
potential, 289
potential energy, 285
potential energy of a system, 292
uniqueness theorems

construction of solutions, 352
first, 342
image charges, 354
second, 343
third, 398

four-vectors, 868
four-acceleration, 874
four-coordinate, 871
four-current, 900
four-force, 886
four-frequency, 882
four-momentum, 875
four-velocity, 872
four-wave vector, 887
inner product invariance, 869

gas flows, 98
gas mixtures

Dalton model, 231
partial pressure, 231

dew point, 232
relative humidity, 232
saturated vapor pressure, 232

gas state equations
ideal gas, 81
van der Waals, 226

heat, 79
heat capacity, 94

specific heat capacity, 95
constant pressure, 96

heat transfer
conduction

Fourier’s law, 198
thermal resistance, 201

convection
Newton’s law of cooling, 197

radiation, 207
exitance, 213
irradiance, 214
Kirchhoff’s law, 209
radiosity, 214
Stefan-Boltzmann law, 207
view factor, 211
Wien’s law, 208

inductors
mutual inductor, 546

coupling constant, 548
force, 564
potential energy, 548
reciprocity theorem, 547

self-inductor, 544
potential energy, 545
pressure, 559

kinetic theory, 104
adiabatic condition, 129
effusion, 108
equipartition theorem, 127
Maxwell-Boltzmann distribution, 115
mean free path, 111
pressure, 107
thermal conductivity, 128

Kirchhoff’s laws, 615
junction rule, 616
loop rule, 615

Lorentz force, 431
force on current-carrying wires, 432
torque on current carrying wires, 473

magnetic dipole, 456
dipole moment, 458, 476
distant field, 565
force in non-uniform magnetic field,
569

Gilbert model, 568
torque, 458
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magnetic field, 431

Ampere–Maxwell law, 550, 553

charge motion

circular motion, 451

cycloidal motion, 454

homing, 477

magnetic lens, 479

two identical charges, 478

two opposite charges, 478

energy density, 442

examples

bent wire, 473

charge with constant velocity,
895

circular current, 435

infinite sheet, 445

long solenoid, 447

long wire, 443

rotating disk, 439

rotating sphere, 474

toroid, 475

field lines, 440

nullity of surface integral, 553

zero work, 432

magnetostatics

Ampere’s law, 443

Biot-Savart law, 434

in matter

bound currents, 461

diamagnetism, 460

ferromagnetism, 460

H-field, 467

magnetic permeability, 468

magnetic susceptibility, 468

paramagnetism, 460

nullity of surface integral, 442

steady currents, 433

optical apparatus

focusing mirrors, 19

mirror formula, 22

spherical approximation, 21

lenses, 26

applications, 37

Gaussian formula (Newtonian),
30

Lensmaker’s formula, 30

multiple lenses, 32

plane mirrors, 5

rectangular slab, 40
triangular prism, 41

optical laws
Fermat’s principle, 15
reflection, 4
Snell’s law, 10
total internal reflection, 15

phase transitions, 220
coexistence lines, 223

Clausius–Clapeyron, 228
critical point, 224
latent heat, 222
phase diagrams, 222
triple point, 223

processes
adiabatic, 91
isobaric, 90
isochoric, 89
isothermal, 90

PV diagrams, 87

ray diagrams
focusing mirrors, 22
lenses, 31
plane mirrors, 5

relativistic dynamics
Compton scattering, 860
elastic collision, 880
electromagnetic field
transformations, 889

energy, 855
energy and momentum of photon,
860

force, 863
impulse-momentum theorem, 866
momentum, 853
rest mass

particle, 853
system, 861

threshold energy, 881
useful identities, 858
work-energy theorem, 866

relativistic kinematics
aberration formula, 825
acceleration transformations, 809
Doppler effect

general, 828
longitudinal, 821

invariant interval, 802
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length contraction, 783
Lorentz transformations, 790
loss of simultaneity, 773
Minkowski diagrams, 788
paradoxes

Andromeda, 779
ladder-and-barn, 825
rigid pole, 816
spaceships, 825
superluminal, 824
twins, 799, 829

passive transformations, 796
proper acceleration, 810
proper distance, 806
proper time, 805
rigid bodies

Born rigidity, 818
flaws, 815

speed of light limit, 806
time dilation, 780
velocity addition, 807

special relativity
coordinate systems, 764

standard configuration, 771
events, 764
frames, 764

MCRF, 810
Michelson-Morley experiment, 937
postulates

invariance of c, 767
principle of relativity, 765

time, 771
synchronization, 772

underlying assumptions, 769
spontaneous reactions, 179
state variables, 78

enthalpy, 97
entropy, 173

ideal gas, 177
Joule expansion, 177
object with constant heat

capacity, 176
reservoir, 176

Gibbs free energy, 181
Helmholtz free energy, 181
internal energy, 78

ideal gas, 83
pressure, 81
temperature, 81
volume, 81

superconductors
Meissner effect, 555

thermal expansion, 218
thermodynamic laws

first law, 80
in state variables, 178

second law
Carnot’s principles, 161
Clausius form, 155
Clausius’ Inequality, 170
entropy form, 173
equivalence of Kelvin-Planck

and Clausius forms, 159
Kelvin-Planck form, 155
reversibility, 155

zeroth law, 77
thermodynamic systems

heat engine, 158
Brayton engine, 182
Carnot engine, 168
Otto engine, 182
Stirling engine, 183

heat pump, 182
refrigerator, 158

thermodynamic temperature, 164

voltage, 513

work, 79
general work, 85
microscopic view, 87
reversible work, 86
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